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Group-theoretical selection rules and experimental determination of lattice modes in
NaNO, via inelastic neutron scattering
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The general group-theoretical selection rules of Casella and Trevino for characterizing the harmonic
vibrations of molecular crystals within the rigid-molecule model via inelastic neutron scattering are applied to
NaNO, . For a given reciprocal-lattice vector the experimental resonances are classified not only
according to the irreducible representation to which the eigenmode belongs, but also as to whether the
interaction proceeds via the translational or rotational character of the mode (or both). The structure
functions (i.e., sums of structure factors) belonging to each representation at I and Z and along A in
the Brillouin zone are calculated explicitly. The results of experimental measurements at I are
presented and compared with theory. In particular, we conclude that the resonances at 120 and 175
cm ' are both to be associated with A, modes of mixed translational-rotational character. At the
(0, 0, 15) reciprocal-lattice point both are observed via their translational component and at (0, 2, 1) via
their rotational part. These assignments differ from earlier ones made prior to development of the
selection rules and moreover contradict the assignment of the 22-cm ' mode to A,, by Rao et al. ,
based upon their Raman measurements. A search was made for the 22-cm ' mode at the (0, 2, 1)
point, but none was found.

I. INTRODUCTION

In recent years, the study of phonon modes in
molecular crystals by the technique of coherent in-
elastic neutron scattering has increased substan-
tially. In these studies, a principal difficulty which
must be overcome is that of associating the ob-
served resonances with specific phonons. One
method which has been employed is the rather la-
borious one of constructing a model for the lattice
dynamics by postulating a force field. Using the
model, one obtains the eigenvectors corresponding
to the phonons for a given reduced wave vector and
then calculates the structure factor. An alternate
method developed by Elliott and Thorpe' uses
group-theoretical techniques to calculate the struc-
ture function for modes belonging to a given irre-
ducible representation of the group of the wave vec-
tor. The structure function is the sum of the
structure factors for all modes belonging to a giv-
en irreducible representation. The technique
treats the atoms in the primitive cell as individual
particles. We have recently extended their work
to apply to a class of models within which rigid
molecular groups undergo translational vibrations
of the center of mass and rotational vibrations
about the center of mass. The technique allows
the separation of the structure function for modes
belonging to a given irreducible representation in-
to two additive terms F and F corresponding,
respectively, to motions consisting of translations

and motions consisting of rotations. This is not
to say that a given phonon cannot consist of a com-
bination of the two types of motion but rather that
its observation via its translational character is
governed by one structure function and its obser-
vation via its rotational character by another. The
dependence of F~ and F on the reciprocal-lattice
points used for the observation of the phonon is
quite different so that it often happens that one or
the other may be zero at a given reciprocal-lat-
tice point. This enables an experimental deter-
mination of the degree to which a given phonon
consists of a mixed mode. Moreover, knowledge
of these selection rules as a function of recipro-
cal-lattice point aids greatly in choosing which
lattice point to use in the measurements.

The purpose of the present work is to give a
specific example of a set of selection ru1.es for a
molecular crystal and some experimental mea-
surements for illustration.

In Sec. II we review, in broad outline, steps
taken in the derivation of the selection rules. In
particular, we present explicitly the expressions
necessary for the calculation of the selection rules
and discuss the significance of several factors. In
Sec. III we give the details and results for the cal-
culation of the selection rules for the crystal
NaNO3. In Sec. IV we present some experimental
measurements with which to illustrate the applica-
tion of these selection rules.
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Molecule
number

Atom
number Atom

N

2C
1

1
4c

TABLE I. Positions of atoms and "molecules" in the

unit cell of NaNO&. X, Y, S denote Cartesian coordinates
(c=16.S290 A and g =1.241 A}.

cule model for the vibration of molecular crystals.
The model assumes that, in the harmonic approxi-
mation, the motion of the molecules is described
as translations of the centers of mass of the mol-
ecules plus rotations about the centers of mass.
The model should be quite good for a large class
of substances in which the internal vibrations are
substantially higher in frequency than the external
vibrations. Within the model, the displacement
of individual atoms can be written as

0
0

14c

u(x„,) =X(x„)+O(x„)&&b„,

0
N

0
0
0

—g ~3u

4c1

4c

gc3

4c

4c

II. SUMMARY OF THE THEORY

We briefly review here the development of the
method by which the application of group-theoret-
ical techniques leads to the formulation of selec-
tion rules for inelastic coherent neutron scatter-
ing by phonons. 2

Our development is based upon the rigid-mole-

where u(x„,) is the, displacement of the atom lo-
cated at x„;. A, is a double index (n, L) denoting
molecule n in the unit cell L and i, the ith particle
in the molecule. X(x„) is the displacement of the
center of mass of the molecule at x„, O(x„) is the
rotation of the molecule at x„, and b„; is the posi-
tion of atom i in the molecule n with respect to the
center of mass of the molecule. With respect to
the coordinate system defined by the X's and 0's,
one must construct a properly weighted system of
coordinates for use in the description of the dy-
namics of the problem. Having solved this, the
transformation properties of the coordinates ap-
proximate for the definition of the structure fac-
tor must be determined. Projection operators can
then be constructed which will allow the calcula-

TABLE II. Symmetry operations of space group D3&.

Seitz
Notation

{z I o}

Matrix representation

0 0-

1 0

0

Seitz
Notation

(i I o}

Matrix representation.

0-

0

(c3 I o}

{c,' I o}

(c2 t, Iv}

1
2

o

1
2

0

1
2

1
2

0

0

0

(s,' I o}

{s', I o}

(v„g I v }

1
2

0

1
2

0

0

0

(c2 2. I v}

(c),3 I v}

—0

1+—2

—0

1
2

0

0

(v„, Iv}

(a„, I v}

—0

—0

- -2' %3

—0

+—12

0

0
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TABLE III. Character tables for the point groups of
the wave vector Gf.

I(», ») 5,.= R,„(n)i,„(n)R„„(fn)

r pt.

Aig
Ai
A2g

A2„

Eg

A line

Ai

A2

A3

Z pt.

Zi
Z2

Z3

F. 2C3 3C 2

1 1 1
1 1 1
1 1 —1

1 1 —1
2 —1 0
2 —1 0

E 3C2 fT„

1 1 1
1 —1

2 —1 0

Z 2C, 3C,

2 2 0
2 —1 0
2 —1 0

C

$2 30„ C,

0 0 0 0
0 —1&3 i@3 0
O a&3 -A&3 O

2S6 3ov Cs

1 1 1 0
—1 —1 —1 1

1 1 —1 2
—1 —1 1

2 —1 0 2
—2 1 0 4

Sums on repeated s0bscriPts, e. g. P and v in Eq.
(3}, are implied wherever they occur.

The structure factor associated with translation
of the center of mass is defined in terms of a k-
dependent form factor a„(n 4) where

a„(k) = P [a„',/M(n) ]e

M(n) = g, M(ni) is the mass of molecule n and a„';
=a„,x (Debye-Wailer factor). The rotational term
in the structure factor contains a vector form fac-
tor h(n, n tk), where

h(n, k) =gb„,. [a„',/M(n)]e " "»

We remark parenthetically that if we ignore the
implicit K dependence of a„'; introduced by the
Debye-Wailer factor, Eq. (5) can be written in the
succinct form h(n, k) =i%„a„($ O.ne can write
both terms in Eq. (2) in the form

tion of the sum of the structure factors for modes
belonging to a given irreducible representation.
This sum consists of two terms;

F& &(r) =F& &(r~ T)+F& &(r~R), (2)

where F'"'(k) is the structure function associated
with irreducible representation r and momentum
transfer k (k=K+q, K being a reciprocal-lattice
vector and qthe reduced wave vector). F"'(kl T)
is associated with translations of the molecular
center of mass and F'"'(klR) is associated with
rotation about the center of mass. Having
sketched the procedure for obtaining Eq. (2), we
now omit all details (see Ref. 2) and simply pre-
sent the expressions for F'"'(kl T) and F'"'(klR)
after defining further notation: n is the symmetry
element (proper or improper rotation) in the group
Ge'. (Ge', of order he, is the point group associated
with G', the group of the wave vector q. ) u is the
fractional translation associated with n for non-
symorphic groups. )I"'(n) is the character of ir-
reducible representation r associated with element
n of the point group of the wave vector. (r is of
dimension I„.) a„; is the scattering length of the
ith atom in the molecule n M(ni) r.epresents the
mass of the ith atom in molecule n. p„ is the vec-
tor to the center of mass of the nth molecule in the
primitive cell. 6„; is the vector from the center of
mass of the nth molecule to atom i in that mole-
cule. I„e(n) represents the moment-of-inertia ten-
sor of the nth molecule with respect to a fixed
Cartesian frame. We also define a rotation ma-
trix R„»(n), associated with molecule n, which di-
agonalizes I„z and produces the principal moments
of inertia I(n, ».):

F'"'(k
l

&f) =h.,B...,(k, r
I &t».„

where )t takes the values T (translation) and R (ro-
tation) and B can be expressed in terms of a ma-
trix A as

B((,r~g) =QW(n, k, r~g)X'(n, k, r~ &f)

In the zone interior,

A,„( »E, r~T)=—„" Q&t,'"& (n)exp[-iK (np„+v )]
0 0,

xa„(n %)n,

and

xexp[-iK (nj„+v )]
x n~e„„h&(n, n 'k)r„(n), (9)

TABLE IV. Compatibility relations.

A

A2~

Z2+Z3
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I"IG. l. Single-phonon
resonances. Experimental
counts vs E, the neutron-
energy transfer to the lat-
tice. Graphs are labeled.

by the reciprocal-lattice
point associated with the
momentum transfer and in-
dividual peaks by the the-
oretically assigned group
representation. Error bars
(statistical only) are omit-
ted from all data except
those associated with the
(doubtful) A&~(R) resonance
at 175 cm . The curves
are not (relatively} normal-
ized.
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where c„„is the I evi-Civita symbol and

(10)

At the zone boundary the character y'~"'(n) is to be
replaced with a quantity involving the multiplier
representation, ~ '"'. That is,

y',"'(o) —y,'"'exp[iK(q, &) p. ],
where

K(q, o.) = o 'q —q

The characters y,'"'(n) for the multiplier represen-
tations have been tabulated by several sources. ~

We have now written all the expressions required
for the calculation of the structure factor.

tice can also be described by a pseudohexagonal
structure. In what follows we will use the pseudo-
hexagonal lattice notation to describe the reciprocal
lattice. The sodium and nitrogen atoms lie on the
unique threefold axis and the three oxygen atoms
of each nitrate group are arranged symmetrically
about the nitrogen atoms in planes normal to the
threefold axis. Each oxygen atom lies on a twofold
axis. Successive nitrate groups are rotated 60'
relative to one another. The unique threefold axis
is chosen as the hexagonal c axis. A complete
classification of the lattice modes according to
symmetry has been published previously. ' Table
I gives the atomic positions in Cartesian coordi-
nates. The vectors reciprocal to the hexagonal di-
rect lattice have Cartesian components,

III. SELECTION RULES FOR NaNO&

Sodium nitrate crystallizes in the rhombohedral
system. It belongs to space group D~~ (R3c}with

two formula units of NaNO, per unit cell. The lat-

h* = (a*, 0, 0)

k~ =(—,a*, —,a", 0)

1+ =(0, 0, c*)

TABLE V. Neutron inelastic scattering selection rules. Values are given for the structure function F "«(k l X) where

X = T (translation) or R (rotation).

Beciprocal-
lattice

point
Ai

T R

& point q = (0, 0, 0)
Ao Aog ~g

T R T R T R T R

.X line q = (0, 0, p)
AI A2 A~

T R T R T R

Z point q =- (0, 0, 2c*)
Z2 Z3

T R T R T R

0 0 ]2 0
0 0 15 4
0 ) —2

0 2 1 0
0 2 13
0 4 —$ 0

0 4 2 0
0 2 10 0

0 0

91 ()

0 0
0 6
]
0 0

0 0
0 0

61
0
0

0
0

0

0 0 0
0 0 0

0

0 0 0
() 0:&:3
0 94 0
0 0 0
6 0 0

0 0
0 0

1

1 0
1 0
4 0

98 0
]

68 0
0 0
0 6

0 0

0 0
0 0

8 0
3

0 0
103 0

0 ()

0
6

0 0
0 0

0 0

0 0
0 0
2 0

2 ]
2 i&7

98 0
98 0

2:37

77 0
115 0

0
1

16 7
8 0

12 0

10 6

0

1

1

2

0
0
0
1

0
0
9

0 0
0 0

1 0
] 1

2 ]4
44 0

0
1 15
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Along the c* axis, the Brillouin-zone boundary oc-
cur s at

= (0, 0, 0),
V2= (0, 0, p. ),

I' point;

~ line,

q~ = (0, 0, —,c*), Z point.

The character tables and modes breakdown are giv-
en in Table III. Table IV gives the compatibility
relations for the points I'- ~- Z.

In Table III, if various symmetry elements be-
long to the same class, the generic symbol is used
to label the class. Thus in all three groups, the
character corresponding to the element labeled C2

refers to the three elements C21't C2 2't nd C2 3'
and similarly for the other symmetry elements.
Note that in the case of the Z point, the two Se ele-
ments do not belong to the same class and are thus
listed separately in the character table.

In Table V we present values for the structure
functions F'"'(0

I y) for y= T and R. Only a few re-
ciprocal-lattice points were used in the present ex-
ample but these suffice to illustrate the use of the
selection rules. Thus, the translational modes of
A2„symmetry at 1" can be unambiguously measured
at the (0, 0, 12) lattice point. Not all cases are as
clear as the above, however. Note, for example,
the selection rules corresponding to the point
(0, 2, 13) and (0, 2, 1) which must be used in concert
to distinguish between the E~ rotation, which should
appear at (0, 2, 13) but not at (0, 2, 1), and the A2,
rotation, which should appear in both measure-
ments. In general the selection rules are suffi-
ciently varied such that the use of at most three
reciprocal-lattice points is required for the as-
signment of a given mode to a symmetry species.

IV. EXPERIMENTAL RESULTS

The measurements presented here were made on
a standard triple-axis spectrometer mounted on the
10-MW research reactor at the National Bureau of
Standards. The single crystal of NaNO~ had a vol-
ume of approximately 16 cm and was grown by
slowly lowering the temperature of a seeded satu-
rated aqueous solution. Only phonons at the I"

point (K=O) will be presented here. Figure 1 pre-
sents six scans which are used to identify most of
the I'-point phonons. Thus, the (0, 4, —1) and

Table II gives the symmetry elements and fraction-
al translations in the notation of Seitz and the cor-
responding Cartesian matrix representation. The
fractional translation, in Ca, rtesian coordinates, is

u= (0, 0, -', c)

Three high-symmetry values of q will be analyzed
here, viz. ,

(0, 2, 13) reciprocal-lattice points are used to verify
the assignment of Rousseau eI al. ' of the E, modes,
viz. , E,(T) = 100 cm ' and E,( R) = 175 cm

The two resonances observed at the (0, 0, 15) re-
ciprocal-lattice point must be assigned either to
A~„(T) or A2~(T). If both are present, then, from
the relative size of the structure functions and the
relative size of the observed resonances, we must
assign the lower-energy mode (120 cm ) as A,„(T)
and the higher mode (175 cm ') as the A2~(T). How-

ever, the observation of a mode at 120 cm ' at the
(0, 2, 1) point where only Az~(R) contributes raises
another possibility. Either the A~„(T) and A2~(R)
modes are accidentially degenerate at the I' point
or the 120 cm ' mode is an A2~ mode of mixed
translation-rotation character and the A, „(T) mode
is unobserved. In order to resolve this question,
this mode was measured across the zone to the
zone boundary along the c direction using both the

{0,0, 15) and (0, 2, 1) reciprocal-lattice points. The
behavior of the branch with k was identical in both
cases. Thus, either the modes are accidentally
degenerate across the zone or it is the same mode.
We prefer the interpretation that it is the same
mode. Thus, the two modes observed at the

(0, 0, 15) point are both A2 with the higher-energy
mode having the la.rger translational component and
the lower-energy mode the larger rotational compon-
ent. We would expect to see a very weak resonance
at 175 cm ' using the (0, 2, 1) reciprocal-lattice
point due to the small rotational component of this
mode. In fact, a very weak band has been found by
careful measurements with various monochromator
and analyzer combinations. The above assignment
of the A2~ modes constitutes a revision of an ear-
lier assignment [120 cm ':A~„(T); 175 cm ':
Az~(T) j which was made prior to the development of
the present selection rules which allow the identifi-
cation of those reciprocal-lattice points for which
the translational or rotational character of a given
mode may be observed. In addition, the observa-
tion of the A2~(R) phonon at 120 cm ' contradicts the
assignment by Rao et al. of this mode to 22 cm
A careful search was conducted for a 22 cm ' mode
using the (0, 2, 1) point but none was found. We re-
mark that a priori there exists the possibility that
resonances observed at the (0, 2, 1) point are due

to a Bragg-scattering event followed by inelastic
scattering, thus leading to erroneous assignments.
This possibility was eliminated by employing sev-
eral different incident energies in the measurement.

The TO modes of rotational character belonging
to the E„and A2„symmetry species are shown in
the last two spectra.

V. CONCLUSION

In conclusion, the selection rules derived in Ref.
2 have proved to be very useful in analyzing the
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data from complex crystals, such as sodium ni-
trate, as illustrated here by explicit calculation and

comparison with the experimental results pre-
sented.
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