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Effect of electron-phonon drag on the magnetoconductivity tensor of n-germanium
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A density-matrix formalism i~ developed to calculate the magnetoconductivity tensor in semiconductors,

taking into account the mutual electron-phonon drag. An application of the formalism is made to the

four-ellipsoidal model of n-germanium under the conditions where acoustic-phonon scattering is the

predominant mechanism of scattering and the high-temperature limit of the phonon distribution is valid.

The magnitude of the relaxation eAects of secondary interactions for electrons and for phonons is found

by making comparison with the existing experimental data. It is suggested that scattering of electrons

by transitions to bound impurity states plays an important role in the case of transverse

magneto resistance.

I. INTRODUCTION

The study of the effects of magnetic fields on the
transport properties of semiconductors provides
useful information about the role various scattering
mechanisms play in the presence of external fields.
While the theory for longitudinal magnetoresis-
tance' agrees well with experiments for n-type
germanium, ~ assuming that acoustic-phonon scat-
tering is predominant, similar agreement for
transverse magnetoconduction proves to be elu-
sive. ' In spite of a large amount of theoretical
work, ' only a few attempts"' have been made to
provide a comparison with the existing experimen-
tal data. This has been partly because of the be-
lief of some authors' that the effect of inhomogene-
ities may be larger than those of fundamental scat-
tering mechanisms in the transverse case. Recent
experiments by Baranskii and Babich ' lead to the
conclusion that there is very little correlation be-
tween inhomogeneities and transverse magnetore-
sistance. It is suggested in the present paper that
the difficulty with previous calculations is in the ne-
glect of the nonequilibrium, anisotropic phonon
distribution due to electron drag.

The mutual entrainment effect of the coupled
electron-phonon system was discussed by Sommer-
feld and Bethe. ' Sondheimer" emphasized the
importance of formulating the problem in such a
way as to preserve symmetry between the electron
and phonon systems as far as mutual interaction is
concerned. Hubner and Shockley' experimentally
observed the creation of an electric current due to
phonon drag. Recently the disturbance of the op-
tical-phonon distribution in InSb has been demon-
strated by Kranzer and Gornick. ' Gurevich ef
al. ' have shown theoretically that the temperature
and magnetic field dependence of magnetoresis-
tance changes if mutual entrainment of the electron
and phonon systems is taken into account.

In the case of transverse magnetoresistance,

the anisotropic phonon distribution arises due to
drag by electrons which tend to have a drift veloc-
ity resulting from the crossed electric and mag-
netic fields, If there were no interactions other
than conduction electron-phonon scattering, the
phonons would be isotropic not in the crystal frame
but in a frame moving with the electron drift veloc-
ity, provided that the drift velocity was small com-
pared to the sound velocity. The electrons would
then tend to relax isotropically in the drift-velocity
frame. Hence the current would not be affected by
the scattering. Thus to explain transverse mag-
netoresistance effects, one must consider second-
ary scattering mechanisms. Additional phonon in-
teractions could change the frame in which the
phonons are isotropic. Additional electron inter-
actions could cause the electrons to relax to some
intermediate velocity frame.

Another departure from other treatments is to
split the electric field 8 into two parts: one part
is treated exactly in finding the unperturbed basis
functions, while the other part is used as a pertur-
bation. Ordinarily when phonon anisotropy is not
considered, the transverse electric field has either
been included completely in the unperturbed Hamil-
tonian '"' or has been used completely as a per-
turbation. ' These two approaches give quite dif-
ferent results. The perturbation approach gives
for the transverse current Eq. (4. 5) of this paper,
with the parameter y appearing there set equal to
zero. On the other hand, inclusion of g in the un-

perturbed Hamiltonian with later expansion for
small 8 leads to Eq. (4. 5) with y = 1, together with

other terms involving derivatives of the distribu-
tion function such as in Eq. (3.31). These results
are different both for high and low magnetic fields.
In particular, the latter result, in which 8 is in
the unperturbed Hamiltonian, diverges at low mag-
netic fields. This divergence may result from ex-
pansion in powers of 1/~~i, ' '6 hut there is still a
divergence when ~T is not assumed large. ' How-
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ever, when the electric field is treated as a per-
turbation, there is no such divergence and the ex-
pression goes into that for the usual low-field
transverse current found from the Boltzmann
transport equation. The difficulties when the ba-
sis quantum functions include the electric field
arise for the same reason that difficulties occur
when classical motion in crossed electric and mag-
netic fields is used as the unperturbed motion in
the Boltzmann transport equation. In both cases
one can solve the transport equations exactly and,
regardless of other small interactions, the dis-
tribution function is found to contain exp(- e 8 ~ r/
kT). It is then not consistant to expand to first
order for small S. Thus if one wishes to investi-
gate linear effects in 8, this field must ordinarily
be treated as small from the start.

However, in the calculations in Sec. ID below
the anisotropic part of the phonon distribution is
shown to give effects similar to those occurring
when 8 is included in the unperturbed Hamiltonian.
Then if the electric field were treated completely
as a perturbation, this anisotropic phonon distri-
bution would give a nonuniform spatial distribution
for the electrons. To avoid this difficulty, one
must include a sufficient part of the electric field
in the unperturbed Hamiltonian to cancel this
anisotropic effect. If there is no longitudinal cur-
rent due to this part of the electric field and the
anisotropic phonon distribution, there is no ten-
dency for the electrons to become nonuniformly
distributed. Thus that part of the longitudinal
current (not including that due to the remaining
perturbing electric field) will be set equal to zero
as the criterion used in deciding on the division
of 8 into the two parts.

In Sec. II the basic perturbation treatment of the
density matrix is presented. This is a modifica-
tion of the formalism of Argyres' and that of
Adams and Holstein. '6 This density matrix is
evaluated in Sec. III using the wave functions for
the energy ellipsoids of n-Ge. The results are
given and discussed in Sec. IV. Also in that sec-
tion suggested mechanisms for the secondary scat-
tering are discussed.

II. DENSITY MATRIX FOR COUPLED ELECTRON-PHONON

SYSTEM

Pr = (Po+ P') (Po" + P'"), (2. 2)

The basic physical quantity of interest here is
the expectation value of the current operator j:

(2. I)

where p~ is the density matrix for the coupled
electron-phonon system. For small coupling and
for small deviations of the density matrix from
equilibrium we may assume that p~ is of the form

where p,'and p,
'" are the unperturbed electron and

phonon parts of the density matrix. The quantities
p' and p'" are the corresponding corrections due
to the switching on of a perturbation. The correc-
tions p' and p'" can be obtained by solving Liou-
ville's equation:

SPr ~(+r i Pr]
a&= e (2. &)

where X~ is the total electron and phonon Hamil-
tonian:

(2.4)

with

K =X, +3Cz y+F, , Q(@~1,
K = V+I+F
F:(I 'I )Fi + Fii

(2. 5)

(2. 6)

(2. &)

Here E, is the interaction involving the part of the
electric field which is transverse to the magnetic
field and J, is that involving the electric field par-
allel to the magnetic field. The quantity K~ is the
lattice part of the Hamiltonian. The potential V is
the electron-phonon interaction taken to be" (for
unit volume)

lj2
V =iE& q a, +a, e'~'

2pg (d
(2. 8)

where a,' is the acoustic-phonon creation operator
for wave vector q, a, is an annihilation operator,
p„ is the crystal mass density, and (d, is the fre-
quency of a phonon. No distinction between longi-
tudinal and transverse phonons will be considered
here, and they will be treated as longitudinal. '
The potential energy I in the Hamiltonian consists
of any other interaction responsible for electron
or phonon relaxation. As discussed in the Intro-
duction, if I were not included, the current would
be the same as that which would occur with no
scattering at high magnetic fields.

The parameter y will be chosen such that when
the perturbation F of Eq. (2. 5) is set equal to
zero, the density matrix corresponds to an equilib-
rium uniform electron distribution. When the
electron distribution is being calcu1ated the phonon
distribution will be assumed independent of y.
Eventually the phonon distribution must be chosen
consistent with the choice of y. As will be seen in
the formalism below, the anisotropic phonon dis-
tribution due to electron drag acts effectively as
an additional transverse electric field tending to
give the electrons a drift velocity equal to the ve-
locity of the frame in which phonon distribution ap-
pears isotropic. The competition between this ef-
fect and the interactions I and yF can, with proper
choice of y, give zero current paraliel to the elec-
tric field. If this component of current is zero,
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pg = po+ p8 (2.9)

where po and pe" are, respectively, po and p'
times Tr(po" + p'"). It is assumed here that p'h is
given; i.e. , in addition to the perturbations dis-
cussed above, there is a perturbation that acts on
the phonons only to hold p'" constant. This per-

there is no tendency for electrons to collect in low-
potential-energy regions, and there is a uniform
equilibrium electron distribution. The part of the
electric field interaction, I, which leads to a non-
equilibrium distribution is then treated as a per-
turbation.

Likewise in finding the anisotropic phonon dis-
tribution, it will be assumed that the electron cur-
rent is known and is independent of the phonon dis-
tribution. Competition between the electron drag
and that due to any interaction I will lead to the
phonon anisotropy. As mentioned above, consis-
tency between this anisotropy and the choice of z
is then imposed as a condition on the overall den-
sity matrix.

It is now desired to find p' of Eq. (2. 2), the
change in the electron distribution due to perturba-
tions. For this treatment a density matrix" is
taken of the form

turbation becomes zero at f =0. The quantity pe'
is the correction to po when a perturbation is
switched on slowly over the time interval t = —~
to t=0:

X'(f) = e"X' (2. iO)

pov' v
—pov' pov

E„,„=E„,—E„

(2. 12)

(2. iS)

(2. 14)

Here po„ is the diagonal part of the initial density
matrix and E„ is the energy eigenvalue correspond-
ing to a state characterized by a set of quantum
numbers z . In Eq. (2. 11) [p, F] has been neglected,
as only those parts of p which are linear in electric
field are retained. Solving the above Eq. (2. 11)
for p„,„and substituting back on the right-hand side,
one obtains the result

where s is a small positive parameter. The prob-
lem is then to calculate p'r(f) at f =0 in the limit
s-0. Substitution of Eqs. (2.9) and (2. 10) into
(2. S) yields

(&v.v-i») p„.„=pov, „(v+I)„,„+[p, V+I]„.„e'+C„,,
(2. iS)

with

(E .
I ) g ( V+ I) +Q

v'v" + Pov'v''( )v'v" + [P~ ]v'v' '
(V+ I) est

I g /s Z ZW

Cv 'v+ Pov"v(V+I)„"v+ [P, V+I]v„ve"
E„.,„—zIzsv''

Now one takes the limit s -0 and uses the relationship:

lim (x —is) ' =P(1/x)pizza(x) .
s 0

(2. i6)

The part P(I/x) is the principal value which does not contribute to reversible current effects' and hence
will be dropped. Furthermore, one can take an ensemble average in which case terms linear in V or I
will go to zero. Also terms involving I multiplied by p will be dropped since acoustic-phonon scattering
will be considered predominant. The result is

&v ~.p.~, C, ~ v+z~g [pov v" ~(Ev v")+ pov v" ~«..")](V~,"V.".+ f. ,"f.".)

+z& g (p„,„., v„„„„.v„„,„-v„,„,. p„„„.„v„...„)s(z„.„,.)

—zzz ~ (V„.„"p„"„".V„".„—V„.„"U„„„...p„...„)5(Fvv„)
pi /pe I I

To proceed further, one must introduce specific
electron eigenfunctions of the unperturbed Hamil
tonian X, +yF, of Eq. (2.5).

III. WAVE FUNCTIONS AND ELECTRON DENSITY MATRIX

For n-Ge the four energy minima are ellipsoids
of revolution with the axes of revolution along the

I

four directions equivalent to the [ill] direction.
The total current will be the sum of the currents
for these ellipsoids. For the calculations the co-
ordinate axes will be oriented such that the applied
magnetic field 8 is along the positive z axis and 8, ,
the part of the electric field perpendicular to B,is
along the positive x axis. Then the unperturbed
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one-electron Hamiltonian for any one energy ellip-
soid ls

K K + QFJ

(s. i)
where m and e are electronic ma. ss and magnitude
of electronic charge, respectively. In this Hamil-
tonian, the interaction between the magnetic field
and the electronic magnetic moment can be ignored

for the field strengths considered in the present
work. The vector potential A giving the uniform
applied field B will be chosen in the Landau gauge
A=(0, Bx, 0). It will be assumed that 8, parallel
to z axis, is at an angle 6 relative to the longitudi-
nal ellipsoidal axis and that S, para, llel to the
x axis, is at a.ngle @ relative to the plane contain-
ing B and the ellipsoidal axis. If 6 and Q were
zero, the reciprocal mass tensor o,, /n1 would be
diagonal with elements which will be designated by
o., /», &, /», o3/n1. In general, however,

a»cos y+ G, sill ft}

(a»- o, ) sing cos1t1

013 COSQ

,)s' y cosy „co C )
a» sin Q+ &1cos P F13 sing

g» sing

with

a„=&, cos 6+ &3 sin 62 2

a,3
= (o, —&3) sin6 cos8

&33 = G, sin 6+ G3 cos 62 2

(s. s)

(s. 4)

(s. 5)

4'„,=exp[i(k, y+k, z) —i(@13k,+@12k,) x

—ii „x2/2X'] y„(!(x —x,)), (s.e)

where in terms of the Hermite polynomials II„,

(t1„(I3(x—x,)) = (p/v" 2 2"n!)'"exp[- (3'(x —x,)'/2]

The eigenfunctions of the Hamiltonian (S. 1), nor-
malized in a unit volume, are'

j, = —ev; = —ie[K, r;]/k {s.is)

k, . The Greek subscripts in E1I. (2. 17} stand for
n, k, , k, .

Also, the one-phonon Ha, miltonian has eigenval-
ues (X, + —,') 1v, . These energies must be included
in the E„of Eq. (2. 14). It will be assumed that q
is small enough so that ~, =wq with I an average
sound velocity. Since the characteristic lengths
associated with the magnetic fields and with the
temperatures considered here are of the order of
10 cm, the q's of importance are of the order
10' cm '.

The matrix elements of the one-electron current
ope rators,

with

x H„(P(x —x,)), (s. 7) with the above representation as a basis are given
by

1 12 12 / 11 r13 13 / 11

(s. g)

(s. i4)

(s. 15)

{n'k'(j„(nk) = o„j,(n'k', nk),
&'k'~j, ~nk} = o„j,{n'k', nk). j,(n'k', nk),

& 'k'~j, ~nk) =o„j,{n'k', nk)+{o„/a„)j,{n'k', nk)
and

+j 3(n'k', nk) (s. is)
y2 P + &23 s 11 & 3 9

Q» Q1 Q» e/$

The energy eigenvalues are

—,
' n„m(cyh /B)'

nk nk +eg j xp
1 ~11

Here

where

j,(n'k', nk) = {iree!I/») [[(n+ I)/2]
—(n/2)'" 5„, „,»... . (3.17}

j,( 'k', nk) = —(kep{o, a„}'"/»i]([(»+I)/2]'"5„,„„
+(n/2)"'5„.„,)5,.„+{ecyS„/B)5„,„5,.„

(s. Ia)
&„2=(n+-,') k&u +k k, /2m, n =0, 1, 2, . . .

(s. Ii) j,(n'k', nk) = —(elk, /n1*) 5„.„5„., (s. 19}

with

~* = {eB/mc) (a, a»}' ', 1/m* = a, (33/a11»
(s. i2)

In these expressions, the symbol k stands for k, ,

Since the average current involves Tr(j p'r), it
is clear from Eqs. (3.14)-(3.19) that only the diag-
onal parts of p'T and the parts of the form pn, «,»,
need be found. Also, these are the large parts of
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pr because the driving terms of Eq. (2. 17), the

first two terms on the right-hand side, are large
only for n =n, n +1 and k'=k. For instance, one
term, the C„,„of Eq. (2. 12), is

C„, „,=pp k k[(1 —y)eh, x+e$, 2]„,k, „,= p,„, „, (1 —1')$, + " ' [(n+I)' '5„, n„+n' '5„.„,]
ll

v &22" 1 mn [( +I)1/2 1/2
] 5 + n n+ 23 1 ~l. ~n ppnk 5 5 {3 2O)

&nk

(N ) = (exp [h(p/ + v q)//22 T] —I}' . (s. 21)

This anisotropic expression differs from the equi-
librium expression through the term v ~ q where v
is the velocity, relative to the lattice, of the frame
in which the phonons appear to have an approxi-
mately isotropic distribution. Thus v ~ q is es-
sentially a Doppler frequency shift. If there were
only electron-phonon interactions with no interac-
tions I and with 8, = 0, y would be equal to unity and
both v and electron drift velocity averaged over the
ellipsoids would have components [0,cb, /B, 0]. In
the high-temperature approximation, which will be
used here,

(X,) = (/V, +1)=ks T/[1(p1 +v ~ q)]

= (/22 /Th(d)(1 —v ~ q/pl, ) (3.22)

for v «u, the sound speed. From the integrals
over the coordinates, the matrix elements Vn, „,
for a given q will also have for phonon absorption
or emission a factor 5.. .„5k,„„times a func-
tion of the q components expressible in terms of
associated Laguerre polynomials. ' Two useful
sum rules for isotropic phonon distribution are'

Vnk, mk' Vm'k', n'k C~n', n

3/

(3.23)

with C independent of n and m;

(+1 'Vy ++2 'Vn) Vnk, mk' Vmk', in+i&k
m, g'

=z, (W2P/')-'(n+I)l/'P v„, , ~' {3.24)

for K, and K~ constants and for fI, = k, —k„, q, = k,
—k, .

If elastic scattering were assumed (that is, h(d,

The other driving term will be discussed below.
Let us now consider the terms in Eq. (2. 17) in-

volving matrix elements of the electron-phonon in-
teraction V. The matrix elements of the creation
or annihilation operator a, , a, of Eq. (2. 8) will
lead to a factor N, +1 or N, in each of these terms
for emission or absorption of a phonon, respective-
ly. These will be replaced by the average value

I

and thus also eyS, xk and v ~ q negligible), Eq.
(3.23) could be used to simplify some of the terms
in Eq. (2. 17). Thus a term such as V„, , p k,

x V,„, &„,»k would be zero. Then since parts of p
not diagonal in 0 are assumed negligible, terms
containing (VpV)„k &„,»k could be dropped. Similar
arguments based on the diagonal part of p being
odd in /'2, apply to terms containing ( Vp V)„, „„.
Likewise, in those summations involving p„,„„
x V„„„„,V„„,„, Eq. (3.23) would eliminate all but

p„,„V,„„,V„„,„. However, if inelastic scattering
is considered, the scattering is not isotropic and
terms dropped are not zero. Nevertheless, these
terms will still be small and can still be dropped
for temperatures considered here. Then one can
solve Eq. (2. 17) for p„,„:

p„,, = c„,„+im p,„,„„5F„,„„)+ p,„„„a(E„„„)
VI I

V 2 ti V 2k +I i ksI

in/~„. „
(3.25)

I/r„, „=—,'(I/~„, + I/~„)

with

v''

(s. 28)

(3.27)

For elastic scattering the evaluation of C in Eq.
(3.23) using Eq. (2. 8) would lead to'

1 E, 1ks T(2m )' r
Z 2 & ~ink (& + ~Jk

mh p„u ~

(s. 28)
The summation over n is over only those values
such that c„k—(n +-;) hp/ &O. Because of the ne-
glect of inelasticity, the I/~„k of Eq. (3.28) ap-
proaches infinity as k, -0 owing to the term where
n =n. This would not lead to an infinity in p„,„
since 1/~„k occurs in the denomina. tor of Eq. (3.25).
However, neglect of inelasticity can lead to incor-
rect numerical results. Therefore in the term of
Eq. (3.27) for which n =n, +hp/, was included in
the 6 function for phonon absorption and emission,
respectively. Since (d, depends on q, the sum over
the q's had to be done numerically by computer.
In the other terms for whichn cn, the effect of
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inelastic scattering is small if
Next we consider the numerator of Eq. (3. 25).

An expression for C„,„has already been given in
Eq. (3.20). To simplify the rest of the terms in
the numerator, one must choose p,„. As discussed
previously it is desirable to have po„correspond to
a uniform distribution of electrons independent of
the position in the x direction. Therefore for non-
degenerate statistics p,„will be chosen to be a
Boltzmann distribution involving e„,of Eq. (3.11),
not the total electron energy E„„ofEq. (3.10):

po~= exp[(p c~-)/ksT],

with

v~ —QcSg /B
ycS, a

with

(3.32)

(3.33)

The terms involving the interaction I will be as-
sumed to have no anisotropic q dependence. Then
again for p„, &„,»„, these terms will be proportional
to a reciprocal relaxation time, I/r', , times the
drift velocity of the electrons (no v q term in this
case). As discussed previously z is chosen so that
these driving terms with perturbation C„,„set equal
to zero give zero current in the x direction. This
leads to a relationship of the form

xcsch (s. so}

For phonon absorption and with k&u, /ko T « I some
of the factors under the summation are

independent of position. Thus local thermodynamic
equilibrium is assumed. Here, N(B) is the density
of conduction electrons, which, according to Min-
ner, ' can be approximated by its zero-field value
for the range of parameters used here. The sub-
script p stands for the energy ellipsoid being con-
sidered. Since the 5 functions in Eq. (3.25) in-
volve the energy of Eq. (3. 10) as well as phonon
energy, the quantities po„,„-= po„, —po„„will in
general not be zero. Thus let us consider one of
the terms of Eq. (3.25) containing po„.„",

The notation ( ~ ~ )„around the reciprocal relaxa-
tion times indicates an average weighted by the
x component of current operator and the other fac-
tors in the density matrix of Eq. (3.25).

To find another equation for v, and y, one may
treat the phonon density matrix. In this case the
electron distribution including current flow is as-
sumed to be known and constant as e" goes from
zero to unity. Here the electron current density j
tends to drag the phonons along with a velocity v
= j /Xe where X is the electron particle density.
One obtains an equation like (3.25) but with no C„,„.
In this case, terms quadratic in matrix elements
of V and presumably I are diagonal in phonon quan-
tum numbers and thus only diagonal density-matrix
components are large. If po for the phonons is
chosen to be that of Eq. (3.21), one may set p„.„=0.
Then the driving terms in the equivalent of Eq.
(3.25) must be zero. This results in the relation-
ship

v q
Pov v" ~(&» ~ }

COq

The first factor on the left-hand side is an anisot-
ropy coming from the quadratic V„,„„V„„„dueto
the phonon distribution, Eq. (3.22). If in Eq.
(3.25} p„„=p„,, &„,», , Eq. (3.23) indicates that to
a good approximation the isotropic parts may be
dropped, and the anisotropic parts are approxi-
mately proportional to 1/7„, according to Eq. (3.24).
It is seen that the result is also proportional to the
difference between the velocity v of the isotropic
phonon frame and the electron drift velocity due to

yS, . Phonon emission gives a similar result.
Also, the term involving po„„„gives a similar re-
sult with —dp„„,»„/de, „,»„replacing the derivative
in Eq. (3.31).

(s. s4)

(s. s5)

with

1+8 = (1+R,) {1+8') (s. 35)

This y varies as B for small magnetic field. Once
y is chosen in this manner, only C„,„need be re-
tained as a driving term in Eq. (3.25).

IV. RESULTS AND DISCUSSION

By taking the traces of j, , jo, jo in Eqs. (3.17)-
(3. 19) using the density matrix of Eq. (3.25), one

Here v, is the phonon relaxation time due to con-
duction-electron-phonon interaction (assumed pre-
dominant) and T'&is a phonon relaxation time due
to any other interactions I. A~ will be a function
of q, but it is assumed approximately constant over
the small range of q's of importance here. Equations
(3.32) and (3. 34) lead to
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, (4. 1)

finds that forfor a given energy ellipsoid thei e current
ponen s may be written in terms of the three

conductivities,

m &u*'+ (1/r„, („,, ),}'

80

70*. 8 ll till]
J I fii(g

60"

50"

with

POtl 4hk d
nk

nk m deny

(4.2)

(4. 3)

@40"

30

Rot

io~

o = A(d /ks T

To first order in the electric field 8

(4 4)

(j,&
= ops og(1 —~) h,

+ [ops os —o2, (o, /a„) o2] 8,

(j,&=[o,2og+(o a }' o'](1 —l')8

+ 7%8cSq /B+ [og3 og + (og /ops) ops o'2] Sg,
(4. 6)

80

70" 8 II [IIQ]
a II filg

60"

50 IQQ

Magnetic Field in k 6
I50

+Z
ge

p„, =o„ /(o„„o„+o' ) (4. 7)

(4. 6)

&j.& =

[nisei+�(oi

/o»}'" o23os] (1 - l'} h.

„» S, / „B+(,+ '„,/ g 0

The total c
(4.4)- 4

conductivity is found by summ' Eumming Eqs.
-( . 6) over the four energy elli soids. For a

general direction of g one may write (j;&=/ o b
nsor O„and thus the resistivity

tensor may be formed by notin that aing a a2 changes sign
un er time reversal while a, and a, do not. The
primary effect of the electron-phonon dra is torag is to

he transverse magnetocond t' t buc ivi y y a
ac r, —y, compared to the result one would ob-

tain using an equilibrium phonon distribution. The
magnetoconductivity tensor can be ' t dn e inverted to ive
for the magnetoresistivity tensor components

p„, , hen 8 is along a direction of
ns, p„„

o symmetry.
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ure in an experi-The quantities frequently measured in
ment are the Hall coefficient, related to p, and
the ratio p,„(B)/p(Q) where p(0) is the zero-field r-
sistivity. '

zero- ie re-

Results of the calculations of transverse magneto-
s own in Figs. 1 and 2.resistance for n-Ge are sho

s use were G,For these calculations the constant d

+3=0.633, Ej =12.5 eV, and %=3.7x10'
cm, assuming the effect of the magnetic field on

the number ofo conduction electrons is negligible. '
In Fig. 1, the ratio p&& / po ls shown as a function
of magnetic field. The solid curves are from the

experiments of Gallagher and Love. ' The dashed
curves are the theoretical r lt ifesu s no asymmetry
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FIG. 1. Magnetoresistan
The solid cu

tance ratio vs magnetic field.
e solid curve are experimental and the

~vou e found theoretically if one set &= 0.

~ 1

in the phonon distribution is tak ten in o account
i.e. , if y = 0. In Fi'g. are shown the correspond-

necessary for theo-ing parameters R of Eq. {3.36) n

retical results to fit the experimental values.
In order to see the field and temperature depen-
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Calculations were also carried out assuming elas-
tic scattering in order to see the effects of inelas-
ticity. The dashed curves of Fig. j. were found to
be about twice as high for elastic scattering while
the 8's of Fig. 2 were about half as large. How-
ever, the curves of Fig. 3 remained almost un-
changed. This is because the magnetoresistance
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dences of (1/7I)~, of Eg. (3.33), (1/7'„~)~ was c»-
culated and multiplied by A. This assumes that
A, =A, i.e. , for the range of q important here, it
is assumed that there is no other scattering mech-
anism for phonons comparable to conduction-elec-
tron-phonon scattering. The resulting (1/8)„ for
each case of Figs. 1 and 2 is plotted in Fig. 3.

0 loo
Mognetic Field in kG

I50 200

FIG. 3. Reciprocal of the secondary relaxation time
for electrons corresponding to the R's of Fig. 2.
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is proportional to both (1/7„,)„and to R, since
(1 —y) is approximately equal to R for small R.
Because R is proportional to the reciprocal of
(I/r„„) these factors tend to cancel. Thus the
experimental transverse resistance should be al-
most independent of (1/7„„) at large magnetic
fields when acoustic-phonon scattering predomi-
nates. Therefore, while high-magnetic-field lon-
gitudinal magnetoresistance measurements' give
information primarily about (I/7„~), , high-field
transver se magnetoresistance measurements pri-
marily depend on secondary scattering mechanisms.

At low magnetic fields, one expects ionized im-
purity scattering to be the most important second-
ary scattering mechansim. Calculations to find
(1/7', ),„for this mechanism were carried out. It
was found that this scattering could account for the
curves of Fig. 3 up to 50 or 60 kG. However, for
large magnetic fields ionized impurity scattering
is approximately proportional to B and is more
than an order of magnitude too low at fields around
200 kG. Thus other scattering mechanisms must
be considered which a,re small at low magnetic
fields and which increase as I3 increases.

One possibility is scattering with optical-phonon
emission since spacing between different Landau
levels and also between Landau levels and impurity
levels increases with magnetic field. However,
for the fields considered here none of the spacings
between appreciably occupied levels and lower lev-
els is yet equal to optical-phonon energies.

The most probable scattering mechanism appears
to be through transitions to excited bound-impurity
states by acoustic-phonon emission followed by
transitions back to the conduction band with absorp-
tion of an acoustic phonon. Owing to shielding by
conduction band electrons relatively few bound-
impurity states will exist for low magnetic fields.
High magnetic fields give appreciably more bound
states, increasing the transition probabilities. The
overall transition rate is largely determined by that
from the conduction band to impurity levels since
the transitions back to the conduction band are to
levels with a much greater energy density. Order-
of-magnitude calculations were performed to find
(I/ale)„ for transitions from the conduction band to
an impurity level with a characteristic orbit size of
about I., =10 ' cm along the z axis and 10 6 cm for
transverse directions. These lengths respectively
correspond to a hydrogenlike impurity in its fifth
or sixth excited level and to transverse size ~ ow-
ing to the magnetic field. It was found that at 180
kG about 100 bound states in an energy range of
5&&10 eV below the lowest Landau level are neces-
sary to give the reciprocal relaxation times of Fig.
3. The energy 5&&10 ' eV comes from the energy
5 function occurring in transition probabilities and
is the energy of an acoustic longitudinal phonon

with a wave vector j of magnitude I/X.
The number of bound states may be roughly esti-

mated. If one assumes that the last bound states
at zero magnetic field correspond to a hydrogen
orbital quantum number of 5 or 6, then, as seen
above, the transverse dimensions of the wave func-
tion at high fields is smail compared to the longitu-
dinal dimension. The wave function is approxi-
mately that of a one-dimensional hydrogen atom
(taking effective mass and dielectric constant into
account) times a transverse part due only to the
magnetic field. This transverse part is character-
ized by quantum numbers n, specifying the Landau
level, and E. The energy will depend only slightly
on l as long as the transverse dimensions are
small compared with the longitudinal size 1., of the
one -dimensional hydro gen- atom orbitals. The
z component of angular momentum is (n —l)5. For
small n, the transverse dimensions are compara-
ble to l' X. Therefore the number of bound states
for a given hydrogenlike quantum number will be
comparable to I =(L, /X) =100 for I., =10 ' cm at
180 kG. Also, since the ground-state energy of the
impurity is comparable to 10 eV, for hydrogen
orbital quantum numbers around 5 or 6 these will
be within less than 10 ' eV below the Landau levels.
This meets the order-of-magnitude criterion of the
preceding paragraph.

One may also consider magnetic field and tem-
perature dependence of the relaxation time. In the
calculation of (I/vz)„ the summation over phonon
modes introduces a factor of 8 since the important
range of both q„and q, is comparable to I/X. Also,
the number of wave functions that overlap with an
impurity wave function in transverse directions is
proportional to A. -8 . Furthermore, the number
of impurity bound states, by the argument above,
is proportional to (L, /A)'-8. The energy 0 func-
tion has only a slight 8 dependence. Hence one ex-
pects the reciprocal relaxation time to be approxi-
mately proportional to 8 for large fields.

Next let us consider temperature dependence.
The number of phonons is proportional to T in the
approximation of Eq. (3.22). Also, because of en-
ergy conservation only electrons within an energy
interval comparable to the phonon energy, 5x10
eV, above the Landau level can make transitions
to impurity bound state. Since the momentum dis-
tribution is one dimensional in the conduction band,
this leads to a, factor of T . Finally, the num-
ber of bound states depends on temperature; as the
temperature is lowered, the shielding due to con-
duction electrons is less 3 since classically the
average electron energy is lower and thus the frac-
tional change in velocity on entering the field of an
impurity atom is greater, causing conduction elec-
trons to spend less time near the impurity for low-
er temperature. Without more detailed calculations
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all one can say is that the reciprocal relaxation
time increases less rapidly than T' or else de-
creases with increasing T.

For the magnetic fields and temperature consid-
ered here, one can not test these qualitative ideas
for the magnetic field in the [110]and [111]direc-
tions since the shift of electrons from low-mass to
high-mass energy ellipsoids is not complete and
several relaxation times are present. However,
for the [100]direction all ellipsoids make the same
angle relative to the magnetic field and also almost
all the electrons are in the lowest Landau level at
180 kG. Thus, the arguments above should apply.
The curves in Fig. 3 for the [100) direction do
agree with the field and temperature dependences
discussed above.

It should be noted that while it has been assumed
that R =R, , phonon scattering is involved in the
mechanism just discussed and thus R~ is not zero.
However, if it is assumed that phonon and electron
scattering are related, the phonon relaxation times
are proportional to those for the electrons for
those scatterings which involve phonons and thus

R, and R~ should be comparable and have similar
8 and T dependences for high magnetic fields
where ionized impurity scattering is unimportant.

Both scattering mechanisms considered depend
on impurities and should decrease with decreasing
impurity concentration. The ionized impurity scat-

tering is proportional to the number of impurities.
However, the scattering due to transitions to im-
purity states should vary less rapidly than the num-
ber of impurities since the shielding is less due to
conduction electrons for a smaller concentration
of donor impurities. Thus, one would expect that
experimental curves for a small number of impur-
ities would be below those of Fig. 1 with possibly
a plateau or dip forming around 40 or 50 kG where
the two scattering mechanisms are comparable.
This behavior is seen in the experiments of Babich
et al.

In conclusion, it is seen that a nonequilibrium
phonon distribution can greatly alter the transverse
magnetoresistance, It is felt that the secondary
scattering mechanisms discussed here involving
impurities are the important ones for the range of
parameters considered. More detailed calculations
of relaxation times due to impurities are necessary
to definitely establish this. It is probably not use-
ful to carefully take into account both longitudinal
and transverse phonons' since the transverse mag-
netoresistance is rather insensitive to direct elec-
tron-phonon scattering.
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