PHYSICAL REVIEW B

VOLUME 10, NUMBER 2

15 JULY 1974

Defect-induced resonance modes in the asymptotic limit of low frequencies:
Isotope effects and amplitude patterns*

John B. Page, Jr.
Department of Physics, Arizona State University, Tempe, Arizona 85281
(Received 15 October 1973)

Results are presented of a theoretical study of the harmonic properties of defect-induced low-frequency
resonance modes associated with decreased force constants. Some apparently contradictory results of
previous authors are resolved. General relations, model-independent and exact in the limit of zero
frequency, are established connecting resonance-mode amplitude patterns and frequency shifts
accompanying isotopic substitutions for the defect or host atoms. The largest defect isotope shifts turn
out to occur when the impurity and host are completely decoupled, in which case the defect behaves
as a simple Einstein oscillator. It is shown that the measured shift for the system KBr:Li* is
incompatible with any harmonic model. The general results are illustrated for a specific model of an
isoelectronic substitutional defect in an alkali-halide crystal. The model assumes weakened
nearest-neighbor longitudinal force constants at the impurity, and realistic host-crystal phonons are used
to numerically compute isotope shifts and amplitude patterns near the defect for a number of systems.
The calculated amplitude patterns show clearly that decoupling does not occur for this model.
Estimates are made of the computational uncertainties in the calculated defect isotope shifts, and these
shifts are compared with the experimental values. For NaCl:Cu* and KI:Ag*, the calculated and
observed shifts agree to within experimental error, but it is shown that this error should be reduced
before the correctness of the model for these systems can be claimed. The large observed isotope shift
for Nal:Cl~ is underestimated by the calculations, and realistic extensions of the model are proposed.
The possible role played by anharmonicity for specific systems is briefly discussed.

I. INTRODUCTION

This paper reports the results of a theoretical
study of the asymptotic properties of defect-in-
duced harmonic resonances in the zero-frequency
limit associated with weakened force constants.
Stress is laid upon examining the coupling between
impurity and host in this limit and upon the related
question of resonance-frequency shifts accompany-
ing isotopic substitutions. The general results are
illustrated within the context of a specific defect
model, and realistic host-crystal phonons are used
to obtain numerical results for some alkali-halide
systems.

An impurity-induced resonance is most simply
characterized as an in-band analog of a localized
mode in the vibrational spectrum of an imperfect
crystal. Impurity resonances were first predicted
theoretically for pure mass defects,’ but most of
the known systems exhibiting low-frequency reso-
nances involve force-constant decreases. Experi-
mentally, resonances have been studied by means
of a number of techniques, among which are mea-
surements of specific heats, thermal conductivity,
Raman scattering, and infrared absorption. Ex-
perimental and theoretical work done on perturbed
phonons up to 1967 is reviewed in articles by
Maradudin,? Klein,® and in the treatise by Maradu-
din, Montroll, Weiss, and Ipatova.* Reference 5
also provides a useful source, for work up to 1968.
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Our work is concerned with resonances involving
defect motion. For substitutional isoelectronic
defects in ionic crystals, such resonances are
infrared active, and the first measurements of
the infrared absorption due to impurity reso-
nances were reported in 1964 by Sievers® and by
Weber’ for substitutional Ag* in alkali halides.
The infrared properties of low-frequency reso-
nances in a number of alkali halides containing
dilute concentrations of substitutional defects
have been extensively investigated by Sievers and
co-workers®™!® under a variety of experimental
conditions. The second column of Table I lists
the frequency ratios they observed for the indi-
cated defect isotope substitutions in NaCl:Cu*,
KI:Ag*, KBr:Li*, and NaI:Cl~. All of the mea-
surements were made at temperatures of 4.2 °K
or less. The resonance frequencies for the light
impurity isotope in each of the four systems are
listed in the first column, and these frequencies
are each less than 15% of the maximum host-
lattice frequency. The isotopic frequency ratios
provide information on the extent to which the de-
fect’s surroundings participate in the motion, and
in the third column of Table I frequency ratios
are listed for the case when the defect behaves as
a simple Einstein oscillator. Such behavior would
occur in the limiting case of a localized mode of
very high frequency since then the impurity would
be vibrating alone, but one would not generally
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TABLE I. Ratios of resonance frequencies for impurity isotope substitutions. Subscripts
1 and h denote light and heavy isotopes, respectively. Measured values of the resonance
frequencies for the lighter isotopes are listed in the first column, while the experimentally
observed frequency ratios are given in column two. Ratios appropriate to Einstein-oscillator
behavior are tabulated in the third column. The calculated ratios listed in the fourth column
are based upon the defect-nearest-neighbor force-constant change model of Sec. III and were
computed using Eq. (30). The quantity F of that equation is a function of just the unperturbed
host-crystal phonons, and the values of F listed here were computed from phonons of the
breathing shell model.? The error estimates given with the calculated frequency ratios are
approximate, and their calculation is discussed in Appendix C.

wy (em™) (wy /wp)y (wy/wy)y
System (expt.) (expt.) (my, /m;)V2 (cale.) F (amu)
NaCl: 83785cu* 23.6° 1.016° 1.0157 1.0142 6.97
+0.002 +0.0006
KI107-109p 0+ 17.4° 1.008° 1.0093 1.0072 30.5
+0.002 +0.0003
KBr:5'Li* 17.7° 1.105° 1.0801 1.015 26.8
+0.004 +0.004
Nal 3%~ 3c1™ 5.4° 1.029¢ 1.0282 1.008 97.6
+£0.008 +0.003

2U. Schroder (Ref. 22).
bR. D. Kirby ef al. (Ref. 8).
°B. P. Clayman et al . (Ref. 10).

expect such behavior for resonances, as they oc-
cur at frequencies within the allowed pass bands

of the unperturbed crystal. Nevertheless, one
notes from Table I that except for KBr:Li", the
experimental ratios are very nearly equal to the
corresponding Einstein-oscillator ratios, and this
suggests that the defect is moving essentially alone
in these three systems. The major aim of the
present work is to investigate the general relation-
ships between isotope shifts and defect-host cou-
pling in low-frequency resonances.

The harmonic approximation is used throughout
this paper. In view of the anomalous properties of
the lithium ion in KCl, where it occupies an off-
center equilibrium position,'* it is reasonable to
suppose that KBr:Li", which is known to be an on-
center system, is quite anharmonic. Indeed, we
will later prove that the observed isotope shift
for KBr:°~"Li* cannot be explained on the basis of
any harmonic model.

For the remaining three systems of Table I,
anharmonic effects have been studied experimen-
tally, as will be discussed briefly in Sec. IV, and
they have been shown to be important for some
properties. As is pointed out in that section, how-
ever, the importance of anharmonicity for isotope
effects at low temperatures has not been estab-
lished. The apparent simple Einstein-oscillator
ratios observed for these three systems suggest
that their low-frequency resonances and associ-
ated isotope effects may be understood within the
harmonic approximation. Moreover, before an-
harmonic effects are studied theoretically, itis

important that the harmonic behavior be thoroughly
understood, and previous studies of low-frequency
resonances, made within the harmonic approxi-
mation, have led to seemingly contradictory re-
sults. These will be discussed in greater detail
later on, but suffice it to say here that it has been
suggested (i) that Einstein-oscillator behavior
might generally hold within the harmonic approxi-
mation in the zero-frequency limit,'®**® (ii) that
isotopic frequency ratios greater than those for
Einstein-oscillator behavior can occur within a
specific harmonic model,®'!” and (iii) that another
specific, but more realistic, model for a per-
turbed harmonic alkali-halide crystal leads to cal-
culated ratios substantially less than those for
Einstein oscillators.'®3 The primary motivation
for the present study was to resolve the apparent
conflicts in these results, and all of our work is
based upon the harmonic approximation. Further-
more, the work is done for zero temperature and
is restricted to dilute concentrations of substitu-
tional defects, so that just the case of a single im-
purity is considered.

Section II B contains the general theoretical re-
sults of the paper. They are derived there without
reference to specific assumptions about the nature
of the force constant perturbations introduced by
the defect and are therefore general within the
harmonic approximation. Section ITA briefly re-
views the usual Lifschitz'® Green’s-function meth-
od for perturbed phonons, as it pertains to reso-
nances. This method is used in the model calcu-
lations of Sec. III, but the general results of Sec.
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II B are derived without recourse to Green’s func-
tions.

In Sec. III A, the general results are illustrated
within the context of a specific defect model, while
in Sec. III B the results of numerical calculations
based upon this model and realistic host crystal
phonons are presented and discussed for several
alkali-halide systems. Results for isotope shifts
and for amplitude patterns are presented, as are
theoretical uncertainty estimates for the shifts.
Such estimates turn out to be necessary before a
meaningful comparison of theoretical and experi-
mental isotope shifts can be made.

Klein® and Benedek and Nardelli'® have used a
similar defect model, but different host crystal
phonons, to study low-frequency resonances in
some systems, and our numerical studies extend
their work. These authors were the first to point
out that a very light impurity associated with suf-
ficiently weakened force constants could give rise
to both a high-frequency localized mode and a low-
frequency resonance, provided that long-range
force constants are present in the system. They
did not calculate the amplitude patterns associated
with resonances, nor did they give theoretical un-
certainty estimates, but their calculations showed
the possibility of substantial coupling between the
defect and host at low frequencies for this model.
The extent to which this is so in a number of sys-
tems is revealed by our calculated amplitude pat-
terns.

The discussion of our numerical results begun
in Sec. I B is continued in Sec. IV. Suggested di-
rections that future work might take are also dis-
cussed in that section, and Sec. V consists of a
brief summary of the paper.

II. GENERAL THEORY

A. Formal background

The notation is similar to that used previously
by the author.?® The basic eigenvalue problem of
the harmonic approximation is

(@ - wf M)x(f)=0, (1)

where M and & are the system’s mass and har-
monic force constant matrices and f labels the
normal modes. The eigenvectors &(f) give the
particle amplitudes for each normal mode and are
orthonormal with respect to M,

g(f)Mx_(f’)=5ff'- (2)

Although Green’s functions will not be used until
Sec. III, the notion of a resonance is most easily
introduced in terms of the system’s harmonic
Green’s-function matrix

G(w?) = (& = ™M) =3~ x(NX(Nw? - w?)™'. (3)

f

The equivalence of these two forms follows at
once from the use of Eq. (1) and the completeness
relation E, Myx(f)x(f)=1. The Green’s function

is related to the system’s linear response to an
applied electric field, provided that the dipole mo-
ment operator of the system is linear in the parti-
cle displacements u = {u(na)}. In this case it is a
straightforward exercise in linear response theory
to show that the imaginary part of the dielectric
susceptibility at frequency w is proportional to the
Fourier transform (uu)* of the displacement-dis-
placement correlation matrix (u(¢)i), where the
brackets denote a thermal average and u(¢) is the
displacement operator expressed in the Heisen-
berg representation at time ¢{. In the harmonic
approximation, one obtains

(ua)?=7""fin(w) ImG(2), (4)

where n(w) =(e® - 1)"! is the Planck distribution
function and w is assumed positive. The variable
z is equal to w? +i€, and the limit €~ 0" is under-
stood.

If a substitutional impurity is present in the lat-
tice, the mass and force constant matrices may
be written M=M,+AM and & =®,+A®, with M,
and $, referring to the unperturbed crystal. It
then follows from the first part of Eq. (3) that the
Green’s-function matrices for the perturbed and
unperturbed crystal are related through

G(2) =[1 +Go(2)C(2)] "G of2) s (5)

where the perturbing matrix C(z) is equal to A%
—zAM. Elements of the real and imaginary parts
of the unperturbed Green’s-function matrix G(z)
may be numerically computed from the host crys-
tal phonon frequencies and polarization vectors.
This will be discussed further when numerical cal-
culations are taken up in Sec. III B.

Comparison of Egs. (4) and (5) shows that (u@)*
is proportional to the quantity [(Re II +Go(2)C(2)])?
+(Im|I +G,(2)C(2)|)*]™", with the bars indicating
determinants. The condition for a resonance is
the vanishing of this quantity’s first term, and this
condition is equivalent to

Re|1+go(2)e(2)]=0. (6)

Here 1, g,(z), and c(z) are the submatrices of I,
G,(2), and C(z) in the “impurity” subspace, de-
fined by the sites associated with nonzero elements
of C(z). In problems of practical interest, such as
that of an isoelectronic defect in an alkali halide
crystal, the force constant changes may be limited
to a relatively small number of particles near the
defect so that the determinant in Eq. (6) involves
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a matrix of manageable dimensions.

Note that only the real part of c(z) survives in
the limit ¢~ 0", and that for w outside the unper-
turbed frequency bands the imaginary part of
go(z) vanishes. Thus, for such frequencies the
resonance condition (6) becomes simply
[1+g,(w?)c(w?)|=0, which is the usual condition
for the appearance of a localized mode. For w
within the unperturbed frequency bands, the reso-
nance condition can result in maxima in the ele-
ments of (ul)“ and hence a maximum in the linear
response of the system to an applied electric field.
Moreover, since the diagonal elements of (uu)*
give the contribution per unit frequency from
modes in (w, w +dw) to the mean-square particle
displacements («?(na)), the resonance condition
can result in maxima in these quantities. How-
ever, whether or not maxima actually occur in
either the mean-square displacements or the sus-
ceptibility depends upon the behavior of the entire
imaginary part of the perturbed Green’s function
G near the resonance frequency.

This paper is concerned with the behavior of
resonances involving impurity motion. For defi-
niteness, a substitutional impurity in a crystal of
the rocksalt structure will be studied. The point
group is O,, and only the threefold degenerate
T,.(T,5) modes involve impurity motion. We will
consider x-polarized T,, modes, and for these
u(0x) is nonzero, where n =0 labels the defect site.
In practice the matrices in Eq. (6) are to be ex-
pressed in an x-polarized T,, symmetry basis,
but because an explicit model calculation will not
be performed until Sec. III, the introduction of a
symmetry basis will be deferred to that section.

The notion of a resonance at zero frequency will
play a central role in our work. For a finite de-
fect mass and in the w— 0 limit, c(z) approaches
A¢, and the resonance condition becomes simply

[1+g,(0)ag. [=0. (7

Here A ¢, signifies any force-constant perturba-
tion matrix satisfying this equation, and g,(0) is
the w =0 limit of just the real part of g,(z) since
the imaginary part vanishes in this limit, as may
be seen from the arguments of Appendix A. For a
given model of the force constant perturbations,
Eq. (7) is the condition on the elements of A¢ for
the appearance of a resonance at zero frequency.
This condition is independent of the system’s
masses, and in Sec. III B we will see that for the
model of changed longitudinal overlap force con-
stants between the impurity and its nearest neigh-
bors, Eq. (7) holds for weakenings of typically
60% in a number of alkali halides. Larger de-
creases would result in an instability for T,,
modes—the system would distort to a new equilib-

rium configuration. The off-center KCl:Li" sys-
tem' presumably could be an example of such be-
havior.

The zero-frequency resonance condition (7) is
equivalent to |I +G,(0)A%, |=0, and because G ,(0)
is just ¢ o}, this is the necessary and sufficient
condition for the existence of non-trivial solutions
of the equation

(@,+82.)x(f)=0, (8)

which is the w;— 0 limit of the basic eigenvalue
equation (1). Of course, if the system is invariant
to arbitrary uniform translations, Eq. (8) will al-
ways have nontrivial solutions corresponding to
uniform translations, regardless of the value of Ad,.
However, we will be confining our attention to the
behavior of low frequency resonances in the w—-0
limit associated with the approach of the force
constant perturbation matrix A® to a critical val-
ue Ad., and for these bona fide vibrations the sys-
tem’s center of mass is at rest, the eigenvectors
x(f) are orthogonal (with respect to M) to uniform
translations, and ¢,x(f) is nonzero.

It should be noted that a resonance at zero fre-
quency can also be obtained by letting the defect
mass go to infinity, as is intuitively clear. Such
“mass-induced” low-frequency resonances have
been thoroughly discussed in the literature,'® and
we will continue to focus on the more interesting
and complex case of low-frequency resonances as-
sociated with large force-constant weakenings.

B. Isotope shifts

Having set down the formal basis for the re-
mainder of the paper, let us now suppose that the
system’s mass matrix M is altered to M’ via sub-
stitutional mass perturbations, involving any or
all of the system’s sites. Although the changes in
M are not assumed to be localized, it is assumed
that these perturbations are not accompanied by
any changes in # =¢ ,+A¢, the system’s force-
constant matrix.

Since just modes having nonzero defect ampli-
tudes are being considered, one can introduce vec-
tors @(f) giving the normalized particle amplitudes
relative to that of the defect

x(F)=@(f)x(0x[f). (9)
When expressed in terms of @(f), the basic eigen-
value equation (1) is

PG (f)=1MQA(f), (10)

where ), stands for w?. This equation can be used
to express A, as A, =Q(f)@G(f)/G(/IM G(f),

which is of the usual harmonic oscillator form

A =k¥/m¥, but with the effective mass and force
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constant being determined from M and & by the
relative amplitude vector G(f).

Instead of restricting ourselves to low frequen-
cies at the outset, let us for the time being con-
sider the effect of an arbitrary change in the prod-
uct A, M=x, for a mode f of any frequency. With
the basic eigenvalue equation (10) being written
before and after the change as ®@(f)=x,@G(f) and
®Q@'(f)=x/@'(f), respectively, a straightforward
calculation leads to the identity

G(f)x;-x/)8'(f)=0. (11)

For the case when the changes M'-M, @'(f)
—@(f), and A{ - A; are small compared with the
corresponding initial values, one obtains the first-
order result

A /N =R(FIMG(f)/R(FIMG(S). (12)

If the mass changes are sufficiently small, this
perturbation theory result gives a good approxi-
mation to A; /A/ for a mode f of arbitrary fre-
quency. However, note that if the difference @'(f)
- @(f) were to vanish, Eq. (11) would lead iden-
tically to Eq. (12) with no approximations involved.
It turns out that this happens in the low-frequency
limit—as one looks at progressively lower fre-
quencies associated with force constant weakening,
Eq. (12) gives a better and better approximation

to A; /A/ and becomes exact in the zero-frequency
limit, regardless of M'. In order to further clar-
ify the low-frequency case and to keep the general
work of this section parallel with the model calcu-
lations of Sec. III A, a separate derivation of the
low-frequency version of Eq. (12) will now be giv-
en.

The effect of the change M~ M’ on a very low-
frequency resonance will be studied by investigat-
ing the behavior of the normal mode f for which
A; approaches zero as A$ approaches A®,, the
value satisfying the determinental condition
|®,+A®, [=0, implied by Eq. (8). We write ¢
=3 ,+A%, +(A2 - A®,) and G(f) =A(f)
+[@(f)-A(f)], where A(f) is the zero-frequency
limit of @(f). The vector A(f) will play an impor-
tant role in our work and is determined by the
equation

(2,+A2,)A(f)=0, (13)

together with the condition A(Ox|f)=1. Thus, the
relative amplitudes at zero frequency are indepen-
dent of the system’s masses. The identity
A(f)(a® -28,)G(f) =N A(fIMG(f) follows from
Eq. (10), and for a sufficiently low frequency
@(f)=A(f) will be small compared with A(f). The
first-order result for small A; is

r=A(ad -a2)A/AMA, (14)

where the mode index f has been dropped.
Throughout the remainder of this paper we will
continue to neglect terms nonlinear in A in the
frequency condition for low-frequency modes.
This means that the isotope frequency ratios or
fractional shifts to be derived will contain just
zeroth order terms in A and hence will be exact
at A=0. Numerical evidence will be given in Sec.
III B that working in the linear frequency regime
is adequate for the experimental resonances of
Table 1.

Under an isotopic substitution M- M, the only
quantity on the right-hand side of Eq. (14) that
changes is M itself, and one has

L(V/A)=AM’'A/AMA, (15)

where the symbol L signifies that this is an exact
result for arbitrary M’ in the limit A~ 0 [or when-
ever the linear approximation (14) is exact].
Equation (15) is the low-frequency version of the
previously derived perturbation-theory result (12).
The general orthonormality condition (2) leads to
the relation

x*(0x[x=0)=AMA (16)

at A =0, and this equation together with the fact
that the zero-frequency relative amplitude vector
A is mass independent, allows Eq. (15) to be re-
written

LAY = x(0x[x=0)/x'(0x|x=0)[2.

Equation (15) and, indeed, all of the expressions
of this subsection are general within the harmonic
approximation, holding equally well for perfect
lattices, lattices with impurities, or disordered
lattices, as long as @(f) gives the displacements
relative to that on aEarticle whose amplitude is
nonzero. However, in this paper we will stay with-
in the context of a single substitutional impurity.

1. Impurity-isotope shift

Consider now the case of an isotopic substitution
for the impurity such as, for example, the re-
placement of ®3Cu’ by ®*Cu’ in the NaCl:Cu' sys-
tem. Equation (15) yields

LOA/X);=(mi+S)/(m;+S), (17)

where m, stands for the impurity mass and the S
is the sum

S= Z m,A%(na). (18)
a,n*0
A subscript I has been added to L(A/X’) to distin-
guish this isotope shift from the “host” shift to
follow. Since the sum S involves only positive
quantities, one immediately obtains for the case
of a heavy isotope the inequality
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LO/XN) <smj/my, (19)

with the equality holding only for all A(na) =0 for
n#0. In other words, in the harmonic approxima-
tion, but regardless of the details or extent of the
harmonic-force-constant perturbations, Einstein-
oscillator behavior is an upper limit on L(\/)\’),
and holds if and only if just the defect is moving
as A approaches zero.

Although Egs. (17)-(19) have been derived in the
low-frequency limit, where they are exact for any
mj{, it is apparent from a comparison of Egs. (12)
and (15) that with @(f) replacing A, these three
equations also hold to first order in (m;-m,) for
a mode f of arbitrary frequency.

From the preceding inequality (19), we can im-
mediately conclude that the measured KBr:®~"Li"
isotope shift cannot be understood within the har-
monic approximation, since a comparison of the
data of columns 2 and 3 of Table I shows the ob-
served frequency ratio for this system to be much
greater than that for Einstein-oscillator behavior.
Thus KBr:Li" must be regarded as a very anhar-
monic system.

Sievers and Takeno'” have derived a model-de-
pendent expression for the squared frequency A of
a low-frequency impurity resonance, and their re-
sult leads to a ratio (A/\’);, which is greater than
the Einstein-oscillator limiting value m; /m, pre-
dicted by our general result (19). However, as is
shown in Appendix B, their expression for A con-
tains some, but not all, terms of second and high-
er order in A, and when these are eliminated their
model predicts L(A/\'); =m}/m;, which is consis-
tent with our general result. It is furthermore
shown in Appendix B that when their model is used
to calculate X consistently even to second order,
the ratio (A/A’); so obtained again turns out to be
given by the Einstein-oscillator value mj/m;. In
the Sievers-Takeno model the host lattice is as-
sumed to involve just equal nearest-neighbor lon-
gitudinal and transverse force constants k, =k, =k,
and the impurity is assumed to perturb only the
force constants k,; =k,;=k; to its six-nearest
neighbors. Since the force constants in this model
are all positive and couple just nearest neighbors,
it is clear that a zero-frequency resonance may be
achieved only by reducing k, to zero and that the
defect and host are decoupled in this situation, so
that Einstein-oscillator behavior necessarily re-
sults. On the other hand, we will see in Sec. IIIB
that calculations of L(A/x’), for alkali halides and
based upon shell model phonons lead to values sig-
nificantly less than those appropriate to an Ein-
stein oscillator. This is because with realistic
force constant models for alkali halides, the de-
fect and host remain coupled in the zero-frequency

limit, so that the relative amplitudes A (na) are
nonzero on the host ions. Hence in view of Egs.
(17) and (18), S is nonzero and L(A/X’); involves
more than just the impurity mass.

Krumhansl'® and Krumhansl and Matthew'® have
argued that Einstein-oscillator behavior may be a
rather general property of impurity resonances
in the low-frequency limit. This conclusion was
based upon the neglect of force constant elements
&(0a, nB) coupling the impurity to other particles
(n#0) in the lattice, but these authors cautioned
that this assumption might not be justified for ionic
crystals. Our numerical results imply that these
force constant elements are often large in alkali
halides, as mentioned in the previous paragraph.
Indeed, the results of this paper show that Ein-
stein-oscillator behavior is by no means a neces-
sary general asymptotic property of low-frequency
harmonic resonances.

2. Hosl-isolope shift

We will now leave the problem of isotopic sub-
stitutions for the impurity and will instead consid-
er the effect on a low-frequency impurity-induced
resonance of making an isotopic substitution in the
entire host lattice. An example of this would be
the substitution **C1~~ *C1~ in the NaCl:Cu* sys-
tem. We will make the simplifying assumption
that the fractional mass perturbation is the same
for each particle in the host crystal. Thus it is
assumed that the change Am,; =m/ —m, of the host-
ion mass at site ! is given by ym,, where y is in-
dependent of I. This is, of course, exactly true
for a monatomic host.

Applying the basic result (15) to this situation,
one has

LO/X)y=AM’A/AMA =[m; +(1+9)S] /(m;+5),
(20)

where S is the sum defined in Eq. (18). Since this
sum also occurs in our expression (17) for the de-
fect-isotope effect, we can easily relate the two
types of shifts. The result can be expressed as

L(éﬁ) __ ALN/ N =mji/m,]
Xy l=m}/m;+y[ LO/XN), =m]/m,;]’

(1)

where m,; and m; are the masses involved in the
impurity-isotope substitution. Again, this is a
general harmonic result and is hence independent
of the nature of the force constants in the system.
Moreover, this equation relates the two types of
isotope shifts through just the masses involved.
Were measured host shifts available and sufficient-
ly accurate, such a relation could offer a useful
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consistency check on the use of the harmonic ap-
proximation.

Again by comparing Eqs. (12) and (15), it is seen
that Eq. (20), which holds for arbitrary y in the
low-frequency limit, also gives the ratio (A/\’),
to first order in y for a mode f of arbitrary fre-
quency if the replacement A~ @(f) is made in the
sum S.

According to Eq. (21) the host isotope shift
L(Aax/2) x vanishes when the impurity-isotope shift
exhibits Einstein-oscillator behavior; that is,
when L(A\/\’); is equal to m} /m,. This result is
consistent with our earlier result that Einstein-
oscillator behavior for L(A/)’), means that just
the impurity is moving and, in fact, holds regard-
less of how the host mass change is distributed
over the lattice. This follows from Eq. (15) to-
gether with the relation A (nx) = 6,, implied by Ein-
stein-oscillator behavior of L(A/)’);. For any
host-isotopic substitution one then has L(A/\'),=1
and hence L(AX/)), is zero.

3. Impurity amplitude

If the normalization condition (16) is combined
with the result (17) for the impurity-isotope effect,
the squared normalized impurity amplitude at zero
frequency can be expressed as

X2O0x|x=0)=[ LO/X"), =1]/(m} -m ). (22)
When L(\/X'); is equal to mj /m,, one has

x2(0x|x=0)=m,;~!, which by the normalization con-
dition again means that the defect is moving alone.

III. THEORY AND NUMERICAL RESULTS
FOR A SIMPLE DEFECT MODEL

The general results of Sec. II B are based solely
upon the fundamental lattice dynamics equations
(1) and (2) and involve no Green’s functions. How-
ever, when studying specific force-constant mod-
els, the Green’s function formalism reviewed in
Sec. ITA provides a tractable theoretical approach
in that only impurity subspace vectors and matri-
ces need to be considered. Accordingly we will
now return to the Green’s-function formalism and
investigate low-frequency resonances within the
context of an explicit model for the force-constant
perturbations introduced by the defect. In this way
the preceding general results will be set in the
framework of a specific model, and numerical cal-
culations can be carried out.

For an isoelectronic substitutional impurity in
an ionic crystal of the NaCl structure, the sim-
plest first approximation is to consider just lon-
gitudinal force-constant changes 6 =k} - &, between
the defect and each of its six nearest neighbors.
These changes may be thought of as arising from
altered overlap interactions, but also note that
because of anharmonicity, short-range as well as
Coulomb force constants will be perturbed by any
lattice distortion accompanying the defect. Such
changes are implicitly included in 6, but for sim-
plicity we will ignore relaxation-induced force
constant changes beyond nearest neighbors. These
perturbations can be rather extensive,*! and their
effects will be discussed elsewhere.

A. Theory

The sites occurring in the impurity subspace are those of the impurity and its six nearest neighbors.
For the assumed longitudinal force-constant perturbations, there are but two linearly independent x-polar-
ized T,, symmetry basis vectors in the impurity subspace, and we will use the normalized basis shown
in Fig. 1, which also gives the labeling convention. Expressed in this basis, the impurity-subspace un-
perturbed Green’s-function matrix is given by

802(2) ={ E(T, £)go(2) (T, t )} =<

Gollx, 1x;2) +Go(lx, — 1x;2)  V2G,(0x, lx;z)) 23)
’

V2G,y(0x, 1x; 2) Go(0x, Ox; 2)

where point symmetry arguments have been used to minimize the number of independent elements. Since
we are only concerned with matrices and vectors expressed in the illustrated symmetry basis, the super-
script B can be dropped. For the assumed force constant changes, the impurity-subspace perturbing ma-
trix in our basis is

_g(z)=( o =% > (24)
-V26 26-zAm

The quantity Am =m, - m, represents the mass change associated with the introduction of the impurity into
the lattice. With g,(z) and c(z) given by the preceding two equations, Eq. (6) yields the resonance condition

Re{6(2G,(2) - G,(2)) + 1 +zAam[ 6( G,(0x, 0x; 2)G,(2) = 2G,(0x, 1x; 2)G,(2)) = G,(0x, Ox; 2)] } =0, (25)

where G,(z) and G,(z) stand for 2G,(0x, 1x; z) — G,(1x, 1x; 2) = Go(1x = 1x; 2) and G,(Ox, Ox; 2) — G,(0x, 1x; 2),
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respectively. The variable z is of course ®+i€, with the limit € ~0* understood.

We are interested in the solution of the above equation for w=0. As is seen in Appendix A, the imagi-
nary parts of the Green’s-function elements vanish in this limit, whereas the real parts in general do not.
Thus, to first order in X = w?, the Green’s functions in the square brackets of Eq. (25) may be replaced by
their real parts at zero frequency. Moreover, it is shown in Appendix A that within a simple Debye ap-
proximation the real parts of G,(z) and G,(z) are linear in A in the low-frequency limit . Expanding the
real part of 2G,(z) - G,(z) about x =0 and dropping from the resonance condition (25) terms in which non-
linear powers of A appear explicitly, one obtains the low-frequency approximation

1+6(2G,-G))

A

for the squared resonance frequency. Here the
real parts of the Green’s-function elements and
their derivatives with respect to A are evaluated
at A =0, and this is signified by the omission of the
argument z from these quantities. According to
Eq. (26), the resonance frequency approaches zero
for two limiting situations, one of which is the
limit Am - of a very heavy defect. In this case
A approaches zero for any value of 6. Further-
more, it is easy to see from Eq. (26) that such
“mass-induced” low-frequency resonances lead to
Einstein-oscillator impurity-isotope frequency
shifts, as one would expect.

The second and more interesting situation lead-
ing to a zero-frequency resonance occurs when
the force-constant perturbation approaches the
critical value

8,=-(2G, - G,)™*, (27)

and this is the case with which we are concerned
in this paper. Any further change of 6 results in
an imaginary resonance frequency, meaning that
with the impurity equilibrium position at the sub-
stitutional lattice site as assumed, the system is
unstable. The critical value of 6 is independent

of the system’s masses and is determined solely
by the host-crystal force constants through the

'1”

£mD £m2)

FIG. 1. Normalized impurity-subspace basis vectors
of Ty, symmetry, polarized in the x direction.

= Am{6[2G,G,(0x, 1x) — G;Go(0x, 0x) ]+ G,(0x, 0x)} - 0 D, (2G, - G,)]

(26)

r

real parts of the unperturbed Green’s-function
elements 2G, - G,. For any general defect model
involving a finite impurity mass, the application
of the zero-frequency resonance condition will ob-
viously reduce by one the number of independent
parameters characterizing the force constant per-
turbations, and hence in the present model the
zero-frequency condition completely determines
AD,.

The low-frequency approximation (26) contains
terms nonlinear in A. When the force constant
perturbation 6 is close to the critical value 6,,
we write 6=6,+(6 - 6,) and retain in Eq. (26) just
terms of first order in 6~ 6,. This yields the con-
dition

A =3(8 - 8,)((G,/G;) - 2]*/bm; + F) , (28)

where use has been made of Eq. (27), and the
quantity F is defined by

F=D,(2G, - G,)/2G2 -m, . (29)

Equation (28) is the first-order result for a “force-
constant-induced” low-frequency resonance and is
just the general harmonic first-order expression
(14) of Sec. II B written in terms of the present
model, as will be demonstrated in the particle
amplitude portion of the present section.

1. Impurity-isotope shift for the model

If the squared-resonance frequency A is de-
scribed by the linear approximation (28) both be-
fore and after an isotopic substitution m, — m; of
the impurity, the ratio (A/\’), is given by

L(\/X"), =(m} + F)/(m, + F). (30)

Comparison of this result with the general har-
monic expression (17) of Sec. II B shows that the
quantity F must be equal to the sum S defined by
Eq. (18). That this equality explicitly follows
from the present model will be shown when the
subject of particle amplitudes is taken up.
According to Eq. (30), the necessary and suffi-
cient condition for an Einstein-oscillator defect-
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isotope shift in this model is the vanishing of the
quantity F. Note that this is a condition involving
just host lattice quantities. As has been men-
tioned, the neglect of nonlinear terms in the low-
frequency resonance condition results in isotope-
frequency ratios or fractional shifts that are valid
to zeroth order in A and are therefore exact at 1
=0. Since the force-constant perturbations of the
present model are completely fixed by the A =0
condition, expression (30) for L(A/1’), contains
no free model parameters, and the occurrence or
nonoccurrence of Einstein-oscillator behavior is
solely a property of the host. For a more general
defect model, the zeroth order expression for the
isotope-frequency ratio would involve all but one
of the independent force-constant perturbation
parameters, with the remaining parameter being
determined by the A =0 condition.

2. Host-isotope shift for the model

As in Sec. II B, it will be assumed that the host-
lattice isotopic substitution is of the form M,
-M{ =(1+y)M,, where y is a scalar. Such a
change has a simple effect upon the Green’s-func-
tion matrix: G4 (2) =[ &, - 2(1+y)M,] ™ =G,[z(1 +y)].
Again using the results of Appendix A that the real
parts of G,(z) and G,(z) and their derivatives with
respect to X are well behaved at A =0, one has

G}(\)=G, +M1+9)D\G,;+0(\?) , (31)

where G, stands for either G, or G,. This result
is valid for any fractional host mass perturbation
Y.

One can now work out the low-frequency reso-
nance condition analogous to Eq. (28), but for a
defect of mass m, and force-constant change 6 in
the isotopically perturbed Zost crystal. Equation
(31) shows that the perturbed zero-frequency host-
lattice quantities G{,G;, and F are given by G,,
G,, and (1+y)F, respectively, so that Eq. (28)
leads to

A =56-8,)G,/Gy=2Y/[m+(1+y)F].  (32)
Combining this result with Eq. (28) gives
LO/Xy=[m;+(1+y)F]/(m; + F) . (33)

When F is eliminated between this equation and
Eq. (30) for L(x/1"),, the result is equivalent to
Eq. (21), and hence that general harmonic result
has been explicitly verified for this model.

3. Amplitudes for the model

We have previously noted that the vector A,
which gives the zero-frequency amplitudes rela-
tive to that of the impurity, is independent of the
system’s masses. On the other hand, the nor-

malized amplitudes in x always involve the sys-
tem’s masses through the normalization condition
(2). We will now derive expressions for numeri-
cally computing components of A for particles
near the impurity and will then consider the zero-
frequency normalized defect amplitude x(0x|x =0)
itself.

It is useful to return to the general zero-fre-
quency condition (13) and reexpress it in terms of
A and G,(0)=%,™" as

(1 +Go(0)a®,)A=0 . (34)

The localization of A®, allows one to write the
same equation for just impurity subspace quanti-
ties

[1+g,(0)ag.Ja=0. (35)

The matrices go(O) and A¢, in our T,, symmetry
basis are given by the z =0 limit of Egs. (23) and
(24), provided 6 in the latter equation is replaced
by the critical value §,=-(2G, - G,)”! implied by
the zero-frequency condition [1 +go(O)A_<QCI =0. In
addition, the impurity-subspace vector a is given
in this basis by a=[ V2A(1x), 1]. Equation (35)
then yields

A(1x)=6,/26G, , (36)

and through the use of Eq. (34) it is a straight-
forward matter to-derive analogous expressions
for the relative amplitudes outside the impurity
subspace. The result for sites n=1,2,... along
the positive x axis is

Anx) =[2G o(nx, 0x) = Go(nx, 1x)
= Golnx, - 1x)]/(2G,) , (37)

which reduces to the previous equation for n=1.
Symmetry restricts the motion of these particles
to the x direction and requires that A(-nx) be equal
to A(nx). The defect’s four nearest neighbors
along the y and z axes also move in just the x
direction, as shown in Fig. 2(a), and they have
equal amplitudes A(1’x), given by

A(1'x)=[Go(1"x,0x) = Go(1'x,1x)] /G, . (38)

Equations (37) and (38) are the basis of the numer-
ical calculations of Sec. III B for the zero-fre-
quency relative amplitudes near the impurity.

Turning to the question of the normalized defect
amplitude at zero frequency, we note that the A =0
normalization condition (16) for a general harmonic
perturbed lattice can be written

X 2(0x|x=0)=m, + S, (39)

where S is again the sum defined by Eq. (18). When
expressed in terms of the mass matrix M, of the
host lattice, S is given by
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S=AMA -m,, (40)

and it will now be shown that for the present model
S is equal to F. Using Eq. (34) and the fact that

G, and A¢, are symmetric matrices, one can re-
write Eq. (40) as

S=AA®, GoM,Goad A-m, . (41)

Differentiation of the first equation in the definition
(3) of G,(1) leads to the identity D, G, =GoM,G,. In
writing this, we are anticipating the fact that when
the first term of Eq. (41) is worked out, the re-
sulting combinations of elements of D, G, are well
behaved at x =0. Furthermore, the vector a¢ A
has nonzero components only in the impurity sub-
space, and so Eq. (41) becomes

S=aA¢,DygoAp.a— M. (42)

This is a general harmonic result.

For the present model, one gets aA_43c
=G, %(v2/2,-1), and when this result is substi-
tuted into Eq. (42) along with g, as given by Eq.
(23) for z =0, the desired result S=F is obtained.
Hence from Eq. (39), the zero-frequency ampli-
tude is determined for this model by the expres-
sion

x~2(0x[x=0)=m, + F, (43)

@

A(2x) A(3x) Aldx)

A(Ox)=1 A(lx)

b) Nal: ~ ©) 4| naci+
rel. ion rel. ion
ame. along x amp along x
—_— |
4 3 2 1 1 2 3 4 21 L1 2

i

FIG. 2. (a) Schematic representation of the relative
amplitudes in the vicinity of the impurity for 7y, re-
sonances of zero frequency. Computed values of these
amplitudes for the impurity model of Sec. III are given in
Table II for a number of systems. In (b) and (c) the
calculated relative amplitudes for ions along the x axis
are plotted to scale for negative and positive defects in
Nal and NaCl, respectively.

and when F is eliminated between this equation and
Eq. (30) for the impurity-isotope shift L(x/\’), in
this model, the general harmonic relation (22) of
Sec. II B is recovered.

Finally, let us return to the low-frequency reso-
nance condition (28) for the model. We have just
seen that F is equal to S, and because S can be
written as S=AMA -m,, Eq. (28) is simply 1

=3(6-16.)(G,/G,~2*/AMA. Moreover, owing to
the localization of A® — A®,, the quantlty
A(A&P Ad A is equa.l to its impurity subspace
counterpart namely,

(6_66)§ ! —\/-2>3’
-VZ 2

and this together with the result a=(v2G,/(2G,),1)
leads to the relation A(A® — A% A =4(5-5,)
x(G,/G, - 2)2. Hence Eq. (28) is verified to be the
general harmonic low-frequency resonance con-
dition A =A(a® - A® JA/AM A of Eq. (14), worked
out for this model.

B. Numerical calculations and discussion

It is seen from the preceding work that in order
to numerically compute the relative amplitudes
and isotope shifts for resonances of very low fre-
quencies, one needs the zero-frequency values of
various combinations of elements of the real part
of the unperturbed harmonic Green’s-function ma-
trix Gy(z) for z =X +i¢, together with the zero-fre-
quency values of the A derivatives of these quanti-
ties. In the unperturbed crystal the phonons are
plane waves, and the mode index f can be written
k] , where k= 1, , N labels wave vectors and
j=1,...,s denotes polarization branches. Re-
placing w? in the second equation in (3) by z=x+ i€
and going to the limit € = 0* gives

MG =7 2 x (ki) x"(ki)s(rg, =2,  (44)
kj

where 1%; is the squared frequency of the unper-

turbed mode k j j, and the transpose operation in

Eq. (3) has been replaced by Hermitian conjuga-

tion for the general case of complex x(kj)’s.

Likewise, the real part of G, is given_ by

P Y x(kj)x kit -0,
ki
and can be obtained from
)‘max
ReG,(\)=7"'P f dxImG,(x)(x = A)~". (45)
0

If Eq. (44) is averaged over the squared-frequency
interval (A, A+ A)) one gets the approximation
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[ImGe()] =n(an)* 3" x(ki)x(kj),  (46)
®i
with the sum including just modes k j for which
AY%; is in the interval. The unperturbed x’s may
be written

x(lbalkj)= N"2e(balkj)e=t - RO» (47

where the site index has been split into a cell label
I=1,...,N and a basis index b=b,,...,b,. The
polarization vectors g(k j) are eigenvectors of the
host crystal dynamical matrix

D(ba, b'a’| k)= do(lba, L'b'a’) e’} RULIDD
l,

(48)
and satisfy the orthonormality relation
3 myexbalkj)elbalki)=5,, . (49)
ba

The vector R(1b, 1’b’) connects the equilibrium
positions 1b and I’'d’. With the polarization vec-
tors and squared frequencies of the host crystal
at hand, Eq. (46) can be used to compute an ap-
proximation to the imaginary part of any desired
element of the unperturbed Green’s-function ma-
trix, after which Eq. (45) can be used to calculate
the corresponding real part.

The calculations to be described here were
based upon the frequencies and core polarization
vectors of the breathing shell model (BSM) of
Schrdder.?? The input parameters of this model
are sufficiently few in number that they may be
obtained from macroscopic data such as elastic
constants, high- and low-frequency dielectric con-
stants, etc., and the agreement between calcula-
ted and measured dispersion curves is compar-
able with that for the shell model (SM) of Cowley
et al.,®® which is simply fit to the data. The BSM
input data used here is given in Table I of Ref.
24. The unperturbed phonons were computed for
a regular mesh of 1686 k points in the irreducible
4 element of the Brillouin zone, this being equi-
valent through symmetry operations to using a
mesh of 64000 k vectors in the entire zone. For
computing a particular Green’s-function element,
the interval (0, A_,,) was divided into 100 bins,
each of width Ax=7& A_.., and Eq. (46) was used
to obtain the average imaginary part for each bin.
These values were then associated with the mid-
points of the corresponding bins, and the result-
ing points were connected with straight line seg-
ments. With the imaginary part thus approxi-
mated, it was then possible to compute analyti-
cally the corresponding real part by means of Eq.
(45).

Figures 3-6 are plots of the low-frequency be-

0.781, .
! NaCl: +

o.74L
|
|

o7,
|

2G,-G, (10 cm dyn™)

FIG. 3. Unperturbed Green’s functions at low frequen-
cies for a positive impurity in NaCl, computed from
BSM phonons. The real part of the combination 2G, (2)
—Gy(z) of Green’s function elements occuring in the
defect model of Sec. III is plotted vs A= w?, This func-
tion’s slope at zero frequency is needed for calculating
isotope shifts and was obtained from the slope of the
straight-line segment shown. The experimental value
of A for NaCl: Cut is indicated.

havior of the real part of the quantity 2G,(z)—-G,(2)
as computed by the above procedure for positive
defects in NaCl, KI, and KBr and for a negative
defect in Nal. We recall that the zero-frequency
values of this quantity and its derivative with re-
spect to A play a central role in the nearest-neigh-
bor force constant perturbation model. Moreover,
in order for the low-frequency “linear-regime”
resonance condition (28) to be valid, the squared
resonance frequency must occur in a region where
the real part of 2G,(z)-G,(2) is linear in A. That
this condition is nicely fulfilled for the experimen-
tal NaCl:Cu*, KI:Ag*, KB:Li*, and Nal:Cl~ res-

0.94|_ o
-~ 092
S KI: +
©  0.90_
13
qO
> 0.88_
=S )
¢ 086 A~
N +
154 }4——- A (KI: Ag)
N 084y
| L 1 |
0.0 0.1 0.2 0.3 0.4

A (10%sec’?

)

FIG. 4. Same as Fig. 3, but for KI with a positive
impurity. The experimental value of A for KI:Ag™ is
shown. The dotted lines were used in the error estimate
for the calculated KI:Ag* impurity isotope shift, as
discussed in Appendix C.
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onances is seen in the figures. In this regard,
note that although the plotted points have not been
smoothed, they show little scatter. Finally,
throughout this paper the imaginary parts of the
Green’s-function elements have been neglected,
and for the above four resonances, the imaginary
parts turned out to be down from the correspond-
ing real parts by at least two orders of magnitude.
The foregoing considerations insure that the the-
ory of the previous sections may be applied to
these resonances.

The zero-frequency derivatives D, (2G, - G,)
were obtained from the slopes of the straight line
segments shown in Figs. 3-6. In view of the small
scatter and linear behavior exhibited by the com-
puted points at low frequencies, the low frequency
points were accorded greater weight in the selec-
tion of the line segments. The dotted lines on the
KI plot were used for estimating errors in
D,(2G, -G,), as is detailed in Appendix C.

Using the calculated values of D,(2G, -G,) and
G, (Ref. 25) to compute the quantity F of Eq. (29),
we obtain the values given in the fifth column of
Table I. Recall that F is a function of just the
force constants and masses of the unperturbed
host crystal and that in order for the impurity
and host to be effectively decoupled F must be
much smaller than the impurity mass. The com-
puted F’s are seen to be smaller than the defect
mass only for the NaCl:Cu* and KI:Ag* systems.

Resonance-frequency ratios [ L(x/A’);]'/? were
computed for all four systems from Eq. (30) and
the results are listed in the fourth column of
Table I. It will be recalled that the experimental
values are given in the second column, while the
third column lists values appropriate to Einstein
oscillator, or completely decoupled behavior.

The frequency ratios for NaCl:Cu* and KI:Ag*
are seen to be in agreement within the experimen-

_ 0.86_
"ﬁc .
5 KBr: +

E 0.82_ ' .
QO

‘©

(=3

o 0.78_

|N

(O]

N

0.74, e (KBr: L)
1 i 1

1 i
00 01 02 03 04 05
A (10°%sec’)

FIG. 5. Same as Fig. 3, but for KBr with a positive
impurity. The experimental value of A for KBr:Li* is
shown.
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tal and theoretical uncertainties. On the other
hand, the agreement between theory and experi-
ment is very bad for KBr:Li* and Nal:Cl-, the
errors in the corresponding fractional frequency
shifts Aw/w=w,/w, -1 being 85 and 72%, respect-
ively.

Of course, as discussed in Sec. IIB, the calcula-
tion for KBr:Li* was bound to fail since the ob-
served-frequency ratio for this system is greater
than that appropriate to Einstein oscillator behav-
ior. Benedek?® studied anharmonic effects for
the KBr:Li* system on the basis of a specific mod-
el, which although simplified, served to indicate
that anharmonicity can play an important role in
this system. We have seen that anharmonicity
must be included in the theoretical description of
KBr:Li*.

Our calculated frequency ratios for NaCl:Cu*
and KBr:Li* are close to Klein’s® previously cal-
culated values of 1.013 and 1.019 for these sys-
tems, while our ratio for KI:Ag* is similar to the
value of 1.0065 computed for this system by Bene-
dek and reported in Ref. 8. These authors em-
ployed the nearest-neighbor force-constant per-
turbation model of the defect used here, while
their host-crystal phonons were gotten from the
shell model of Cowley et al.?® in the case of Klein’s
work and from the deformation dipole model®” in
the case of Benedek’s calculations. Although nei-
ther Klein nor Benedek gave estimates of the ac-
curacy of their numerical results, the use of
histograms in the calculations of the Green’s func-
tions introduces numerical uncertainties which
should be estimated if a meaningful comparison
between theory and experiment is to be made. Ac-
cordingly, simple and somewhat subjective esti-
mates of the uncertainties in our calculated ratios
were undertaken, and they are included in Table
I. The details of the estimating procedure are
found in Appendix C, and a reading of that appen-
dix reveals that the error estimates listed are
liberal.

1400
—":
>
©
e 120
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& Lool
é«
le— A (Nak: CI)
0.80|"
[ 1

1 L1
0.0 0.1 0.2 0.3 04 0.5
A (lozesec'z)

FIG. 6. Same as Fig. 3, but for a negative impurity
in Nal. The experimental value of A for Nal:Cl~ is shown.
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TABLE II. Force-constant weakenings and relative amplitudes for impurity-induced T,
resonances of zero frequency in various alkali halides. These quantities are independent of
the system’s masses and were computed for the defect model of Sec. III, using host-lattice
phonons of the breathing shell model®. The fractional force constant changes ¢, /k,; listed
here were obtained by dividing 6, by the value of the unperturbed nearest-neighbor overlap
(shell-shell) longitudinal force constant Ae?(2v)~! of the breathing shell model. The defect

displacement is unity.

5
System (10*dynem™!) o, /ky A(lx) A'x) A(2x) A (3x) A (4x)
NaCl: + -1.51 -0.560 -0.204 0.0448 —0.009 54 -0.0144 —-0.001 56
Nal:— -1.13 -0.612 -0.732 0.115 —0.266 -0.199 —-0.0716
KCI:+ -1.46 -0.597 —-0.369 0.0691 -0.126 —0.0939 —-0.0377
KBr:+ -1.33 -0.611 -0.310 0.0543 —0.108 —-0.0778 -0.0336
KI: + -1.19 -0.630 —0.262 0.0464 -0.103 ~0.0740 —0.0356

2U. Schroder (Ref. 22).

Insight into the isotope shift results may be ob-
tained by calculating the associated amplitude
patterns—as we have seen, the tendency towards
or away from Einstein-oscillator isotope shifts
will be reflected in a greater or lesser tendency
for the defect to move alone. For the particles
shown in Fig. 2(a), the amplitudes relative to that
of the defect were calculated for a zero-frequency
resonance within the present model, using Eqs.
(37) and (38) , for positive and negative defects
in several host crystals. It will be remembered
that the relative amplitudes are independent of
the impurity mass. The results are tabulated in
Table II, as are the corresponding values of the
force constant changes &, leading to zero-fre-
quency resonances in these systems. The calcula-
ted amplitude patterns for Nal:- and NaCl:+ are
pictorially represented in Figs. 2(b) and 2(c).

It will be noted that there is appreciable motion
of the defect’s neighbors for all of the systems
listed in Table II. The host lattice participates
least for the NaCl:+ system, where the defect’s
nearest neighbors move with 20% of the defect’s
amplitude, whereas the greatest participation of
the host lattice occurs for Nal:-. There the im-
purity’s nearest-neighbor amplitudes are ~70%
of that of the defect.

The fact that the ions near the defect are seen
to move appreciably in T,, zero-frequency res-
onances suggests that within this model there

L),

Because the A(nx)’s for n+0 are less than unity
and are squared in this equation, deviations from
Einstein-oscillator frequency ratios can be rather
insensitive to deviations from Einstein-oscillator
amplitude patterns. For instance, in NaCl:+,

J

n#0 n#=0

could be large lattice distortions in off-center
substitutional impurity systems such as KCl:Li*.
Of course our use of the harmonic approximation
limits us to small displacements, so that the cal-
culated amplitude patterns do not reflect the state
of affairs after such a system achieves its final
off-center configuration. Rather, our amplitude
patterns describe the motion of a system at the
limit of stability for an on-center defect just as

it begins to go off center, and thus they describe
the distortion associated with the beginning of
such a transition. In this regard it is of interest
to determine the asymptotic behavior of the rela-
tive amplitudes at large distances from the im-
purity. This is done analytically by means of a
simple Debye approximation in Appendix D for
ions along the [(100)] directions, and it is seen
there that the amplitudes fall off as the inverse
cube of the distance from the defect.

In spite of the fact that none of the calculated
amplitude patterns reveal isolated defect motion,
we have already seen that the associated computed
frequency ratios for isotopic defect substitutions
in NaCl:Cu* and KI:Ag* correspond fairly closely
to Einstein-oscillator values. To see how this
can come about, recall that the connection be-
tween the squared-frequency ratios and the rela-
tive amplitudes is given by Eq. (17) of Sec. II B,
namely,

=<m}+ Z m(n)Az(nx)>/<m,+Z m(n)Az(nx))

A(1, x) is approximately —0.2, so that each of the
defect’s two nearest neighbors along the x axis
contributes but 4% of its mass to the effect-
ive mass of the mode,

Notice that by truncating the sums in the preced-
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ing equation, one can use the calculated relative
amplitudes for a subset of particles around the
defect to obtain an upper bound on the calculated
frequency ratio. As an example, for Nal:Cl-, the
calculated relative amplitudes of just the im-
purity’s two nearest neighbors along the x axis
give

@ 37 +2(23)(=0.732)2 \ /2 _
\ J: )1< < 35+2(23)(-0.732)? > =1.017.

This is somewhat higher than the “exact” calcula-
ted value of 1.008 but is already below the experi-
mental value 1.029+0.008, so that knowledge of
just the relative amplitudes for the defect’s near-
est neighbors along the x axis is sufficient to re-
veal the failure of the present model for this sys-
tem. The convenience of such an approximation
is that only zero-frequency Green’s-function ele-
ments, but not the derivatives of their real parts,
are required to calculate the A(nx)’s. As is illus-
trated in Appendix C for G, and G,, the required
zero-frequency Green’s function elements can be
computed by direct summation. Hence the princi-
pal-value sums (45), which must be carried out

to compute the derivatives needed for calculating
the “exact” ratios of Eq. (30), are avoided.

IV. FURTHER DISCUSSION AND IMPLICATIONS
FOR FUTURE WORK

We have seen that the observed isotopic fre-
quency ratio for KBr:*""Li* cannot be explained
within the framework of any harmonic model. Of
the three remaining frequency ratios calculated,
those for NaCl:%3-%5Cu* and KI:1°7-1°®Ag* are in
agreement with the experimental values when ac-
count is taken of the computational and experimen-
tal uncertainties. Moreover, this agreement is
obtained from a model that leaves the defect and
lattice coupled at low frequencies, as is revealed
by the calculated relative amplitudes of Table II.
However, the experimental uncertainties for
these two ratios are too large to allow one to
make a strong case for the correctness of the
nearest-neighbor force-constant perturbation
model used here, and by the same token, one is
not justified in concluding from the experimental
data that these two defect systems exhibit Ein-
stein-oscillator behavior.

The situation for Nal:35-37C1- is, however,
clear cut—the calculated ratio falls well below
the range of experimental values. The assigned
experimental ratio of 1.029 is very close to the
Einstein-oscillator value of 1.0282, and the large
discrepancy between the computed and observed
shifts is reflected in the great deviation of the
calculated amplitude pattern from that for un-

coupled behavior. These results, together with
the fact that Nal:Cl- exhibits the lowest frequen-
cy impurity resonance known, suggest that this
system should receive major attention in future
theoretical work. Directions that future work
might take will now be briefly discussed.

A. Improved defect models

Perhaps the most obvious direction would be
towards the inclusion of a more realistic set of
force constant perturbations. The single-force-
constant-change model used here has the virtue
of providing a simple yet nontrivial context in
which to illustrate the general results of Sec. II
and is clearly the model to try first in numerical
work. But real impurities can introduce addition-
al force constant changes. For instance, an iso-
electronic defect that changes the overlap inter-
action at the impurity site will perturb the trans-
verse as well as longitudinal nearest-neighbor
force constants. The effect of the transverse
force-constant changes could be small, however,
if the ratio of the transverse to the longitudinal
force constants is of the same order, namely,
one-tenth,?® in the perturbed as in the unperturbed
crystal.

Another class of realistic force-constant per-
turbations consists of the long-range changes as-
sociated with a defect of altered electronic polar-
izability. As shown in Refs. 24 and 29 such force-
constant changes can be consistently described
within a shell model extension of the Green’s-
function method, and their inclusion could be im-
portant for systems such as Nal:Cl~, where both
the C1~ and I” ions are polarizable.

A third and possibly the most important class
of realistic force-constant perturbations that
should be considered consists of changes induced
by static distortions about impurities. The sub-
stantially weakened force constants necessary to
account for the low frequencies of the resonance
systems considered in this paper imply that the
overlap interactions at the defect sites are con-
siderably less than in the host lattices. Weakened
overlap interactions at the defect site will lead to
inward relaxations of ions in the defect’s vicinity,
and theoretical work of the author?' has shown
that these relaxations and the associated force-
constant changes between ions of the host crystal
can extend quite far from the impurity. The ef-
fects of relaxation-induced force-constant changes
are known®® to play an important role in the in-
band modes of U centers, but their effects on low-
frequency resonances have not yet been studied.

Infrared studies of KI:Ag*3!'32 and Raman ex-
periments on KI:Ag*3? and NaCl:Cu*® in the pres-
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ence of an applied electric field have revealed
the existence of low-frequency even-parity re-
sonances in these systems, and it turns out that
the frequencies of these resonances are not com-
patible with those of the observed low-frequency
T,, resonances within the simple nearest-neigh-
bor longitudinal force-constant change model.
This was pointed out in Ref. 31 for KI:Ag* on the
basis of Benedek and Nardelli’s®* deformation di-
pole model Green’s functions for the appropriate
even-parity modes and is also true when breath-
ing shell model Green’s functions are used. Ad-
ditional force-constant changes such as those just
discussed could, in principle, account for all of
the observed resonances, and they should be
studied in future work.

B. Anharmonicity

A major assumption of this paper is the use of
the harmonic approximation. Real defects are,
of course, anharmonically as well as harmonically
coupled to their host lattices, and this results in
mode coupling, temperature- and pressure-depen-
dent frequency shifts, lifetime effects, and anhar-
monic contributions to the T =0 frequencies.

Measurements of the effects of temperature,
pressure, and electric fields on the NaCl:Cu*,
KI:Ag*, KBr:Li*, and Nal:Cl~ resonances have
revealed anharmonic properties of these sys-
tems. A heuristic phenomenological model has
been used by Clayman et al.'® to interpret their
second-order Stark effect measurements for the
KBr:Li* resonance, and in order to explain their
results they found it necessary to postulate an
effective defect potential well containing a central
barrier. This is consistent with our demonstra-
tion that no harmonic lattice dynamical calculation
can account for the observed isotope shift for this
system.

Several properties of the KI:Ag* system have
been carefully studied by Kirby.3''3 His observa-
tions of even-parity resonances in addition to the
17.4-cm™' T\, resonance, of combination bands in-
volving these resonances, and of electric-field-
induced mixing of the odd- and even-parity res-
onances were shown by him to be semiquantita-
tively consistent with a simple phenomenological
treatment of the resonances as anharmonically
coupled harmonic oscillators. This picture was
also able to account in a semiquantitative way for
the observed® uniaxial stress-dependence of the
17.4-cm™! T, resonance, but was unable to ex-
plain the observed!! temperature dependence of
this resonance. Another difficulty was that the
model assumed a simple anharmonic coupling
term which was treated via perturbation theory,

but which turned out to shift the T, resonance
frequency by ~60%. Kirby’s results indicate that
anharmonicity probably plays an important role

in KI:Ag*, but knowledge of the detailed nature of
its role and the determination of its importance in
the isotope shift for this system must await real-
istic lattice dynamical calculations of the sort con-
sidered in this paper within the harmonic approx-
imation.

The preceding statement also applies to
NaCl:Cu*, where Raman studies® have shown the
existence of a low-lying even-parity resonance
that appears to be anharmonically coupled with
an even parity overtone of the 23.6-cm™' T,, res-
onance. More direct information on the anhar-
monic properties of the T,, resonance itself is ob-
tained from its observed®!! temperature depen-
dence. Timmesfeld®® was able to successfully ac-
count for the temperature dependence by means
of an anharmonic self-energy calculation in which
the anharmonicity appears to play little role near
T=0. This suggests that the 23.5-cm~! resonance
in NaCl:Cu* may be treated harmonically at very
low temperatures.

Turning finally to the 5.4-cm~' resonance in
Nal:Cl-, we note that second-order Stark-effect
measurements by Clayman et al.'® were success-
fully interpreted by these authors in terms of a
phenomenological model that considers the defect
to be moving in a static three-dimensional har-
monic potential well which is weakly perturbed by
quartic anharmonic terms appropriate to a site of
O, symmetry. Fitting the parameters of this sim-
ple model to some of their data, these authors
were able to explain consistently all of their mea-
surements. The anharmonic contribution to the
resonance frequency in their model turned out to
be just 7% or <0.4 cm~'. Moreover, their cal-
culated Nal:**-37Cl1- frequency ratio was w,/w,
=1.030, which is nearly equal to the Einstein-
oscillator value of 1.028 that is necessarily pre-
dicted by their model when anharmonicity is ne-
glected. Anharmonicity thus turned out to be
small in the model of Clayman ef al., and although
their model must be regarded as heuristic, its
success in giving a coherent picture of their ex-
perimental results suggests that a proper lattice
dynamical investigation of the 5.4-cm™' resonance
in NalI:Cl- may be validly carried out within the
harmonic approximation. This is yet another in-
dication that major emphasis should be placed on
the NalI:Cl- resonance in future extensions of the
work of this paper.

V. SUMMARY

In this paper the properties of harmonic im-
purity resonances and associated isotope effects
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have been investigated in the asymptotic limit of
low frequencies.

In Sec. II it was shown how mode effective
masses and force constants can be defined in
terms of particle amplitudes relative to that of
the impurity, and a general relation was derived
that connects these amplitudes to resonance fre-
quency ratios for isotopic substitutions of the de-
fect. This relation is independent of the model of
the defect and shows that these frequency ratios
must always be bounded above by ratios appropri-
ate to the defect behaving as an Einstein oscilla-
tor. The necessary as well as sufficient condition
for Einstein-oscillator ratios is that the impurity
moves alone—thus the possibility of a complicated
force constant model with fortuitous cancellations
leading to Einstein oscillator ratios but with non-
zero host lattice amplitudes is impossible within
the harmonic approximation. From the fact that
the observed ratio for KBr:Li* is greater than the
Einstein oscillator value, we could thus rule out
the possibility of any explanation of the defect iso-
tope shift of this system within the harmonic ap-
proximation.

In Sec. III, the general results of Sec. II were
illustrated for an explicit model of the defect.
This necessitated the use of Green’s-function ap-
proach to perturbed lattice dynamics, and the for-
mulas so obtained were applied in numerical cal-
culations for isoelectronic defects in several al-
kali halides, using realistic host-crystal phonons.
The single force constant perturbation model used
in these calculations resulted in computed defect-
isotope shifts smaller than those for Einstein-
oscillator behavior, and calculations of the rela-
tive amplitudes in the vicinity of the defects
showed graphically why this was so: in this mod-
el there is enough motion of the defect’s surround-
ings for the mode’s effective mass to involve sig-
nificant contributions from masses other than that
of the impurity. When account was taken of com-~
putational and experimental uncertainties, the
calculated and measured isotope frequency ratios
were in agreement for NaCl:Cu* and KI:Ag* with-
in this simple model. However, it was also seen
that the experimental uncertainties for these ra-
tios are large enough that this agreement may be
fortuitous, and as discussed in Sec. IV, more re-
cent experimental studies of properties other than
isotope shifts suggest that these two systems
should be described by more complicated force
constant perturbations than those used here.

The Nal:Cl- system was perhaps the most in-
teresting system considered. The model calcula-
tions revealed a very extensive coupling between
defect and host at low frequencies, and the com-
puted isotopic-frequency ratio was corresponding-

ly well below the range of measured values. Ex-
perimental evidence that anharmonicity may play
but a small role in the isotope shift for this sys-
tem was discussed in Sec. IV, and we have sug-
gested that this system receive future theoretical
emphasis, with an eye towards more realistically
treating the harmonic defect perturbations, espe-
cially those associated with defect-induced lattice
distortions and defect polarizability.

Anharmonicity has been neglected in our work
and has been experimentally shown to be important
for some properties of low-lying defect resonance
systems, as discussed in Sec. IV. However, its
importance for isotope effects remains to be dem-
onstrated, except for KBr:Li*.

Whether or not anharmonicity is important for
particular systems, it is imperative that the gen-
eral asymptotic properties of low-frequency har-
monic resonsnces be well understood before one
undertakes the study of anharmonic effects. This
paper has resolved the apparently conflicting con-
clusions of earlier studies carried out within the
harmonic approximation and referred to in Sec. I.
The results obtained here give insight into the be-
havior of low-frequency impurity resonances and
should provide a useful basis for future work.
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APPENDIX A: LOW-FREQUENCY BEHAVIOR OF
THE UNPERTURBED GREEN’S FUNCTIONS

According to Eq. (44), the imaginary part of the
unperturbed Green’s-function matrix for squared
frequency X is given by

mG(\) =7 3 x&)x"®)o(A, - ).
ki
The elements of this matrix are seen to be weight-
ed densities of squared frequencies, with the
weighting factors consisting of products of vi-
brational amplitudes. Since the density of squared
frequencies vanishes in the A - 0 limit, so do the
elements of ImG()).
On the other hand, the real part of the unper-
turbed Green’s-function matrix for squared fre-
quency A is given by Eq. (45) as
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real and imaginary parts of the combinations
G,(2) and G,(2) of Green’s-function elements in-
volved in the model of Section III. These combina-

>\max
Re_(_E_,,(A):n“Pf dxImG(x)(x - )7,
0

and for arbitrary ImG,(x), this generally will not
vanish as A approaches zero.

We now use a simple Debye model to investigate,
in the A -0 limit, the frequency dependence of the

tions are G,(z)=2G,(0x, 1x; 2) - G(1x, 1x; 2)

- G(1x, —1x; 2) and G, =G(0x, 0x; 2) — G (0x, 1x; z),
where z is equal to A +Z€. Through the use of
Egs. (44) and (47), we have

-

ImG,(\)=7N"" Y {2e(0x| kj)e(1x|kj) cosk - R(0, 1) - e2(1x[&j)[1 +cosk * R(1, - 1) }6(Ag; - A)
%i

and

ImG,(\) =7N"1 3" [2(0x| k) - e(0x|Kj)e(1xKj) cosk - R(0, 1)]6(At, = A).
ki
In arriving at these expressions use has been made of the fact that the polarization vectors may be taken
to be purely real for crystals having inversion symmetry. Notice that since the £ =0 acoustic modes cor-
respond to uniform translations and hence involve site-independent polarization vectors, the contributions
to the above quantities from these modes are zero.

As X approaches zero, only the low-frequency acoustic modes contribute to ImG,(A) and ImG,(x). For
these modes we will: a) neglect the E-dependence of the polarization vectors so that they may be re-
placed by their k=0 values, which are site-independent as just mentioned; and b) assume that the three
acoustic branches are degenerate and Debye-like so that Af;=v*®. When these approximations are in-

corporated into the preceding equations for ImG, and ImG, and these equations are averaged over an

interval (A, A + A)) as in Eq. (46), one obtains

[ImG,(\)], = (a0)71 D" [2cosk - R(0, 1) - 1 - cosk - R(1, - 1)]

>

k

and
[ImGZ(A)]av W(M)—l ; ! [1 - COSE '-ﬁ(oy 1)]1

where the sums go over just those kK’s for which
A7 ;=v%? is in the interval. The sums thus ex-
tend over a spherical shell (k, & + Ak) in k space,
and integration over the shell leads to

[ImG,(A)],, «<(ak/AN)[2R Y0, 1)k sinkR (0, 1)
-k2—kR7(1, - 1)sinkR(1, - 1)]
and
[ImG,(\)],, = (ak/AN)
x [k* = ER~Y(0, 1) sinkR(0, 1)].

Now by expanding about # =0 and using the rela-
tions Ak/Ax=(2kv?) " and R(1, - 1) =-2R(0, 1),
one finds that the leading term in each of these
expressions is of order k3. Hence both ImG,(})
and ImG,(A) are proportional to A*? in the A -0
limit. This is to be contrasted with the low-fre-
quency behavior of the individual Green’s-function
elements, which by a similar calculation are
found to go as A2 in this model.

Turning now to the low-frequency behavior of
ReG,(x) and ReG,(2), we have

A max
ReGl(A)=n"Pf ImG (x)(x = 2) "'dx
0

and a similar equation for ReG,(x). If the region
of integration is split into two intervals (0, @) and
(@, X max), Where (0<X<a), we have

ReG,(A) =T "Pfadx ImG (x)(x =) ™!

>\ max
+7r"f dxImG (x)(x =27,

a

with only the first term involving a principal-
value integral. We have seen that as A approaches
zero, ImG,(\) goes to zero as A¥% Hence in this
limit a can be chosen sufficiently small that we
can write ImG,(x) =Ax*? in the interval (0, a),
where A is a constant. This gives

ReGl()\)=7r"APf dx x*3(x = X) !
0

)\max
+11'1f dxImG,(x)(x = X)),

a

The first integral is straightforward to perform,
and to first order in A one obtains
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ReG,(M)=(3m)"'2Aa*?(1 +3a™"))

- X max -
+ f dxImG ,(x)x

a

P\ max

+am ! f dx ImG,(x)x™2,
Since a is arbitrary within the restrictions pre-
viously stated, the above equation is sufficient to
establish that ReG,(}) is linear in X and, further-
more, approaches a nonzero value as A approach-
es zero. The argument and conclusions for
ReG,(A) are exactly the same.

J

k m,(k A k
0=Re|1+ zcz)=—1+2__'<_'_1>._+[_1
| 1+go(2e(2)] = 3F +2 %

where A, =12k /m is the maximum squared fre-
quency of the unperturbed host crystal and g())
is the real part of the defect-site Green’s func-
tion. The condition for a zero-frequency reso-
nance in this model is seen to be 2,=0, as is ob-
vious physically since %, is the value of the only
force constants which couple the defect to the
host.

The condition for a low-frequency resonance
will now be derived by working out Eq. (B1) to
second order in the small quantities A and 2;. To
this order, g(1) is only needed at zero frequency,
and ST show that in the Debye approximation g(0)
is equal to -3)1;'. Using this result in Eq. (B1),
we obtain, to second order,

A 1m k,)[ 1<k,>}
L 22U S i ¢ 2
The first-order approximation

)\/Ap=%(m/m1)k1/k

is just our general harmonic first-order resonance
condition (14), worked out for the ST model.

According to Eq. (B2), the ratio of squared fre-
quencies for an isotopic substitution m ;-] of
the defect is given by the Einstein-oscillator value
(A/X");=m}/m, for either the first- or second-
order resonance conditions. That the first-order
condition yields this value is consistent with our
general harmonic result (19) and, furthermore,
is easy to understand intuitively: in the ST model
a zero-frequency resonance is achievable only by
letting k; approach zero, in which case the defect
and host become completely decoupled.

ST started from Eq. (B1) and derived an approx-
imate low-frequency resonance condition that
differs from our approximation (B2). Their result
is

m

APPENDIX B: MODEL OF SIEVERS AND TAKENO

In the model of Sievers and Takeno, !” referred
to subsequently as (ST), the host crystal is as-
sumed to be a simple cubic monatomic lattice of
atoms of mass m interacting by means of equal
longitudinal and transverse force constants %, =%,
=k between nearest neighbors. The defect is as-
sumed to introduce a changed mass m; and altered
force constants k,;,=k,;=k; to each of its six near-
est neighbors. For this model the condition for a
resonance at squared frequency A = w?® is

> - z%-’(%’ - 1) i}g(x), (B1)

(A%)n - %::‘,(%) [1 *%(%) (1 —3%)} " (m3)

and it is seen to agree with Eq. (B2) only to first
order. As pointed out by Kirby et al.® the above
resonance condition leads to ratios (A/\'); greater
than the Einstein-oscillator values m;/m,;. This
is seen to be due to the fact that the ST low-fre-
quency resonance condition (B3) includes some,
but not all, terms of second order. Indeed, some
terms of all orders are included in Eq. (B3), and
it is the nonlinear terms which produce the anom-
alous isotope shifts.

To summarize, when the resonance condition for
the ST model is worked out to first order, one
obtains Einstein-oscillator defect-isotope shifts,
which are, of course, consistent with our general
harmonic theory. In addition, we have also shown
that when the resonance condition for the ST model
is worked out correctly even to second order,
Einstein-oscillator defect-isotope shifts again
result.

APPENDIX C: THEORETICAL UNCERTAINTY
ESTIMATES

As an illustration of the procedure used to esti-
mate the uncertainties in the calculated frequency
ratios for impurity-isotope substitutions, consider
the case of KI:Ag*, which is typical. Let the basic
calculated quantity D,(2G, - G,)/(2G2) of F be
written [ T(A) = T(0)]/(22G2), where T(X) represents
the straight line segment used for evaluating the
slope D,(2G, - G,) from Fig. 4. Estimates are
needed of T(A) and of the zero-frequency quantities
G, and T(0)=2G, -G,.

Now although the Green’s function have been
computed by approximating the imaginary parts
as histograms and then calculating the correspond-
ing real parts by taking Hilbert transforms as
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outlined previously, this procedure can be by-
passed for the real parts of G,(2) and G,(z) at zero
frequency, which can be evaluated by direct sum-
mation. Thus from Eqs. (45) and (47) we have,

for instance,

G,=limN™'P ) [e*(0x|kj) - e(0x| kj)e(1x[kj)

Ao ki
xcosk +R(0, 1)]J(Ag; - M)~

N Z [e%(0x] kj) — e(0x| k) e(1x]k)
%

xcosk R(0, 1) A§L,

where use has been made of the fact that the po-
larization vectors may be taken to be purely real
for crystals having inversion symmetry. The

k =0 acoustic modes do not contribute to this sum
since for them the term in square brackets van-
ishes, as was also pointed out in Appendix A.
Evaluating the zero frequency quantities G, and
T(0) by direct summation, then, and comparing
the results with those obtained from taking Hilbert
transforms of the imaginary parts gives an esti-
mate of the statistical uncertainties in these quan-
tities. In this way we find for KI: + a fractional
uncertainty in G, of 7.8 X107 and a fractional un-
certainty in 2G, - G, of 1.3X107*, In estimating
the fractional uncertainty in F, each of the above
uncertainties was rounded up to 1073,

To complete the error estimation, one needs the
uncertainty in 7()) which represents the straight-
line segment in Fig. 4. Since according to the
preceding paragraph the uncertainty in 7(0) is at
most one part per thousand, it can be seen by re-
ferring to Fig. 4 that the main contribution to
error in T(\) arises from uncertainty in the choice
of slope of the straight line. It is felt that the
dotted lines shown on Fig. 4 give a fairly liberal
estimate of the range of slopes of T(A), although
the choice is admittedly somewhat subjective,
especially in view of the fact that the low-frequency
points are accorded greater weight, as discussed
in Sec. III B. The dotted lines shown yield a frac-
tional uncertainty in T() of 6.5X107 at A=0.34
% 10% sec 2.

From these estimates one finds that the fraction-
al error in D,(2G, - G,)/(2G?) for KI:Ag* is 8.1
x1072, from which the error in the calculated
isotope ratio for KI:Ag* turns out to be 2.9X107%
This has been rounded up to 3x107% the value
given in Table I. A similar procedure was fol-
lowed in estimating the theoretical errors for the
other three ratios of Table I.

APPENDIX D: BEHAVIOR OF A(nx)
AT LARGE DISTANCES

The asymptotic form of the relative amplitudes
at large distances along the x axis for a zero-
frequency x-polarized T,, resonance will now be
worked out for the model of Sec. ITI, within the
same Debye approximation used in Appendix A.

According to Eqgs. (37), (45), and (47), the rela-
tive amplitude A(nx) of the nth particle from the
defect along the x axis is proportional to the quan-
tity

D~ {2e(nx|kje(0x, kj) cosk * R(n, 0)
%

- e(nx|kj)e(1x|kj)[cosk- R(n, 1)
+cosk - R, —1)]}a -

As in Appendices A and C, use has been made of
the fact that the polarization vectors may be taken
to be purely real for crystals having inversion
symmetry. Moreover, by an argument analogous
to that given for G, in Appendix C, the =0 acous-
tic modes do not contribute to the sum.

To get the asymptotic R dependence of the above
quantity, we ignore the contributions of the optical
modes and treat the acoustic modes within the
simple Debye approximation of Appendix A. Thus,
we neglect the k dependence of the polarization
vectors so that they may be replaced by their 2=0
values, which are site independent, and we as-
sume that the three acoustic branches are degen-
erate and Debye-like so that Af;=v?#*, Then within
these approximations A(nx) is seen to be propor-
tional to

Z [2 cosk Rz, 0) - cosk ‘Rz, 1)

K
- cosk --ﬁ(n, -1)]e2,

Converting the sum to an integral over the Debye
sphere and letting the R’s be large compared with
the nearest-neighbor distance 7, gives

A(nx)<2R™(n,0)-=R~(n,1) =R "'(n, - 1),

Now R(n, 1) and R(n, — 1) are given by R(n, 0) - 7,
and R(n, 0) +7,, respectively, and expansion in
powers of 7,/R(n, 0) leads to

1 1Q 2
e———— i - .
A(nx) < R( ) 0) <R( : 0)> +h1gher order terms

Hence, within the model of Sec. III and the above
approximations, the relative amplitudes associated
with a zero-frequency resonance fall off with dis-
tance from the defect as R73.
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