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%e have applied the strong coupling polaron theory to the piezoelectric polaron. %'e obtain an

energy-momentum relation which is quadratic at small P, and approaches a straight line with slope
equal to the speed of sound at large P.

I. INTRODUCTION

It has previously been shown' that the intermedi-
ate coupling theory of the piezoelectric polaron
leads to an anamolous energy-momentum relation.
This relation Ez(P) is quadratic for small P, and
then approaches asymptotically a straight line with
slope equal to the speed of sound. %e have shown'
that this anomaly is caused by a degeneracy in the
unperturbed energy levels, and that the degeneracy
should occur when the polaron velocity is equal to
the speed of sound. Since the intermediate coupling
theory treats the polaron velocity (rather than the
energy) self-consistently, and hence locates the
degeneracy in a careful way, we consider its re-
sults to be quite convincing. Moreover, the fact
that the intermediate coupling theory is an upper
bound to the correct ground state for each P, adds
support to the idea that there is an anomaly in
E(P). [The more usual quadratic E(P) would have
to eventually cross EI(P), which is only linear at
large P. ] It has also been shown that the intermedi-
ate coupling theory gives a polaron whose velocity
is limited by the speed of sound in the following
cases: for finite temperatures', when the anisot-
royy of the crystal is included; and even when the
interaction is replaced by one that is screened. ~

These anomalies in the piezoelectric problem are
analogous to structure that occurs in the optical
polaron near the threshold of phonon emission.
The same type of energy-crossing arguments that
we used in the optical-polaron problem~ give what
we feel is quite strong support for the intermediate
coupling results in the piezoelectric problem. '

A plausible physical picture of this effect is as
follows: As the electron velocity approaches the
speed of sound, the electron-phonon interaction
increases because of the degeneracy, and hence
the electron is surrounded by an increasingly large
lattice deformation. As the momentum P grows,
the energy of the polaron increases through the
growth of the lattice deformation, rather than
through the polaron velocity. Alternatively, we
could say that the large lattice deformation traps

the electron and yrevents it from going faster than
the speed of sound. At this point, however, we
can see a flaw in the picture; namely, if there is a
really large lattice deformation, we would expect
it to react back on the electron and produce some
structure in the electron wave function. Such an
effect is not included in the intermediate coupling
trait. wave function. This type of electronic struc-
ture in response to a large lattice deformation is
a characteristic of the strong coupling theory. In
fact, the thought that, at large P, the polaron in-
volves a large lattice deformation [which it must
if it is to have a linear E(P)] suggests that in this
range the strong coupling theory should be better
than the intermediate coupling theory. {Although
we call this theory "intermediate coupling", it is
really an extension of weak coupling, not an inter-
polation theory. ) This thought is the motivation for
the present paper, in which we apply the strong
coupling polaron theory to the moving piezoelectric
polaron, and indeed find that we get not only a lin-
ear energy-momentum relation, but one that, in
general, crosses below the intermediate coupling
theory at high P. Unfortunately, although the in-
termediate coupling theory is an upper bound, the
strong couyling theory at high P is not, so we have
not proven that the strong coupling is better at
high P.

As is true in the ease of the optical polaron, the
strong coupling theory applies for coupling con-
stants much larger than those for common crystals.
A crude way of determining where the two theories
cross is by equating the perturbation-theory results
to the Pekar strong coupling theory. In the optical-
polaron problem, this crossover occurs at & = 3p,
and for the piezoelectric problem it is at about
n =25 {about ten times the coupling constant in CdS).
Even though the strong coupling is an academic
theory, it is very helpful in clarifying some diffi-
cult points. The purpose of this paper {mentioned
above) is one example. Another is associated with
the question of whether or not the linear energy-
momentum relation is caused by the infrared diver-
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gences in the piezoelectric polaron problem. Al-
though we have previously shown that the anomaly
survives when we cut off the interaction, the whole
situation is much clearer in the strong coupling
theory, where we will show that the wave-vector
integral factors out from the divergent terms, and
hence it is clear that no reliance is placed on the
small-wave-vector part.

f=(g~H-v ~ (8'-P) ~))&) (6)

where v is an undetermined multiplier. The state
I g(P, v)) that minimizes I is then substituted into the
constraint equation (5) to determine v. Because of the
way thefunctionsarewritten [Eq. (2) and (12)], we
are able to vary the functional so that it remains
normalized; hence

II. STRONG COUPLING

We start with the spherically symmetric piezo-
electric polaron Hamiltonian "'

4 ~ 1/2

, Wq

(1)
The coupling constant " is e, and V is the volume.
The units of length and energy are li/ms and ms,
where rn is the electron band mass and s is an av-
erage' speed of sound. The electronic position
and momentum are r and p.

We will use a modification of a method devised
by Pekar for the optical polaron. The method is
based on the trial state

and this need not be included as an additional con-
straint. Also we see that

5 ())&
~

P ~ v
~

)j&)
= P ~ v 5()(&

~

(I)) = 0

so this term can be dropped from Eq. (6).
We then have

~Q(~y ) d. )q. ~ P, ) .

~ ~) ei)N ~ i'y (r R) es (R)
~
O) (2)

For the variation of the lattice part of the trial
wave function we set

where

S(R) =Q d, (a, e" —a,'e "") (2)
a

The operator e ' ' produces a lattice distortion
centered at the point R. The electron is then in a
bound state )t)(r -R) centered around the lattice dis-
tortion, and the factor e'"' sets the system in mo-
tion. Since H is invariant to translations of the
electron and the lattice distortion together, the
total momentum

SI (4wo/Vq) ~ (p, +p, )
sd, ' 2(q —v q)

where

p, = J d&*(r)it&(r) e"'d'r

to minimize I with respect to W we set

which gives

(6)

ip=p+gqa, 'a, (4) 8', = v —f P P, it& d r

is a constant of the motion. Hence the eigen-
states of H can be chosen to be eigenstates of 5'.
Unfortunately, l)t)) is not aneigenstateof 6', nor is it
a simple combination of a few such eigenstates. It
is possible to choose states similar to Ig) that are
eigenstates" of 6', but the subsequent variations
then become very involved.

Instead, we will follow a procedure similar to,
but slightly simpler than that described by All-
cock. " We will find the I g) which minimizes
((I I H I (I)) subject to the constraint that

(5)

We do this with the help of the technique of La-
grange multipliers. The procedure is to minimize
the functional

P'- —,'{p-v)'+-: y*P y d'r

4)io (Rep, )

Vq (q —v ~ q)
'

The equation of constraint which determines the
Lagrange multiplier v(P), is

(10)

4m~ q{Rep, )'
Vq fq —v(p) ~ q]

Here the subscripts refer to Cartesian components
of the corresponding vectors.

We will leave the determination of Q until later.
We then have
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By differentiating Eq. (10) with respect to the
momentum P we can show that

A. Spherically symmetric P

First we choose Q to be of the form

Q(r-II) =[(I/P)(2/v )))] ~ e (12)

Using this simple form for P, Eqs. {10)and (11)
become

and

E(P, P) = ——+vP+ —~ ln, iv~ & 1
v 3 & 1+v

2 ~mgv 1 —v '

(13)

since, with the help of Eq. (11), we can show that
&{((~H

~
g)/Svt) =0. In these calculations we have

taken «I) to the independent of P. We will show in
Sec. IIA, when we discuss an anisotropic Q, which
does depend on P, that v is still the polaron veloc-
ity.

Note that Eqs. (10) and (11) are very similar to
the equations of the intermediate coupling theory
[see Eqs. (4. 1) and (4. 2) of Ref. 1]. In particular,
the singularity in the integral in Eq. (11) is very
similar to that in the intermediate coupling theory.
Both diver ge as v - 1 and do not exist for v & 1.
(Note that for v & 1 these integrals do not even have
a principal value, which is quite unusual for inte-
grals encountered in electron-phonon interaction. )

However, there is one interesting difference. Note
that, when we change the sum on q to an integral in
Eq. (11), we get

xdx
(Rep, ) dq

( ), .

The integral on q is well behaved, and the singu-
larity which comes in the angular integral has no

special sensitivity to q =0. Hence it is clear that
the anomalous E(p) in this theory has nothing to do
with infrared divergences. This point was not clear
in the intermediate coupling theory.

and

(13)

We again note that dE/dP = v; so even when )t) is P
dependent, v is the polaron velocity.

It is clear from Eq. (18) that a,s v- 1, the rno-

mentum P- ~; so we get the same qualitative be-
havior as we did from the intermediate coupling
theory.

For small P we get

2ck P
(~m I ) 3 2[I +3k (o2/ ) ]

As we expect, the self-energy is the same value
(in our units) that Pekar obtained for the optical
polaron. This is because the optical and piezo-
electric problems are identical' to the lowest or-
der in I/o. The effective mass

m* = 1+f (n'/w) (20)

is proportional to & rather than to &, which is
appropriate for the optical problem. The numeri-
cal factors in m differ from those obtained by dif-
ferent strong coupling theories. 9'2

In Fig. 1 we plot E(P, P). We see that this
curve crosses below the intermediate coupling re-
sults El(P), thus confirming the heuristic argu-
ment in Sec. I which concluded that for large P the
strong coupling theory would tend to be favored.

B. Asymmetric Q

Since it seems reasonable that, as v-l, the
electron wave function may behave differently in
the direction of motion than it does in the direction
perpendicular to the motion, we have tried a wave
function which leads to

- «a /2q~- «a~/2P &

PI -e

Substituting the p (v) into Eqs. (13) and (14) we

have for the minimum energy

v 1 o'
z 1+v

E(P (v), P)=-—+vP- —ln', v & I (I'7)
2 6)) 1 —v

v=P ~ ln- — , ivy & 1. (14)
em Pv" 1+v 1—

The value of P that minimizes E for each value
of P is given by

We define an asymmetric parameter e by

p' = q' (1+ e)

then we get

(22)

J3 (v)=,v & 1
n in[{1+v)/(1 —v)]

Note that

P.(0) = 3&~/2o

(15) PR (P v)2 q2 q2 (1 + ~ ) ~q (1 + ~ )
1 /2

2 (2)T)&~3(/+v )
~~

(23)

is the Pekar value (in our units). We note that as
v-1, P-O, and hence the electron wave function
becomes very narrow.

oq(I + g)'~' v 2v(1+ ~)'~'
V =P+ 1/2 2 2 1/2 lllA)2q)'")c ~ ') )~ ~ ')'" ) — " ) '

(24)
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effect. It should be noted that the present version
of the strong coupling theory gives a linear energy-
momentum relation for the optical polaron as well.
%'e feel that this theory is clearly inappropriate
for the fast optical polaron because it treats the
degeneracy in the theory in a completely wrong
way. The same situation was pointed out for the

intermediate coupling theory. '
It is also interesting to note that there is a range

of & in which the strong coupling theory is higher
than the intermediate coupling theory for small P;
but crosses below it at high P. This supports the
notion that as v-1 a large lattice deformation
around the electron results, which tends to make
the strong coupling theory more appropriate. How-

ever, we should note that although the intermediate
coupling theory is an upper bound for each value of
P, the present strong coupling theory is not. How-

ever, the fact that it is lower than the upper bound
indicates that it could be a better theory. More-
over, the strong coupling theory still gives some
argument against an E(P) that i.icreases as fast as
P at high P For .instance, a.ssume that the cor-
rect ground state of H is lg, (P)), which we suppose
to have

(OO H~ $,(P})= [E(0)+P'/2
m]~ g, (P)) (26)

FIG. l. Intermediate-coupling-theory E&(P) compared
to strong-coupling EQ, P). At higher P, eg, P) also
approached a slope equal to the speed of sound. (m is
the electron band mass and s is an average speed of
sound. )

6 ~P, (P)) =P~q, (P)) .

Let us further assume that our trial state can be
written

In Eqs. (23) and (24}

1 + v v + e + [(1+ c) (v + e)]'
1 —v v - ~ + [(I + ~) (v' + e)]'" (25)

We note in Eq. (24) that as v-1 the term with

(1 —v ) dominates, and hence P- v- ~ 1ike
(1 —v ) ". Hence in Eq. (23), as v-1, the (P —v}
also dominates. We also note that as v-1 this
dominant term in (P- v) becomes independent of e.
Hence, since we expect the asymmetry in the wave
function to occur only when v-1, the fact that in
this region the dominant term in the energy is in-
dependent of q indicates that the asymmetric wave
function will give very little improvement. This
conclusion was borne out by direct numerical cal-
culations, when we found only a negligible reduc-
tion of the energy.

III. CONCLUSIONS

(23)

g ~
H

~ P) = (const) + P

for large P. But

(29)

(g~H~ P) =Q A [E(0)+&'!2~] (3o)

and

(q~a ~q&=P=g A', u,

and the fact that i g) is normalized gives

(32)

where we assume that we need not include polaron
excited states of free-phonon states. We have
shown that

The main conclusion of this paper is that the
strong coupling theory gives an energy-momentum
relation in which the slope approaches the speed
of sound asymptotically, thus lending support to
the earlier suggestion that this is a real physical

If we note that

o & Q A', (n -P)',

this implies that

(33)
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+A~II & P

which contradicts Eq. (29) for large P. This

(34) means that either Eg. (28) is incorrect, or the
ground-state energy cannot be proportional to P
at high P A. lthough the assumption of Eq. (28) is
not proven, we think it is very plausible.
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