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Theory of localized states in semiconductors. II. The pseudo impurity theory application
to shallow and deep donors in siliconsf
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A new pseudo impurity theory is developed by combining the general theory of pseudopotentials with
effective-mass ideas. It is applicable to a general impurity, both shallow and deep levels, and reduces to
the Kohn-Luttinger effective-mass theory in the special cases of isocoric impurities, namely impurities
which have isoelectronic cores with the host atoms. The resultant impurity-electron wave function Q(r)
in the new theory is given by a many-band expansion and has the correct nodal structure in all atomic
cells, including the impurity cell. The impurity pseudopotentials are again constructed from fundamental
crystal and atomic properties with no adjustable parameters. An application is presented to donors in
silicon and excellent agreement is obtained for many shallow and deep, substitutional and interstitial
donors. The accuracy of the calculations is investigated. Further conceptual understanding of the
effective-mass notion is also attained: it is the "pseudo" electron, described by the smooth pseudo wave
function $(r), that may be described by the band-minimum effective mass m a; whereas the "effective"
mass of the real electron, which is described by Q(r), is m ~ only outside the impurity cell. Inside the
impurity cell, the kinetic energy of the real electron is a complicated operator, which reduces to the
m» form in an asymptotic way,

I. INTRODUCTION

In paper I' of this series we established the re-
sult that, when the impurity potential is constructed
from first principles, the effective-mass theory of
Kohn and Luttinger (KL-EMT) is valid only for im-
purities having the same core as the host atoms.
For convenience we called such impurities iso-
coric. The major novel result was that the theory
was found to give accurate values for both shallow
and deep energy levels of such impurities. Nu-
merical results for the phosphorus and the deep
sulfur levels in silicon were found in very good
agreement with experimental data. On the other
hand, the theory was found to fail completely for
the energy levels of nonisocoric donors, such as
the shallow arsenic levels in silicon.

These results were understood in the following
terms:

(a) The perturbation potential for an isocoric
impurity is not responsible for the binding of any
additional core states and, as such, it has weak
high Fourier components. This, in turn, makes
the effective-mass approximation (EMA) applica-
ble. On the other hand, the perturbation potential
for a nonisocoric impurity is responsible for the
binding of the extra (or less) electrons on the core.
It, therefore, has strong high Fourier components
which are capable of mixing in more bands and
thus invalidate the one-band KL-EMT.

(b) The KL-EMT is a one-band approximation
for the expansion of the impurity-electron wave
function $. This form is good for an isocoric im-
purity since the nodal structure of this one band's
Bloch functions is appropriate in the impurity cell.
On the other hand, for a nonisocoric impurity a

distinctly different nodal structure must be built
for the impurity-cell region, which requires a
many-band expansion of g.

Including many bands directly in the expansion of
g~ in terms of Bloch functions of the perfect crystal
proves to be a very tedious process, especially
since a many-band expansion is necessary only in
the impurity cell and since Bloch functions are not
known very accurately. Other possibilities to cir-
cumvent these problems are therefore desirable.
In this paper, one such alternative approach is
presented which makes use of pseudopotential the-
ory. In this approach, the correct nodal st;ructure
is built into 5 through a series of rigorous mathe-
matical transformations which amount to reorthog-
onalizing the Bloch functions in the impurity-cell
region so that they are orthogonal to the new core
states in that region. Subsequently, the final ex-
pression for 4 may be interpreted as a many-band
expansion. The important feature of the method
is that the impurity cell need not be defined by a
boundary for matching purposes. Another feature
is that the kinetic energy of the electron is an op-
erator which asyntPtotical/y becomes equal to the
effective-mass form at large distances from the
impurity cell. It will be seen that the results may
still be intexPveted in terms of an "effective" mass
for the electron, which is equal to the band-mini-
mum effective mass only away from the impurity-
cell region. The method can handle nonisocoric
substitutional impurities and also interstitial im-
purities for which the KL-EMT is inapplicable.
The present method reduces to the KL-EMT in the
special case of isocoric impurities. Accurate
numerical calculations can be performed without
the use of any adjustable parameters.
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In Sec. II of this paper we develop the general

pseudo impurity theory (PIT), which is a combination
of pseudopotential theory and effective-mass ideas.
In Sec. III, numerical applications to donors in
silicon are given. Energy levels for shallow and

deep, substitutional and interstitial donors are cal-
culated and excellent agreement with available ex-
perimental data is obtained. Conclusions are drawn
in Sec. IV.

II. GENERAL THEORY

A. Introduction

Pseudopotentials have been used by several
authors in the past in connection with the impurity
problem, but in distinctly different ways than the
present approach. For this reason, we first give
a brief account of such previous work, before we
embark in the detailed presentation of the present

eory. "
The theory of pseudopotentials was developed

more than a decade ago in connection with the prob-
lem of electronic energy levels of perfect crys-
tals. A qualitative analysi. s of the impurity
problem in semiconductors, using pseudopotential
ideas, was first attempted by Glodeanu' in 1965.
In a later paper, ' in 1969, he made a formal anal-
ysis with rather complicated results. No applica-
tion has been reported. Independently, in 1966,
Hermanson and Phillips reported work which had
a starting point similar to ours but which followed
a different path. Apart from some qualitative re-
sults, they used the method to estimate corrections
to the hydrogenic model for impurities in rare-gas
solids. ' We will compare their formalism with the
present approach as we go along.

In 1965, Abarenkov and Heine" formalized' the
concept of a model potential for atoms or ions and
introduced a particular nonlocal form which they
fitted to empirical data. Jaros' '" used the
Abarenkov-Heine potentials for donors in silicon
using the EMA. He unfortunately omitted the inter-
valley mixing, which has been found to be crucially
important. ' Recently, Ning and Sah, ' relying
on pseudopotential theory, studied donors in silicon
by fitting a two-parameter local potential to the
lowest two energy levels of the group-V donors.
They then multiplied these potentials by a factor of
2 and predicted energy levels for the correspond-
ing group-VI donors. Their potential is akin to
the model potential used by Jaros. '3

Let us now define our problem. As in paper I, '

we seek to solve the eigenvalue problem

voted, V was written as

V= V'+ U, (2 2)

where V is the perfect crystal periodic potential.
Perturbation theory was then used to treat U as a
perturbation to the perfect system defined by

H'~~„', = [- (e'/2m) V'+ V'J g„'„- = Ey„'„-, (2. 3)

The GTP was developed by Austin, Heine, and

Sham, ' after the pioneer work of Refs. 2 and 3.
It applies to systems such as atoms, molecules,
or crystals for which the eigenstates +„may be
grouped into core states 4, and valence states +„.
All the +„, n=c or v, satisfy

H„4=[-(h'/2m)V' V+J@„=E„4„. (2. 4)

(The notation in this section should not be confused
with that used for the perturbed crystal in paper I
and in Sec. II C. ) One then defines a pseudo-
Hamiltonian H~ by

H~ =0+ V~

and then shows that if V„ is of the general form

V, =p ~4.)&Z. ~, (2. 6)

where F, are arbitrary functions, then H~ has the
same valence eigenvalues E„as II, i.e. ,

(2. 7)

In Eq. (2. 6) the bra-ket notation means that V„ is
an integral operator with kernel Vz(r, r') given by

V (r, r')=+41,(r)E,*(r'), (2. 8)

so that, when it operates on a state 4', the result
is a function of r

Vs@= f d'r' Vs(r, r')@(r') . (2. 9)

The proof of Eq. (2. 7) is simple and is obtained
by expanding ~'„ in terms of the +„. The process
yields the fo1.lowing relation between C'„and +„:

4„=4„— 4, 4„4, . (2. 10)

which was assumed solved. In the present approach
we will use the general theory of pseudopotentials
(GTP ) to transform both systems (2. 1) and (2. 3)
and then apply perturbation theory. This leads to
new results which not only make numerical calcu-
lations possible with rather little computer time,
but also yield new physical insights on the impurity
problem. Most of these will be arrived at in Sec.
II F.

B. General theory of pseudopotentials {GTP}

H)i = [-(h'/2m)V'+ V Jg = E& (2. 1)

where V is the total one-electron se1f-consistent
potential of a crystal containing a point imperfec-
tion. In the KL-EMT, to which paper I was de-

Each choice of F, in Eq. (2. 6) results in a different
set of 4"s, but Eq. (2. 10) is always satisfied. This
is illustrated schematically in Fig. 1.

For the determination of the energy levels F„,
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bands, so the corresponding projection operator
P' is

~'=ZZl ~:;&(~:; . (2 15)
c

The total crystal pseudopotential V~ is then

VD Vo VO

where

Vo POVO

and we have

(2. 16)

(2. 17)

and

H qP„f I (A /2m)V + V ~]P„f E (k)P f (2 18)

FIG. 1. Illustration of the nonuniqueness of 4„by
drawing the functions 4„, 4'~, and C„as vectors. 4'„and
4', are orthogonal. 4 „can be any vector (within normal-
ization constant). By adding to it its projection on 4'„
one always gets 4'„.

the system (2. 7) has several advantages over
(2. 4), when the proper choice of F, is made. Ob-
viously the choice I', =0 for all c is possible, but
it takes us back to Eq. (2. 4). It has been shown'4
that the choice

(2. 11)

results in nearly optimum cancellation between V„
and V. The resultant total pseudopotential, de-
fined by

&'.f =(I -P')4'.z. (2. 19}

In order to apply the QTP to the crystal contain-
ing a point imperfection, we need an indexing sys-
tem for the core states. For this we are guided by
a tight-binding picture and the fact that at very
large distances from the imperfection site, each
g, either must reduce to one of the g,„- or must
vanish. The former kind may be denoted as $,„-

even though k is no longer a good quantum number.
These functions generally have vanishing amplitude
in the impurity cell. The latter kind, namely those
that vanish far from the impurity site and hence
are localized in the impurity cell (they are essen-
tially the core orbitals of the impurity atom), will
be labeled by the index c'. Thus, the projector
operator P is defined as

V~ = V+V„,
becomes

(2. 12) P =ZQ 4.&&(l.f i+El 4~&(4. Ic'

and the total pseudopotential V~ is

(2. 20)

V~ = (1 P)V, — (2. 13)

where we defined the projection operator P by
V~=V+V„,

where
(2. 21)

p=+l4, &(4, . (2. 14) V„= —PV . (2. 22}

P is an even-parity operator, which would be equal
to 1 if the +, were a complete set of functions. In
general, 0&P& 1, but the cancellation is such that,
as shown in Ref. 4, V~ binds no core states, so
that the lowest eigenstate of H~ is the lowest va-
lence state of H. Thus V~ has no strong core part
or, equivalently, no strong high Fourier compo-
nents.

The choice of Eq. (2. 11}further results in near-
ly the smoothest pseudo wave functions @'„.'4 Un-
like the corresponding +„, they are not as rapidly
oscillatory in the core region, since there are no
core states to which they can be orthogonal.

C. Application to the impurity problem

The GTP may be applied directly to the perfect
crystal described by Eq. (2. 3). The core states
are simply the Bloch functions Pd, of the core

4.=(I -&)4.. (2. 24)

We will have a lot more to say about this in Sec.
II F.

D. Perturbation pseudopotential U&. General properties

The method of attack from here on is to write

(2.25}

Finally we have

Hop =[(h /2m)V + V~]P„=E„@„, (2. 23)

where P„ is the pseudo wave function for a perturbed
state which either lies in one of the valence or con-
duction bands and extends throughout the crystal,
or is localized around the impurity cell and has its
energy in one of the forbidden energy gaps above
the valence band. The true wave function 5„ is re-
lated to this via
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and treat U~ as a perturbation to Eq. (2. 18). In
this section we look at some general properties of
U~.

First, using the results of Sec. IID and Eq.
(2. 25), we have

U~ =U+U~,

where

(2. 26)

(2. 2'7)

is the impurity potential of the KL-EMT. It may
be referred to as the "true" impurity potential,
compared with U~, the impurity pseudopotential.
U~ is given by

U~ = V~ —V~ = -PV+P V (2. 28)

and, for reasons to be discussed later, will be
called the reorthogonalization potential. At this
point we can compare with the result of Ref. 9 in
which the impurity pseudopotential U~ is also given
by Eq. (2. 26) but in which Us is given by Us = PU-

P(V —V —) because of an improper choice of un-
perturbed pseudo-Hamiltonian. "

In order to obtain a meaningful interpretation of
the present form of U~, we rewrite P and P in
terms of %annier functions. For the perfect crys-
tal we use the well-known relation'

(2. 29)

where ¹isthe number of atoms and R„. are the atomic
sites. The Wannier functions w, (r —R„.) are local-
ized about the sites R, ' and resemble atomic or-
bitals. For the perturbed crystal, generalized
Wannier functions ui, .(r —R&) exist' and have the
same localization properties. For the core states,
we have"

(2. 30a)

$,.(r) = ui, .(r —R,'), (2. 30b)

P,'. ; P= (2. 31)

where we defined

(2. 32a)

and

Pj = 2f'~gj M'~pj
c'

Finally, we write V and V as

V =g vo(r —Rz),

{2.32b')

(2. 33a)

where R,' are the new (because of relaxation) lat-
tice sites' and Ro is the impurity site. In terms of
Eqs. (2. 29) and (2. 30) we get

V= Q v, (r —R,'), (2. 33b)

where v and v,. are atomiclike potentials, and,
using the localization properties of se,j and u„., we
get

U~ =Q [(1 P, )—v, (r —R,') —(1 -Po)v'(r —R,)].
(2. 34)

This shows that, in the present approach, U~ is
simply the change in atomiclike pseudopotentials
centered at the atomic sites. In Sec. IIE we will
see that, via certain valid approximations, this
form of U~ will prove very useful and easily man-
ageable in numerical calculations. Several impor-
tant properties of U~ can, however, be inferred
from general pseudopotential theory. The conclu-
sions will be confirmed numerically in Sec. II E.

As it was seen in Sec. II B, the most fundamental
property of the chosen form of the pseudopotential
is that it binds go core states. It therefore has no
strong short-range part or, equivalently, strong
high Fourier components. Recalling the criterion
of validity of the effective-mass approximation de-
veloped in paper I, ' we recognize U~ as an excel-
lent candidate. One cannot, however, simply use
U~ in place of U in the effective-mass equation
(EME) resulting from the KL-EMT, and carry oui:
calculations. Instead, the EME must be derived
in connection with the eigenvalue problems (2. 18)
and (2. 23) of the pseudocrystals. This is done in
Sec. IIE and it is found to lead to some very sig-
nificant new results.

Before we finish this discussion, we invoke an
additional physical reason that Uo does not, in gen-
eral, have strong high Fourier components. This
comes from the-assumption that in the case of a
substitutional impurity, four of the impurity-atom
valence electrons pair-up with electrons from the
neighboring host atoms to reconstruct the covalent
bonds that hold the crystal together. Now, these
bonds in the perfect crystal are generally results

0of strong V ~(K,), where K, is a reciprocal-lattice
vector in the [111jdirection. Reconstruction of
the bonds in the perturbed crystal means that
V~(K, ) is about the same magnitude as Vo (K,).
Consequently Uo(K, ) must be very small.

Finally, one last general property of U~ is that
it depends on the symmetry of the state calculated.
It can be shown that, in the sums over c and c' in
Eqs. (2. 32), only those core states contribute which
have the same symmetry as the valence eigenstate
for which one is solving. Thus the extent of the ef-
fective cancellation depends on the symmetry of
the state being calculated. If no core states of a
particular symmetry exist, no cancellation will
occur for that symmetry. This must be a point of
caution and comes up when calculations are per-
formed.
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4(r) = Z Q f.(k)%of(r). (2. 35)

E. Perturbation-theory treatment: The pseudo-EMT

Once we have the eigenvalue problems (2. 18}
and (2. 23) with all quantities defined, we follow a
procedure analogous to the KL-EMT. However,
instead of expanding p(r) in terms of the gk(r),
here we expand P(r) in terms of the P„g(r). We
have' '

more appropriate. None of these objections is
valid for our pseudopotential formulation. The
discussion that follows is aimed to reinforce the
claims and conclusions made thus far with addi-
tional physical arguments, clarify the above and

other points, and provide new conceptual and phys-
ical insights for the effective-mass approach.
Section IIF1 is indeed very important in the
presentation of the present pseudo impurity theory.

l. Irnpuri fy-efectron wave function
By substituting this in Eq. (2. 23), multiplying on
the left-hand side by p„.k. (~), using the orthogonality
relation

&~n'k'
I ink & n'n k'k

and a series of manipulations similar to those for
the KL-EMT, one obtains the corresponding EME.
The only caution one must exercise in deriving Eq.
(2. 36) or (2. 37) is taking into account the operator
nature of U~. For a spherical minimum at 0=0,
the pseudo EME is

—(h /2m*)Vkf(r)+ f d r' Un(r, r')f(r') =Ef(r).
(2. 36}

For a more complicated band and for a two-elec-
tron state, corresponding equations can be written.
For example, for donors in silicon, we have

6

E «,(««, es&' tr, ( —iv) z-lf ~.„\--
i=1

~fg~nI«d3 I
U

I f 'jQ jog

(2. 37)
We will soon see that in the case of isocoric im-
purities, U~ is approximately equal to the true
impurity potential U and Eq. (2. 37} reduces to Eq.
(3. 4) of paper I. We thus see that the KL-EMT
is a special case of the present more general
PIT. The validity criterion for Eq. (2. 37) has the
same form as in paper I, except that the quantities
Cry, (K„) now come from pseudo Bloch functions and
are thus much smaller. This shows that the EMA
has a wider range of validity than it was originally
established (a result discussed also in Refs. 9 and
14) and explains further the success of the KL-EMT
in paper I.

The first property of the PIT to be noted is
that it results in a correct form for the impu-
rity-electron wave function ((r) for nonisocoric
impurities. This was found in paper I' to be the
chief failure of the KL-EMT. This is seen as fol-
lows.

With the interband coupling neglected through the
approximations leading to Eq. (2. 36) or (2. 37), the
impurity-electron pseudo wave function P(r) ends
up being constructed from the pseudo Bloch func-
tions goer) of only one band, thus

@(r)=Z f(k)4'„-(r) . (2. 38)

As for the 8'ue impurity-electron wave function
g(r), we recall that it is given by Eq. (2. 24), or

4(~) = 4(~) -2 Z &P..l 4&4.&r) —2&&. IA&4. (r) .
c k c (2 39)

[This shows already that a many-band expansion
for g(r) is employed —see Sec. II F 2 for a detailed
discussion. ] No matter what P is, Eq. (2. 39)
shows that P(r) is by construction orthogonal to the
core functions g,„- and g, , of the perturbed crystal.
More insight may be gained, however, by using the
form (2. 38) in (2. 39) or (2. 24) to get

& =+f(k)(4f P0'„-) . - (2. 40)

Finally, using Eq. (2. 19) written as p„-= ggkyP p&,
we have

0 = +f(k)(4~+ P'@,'- Phf)- (2. 41)

or, written out in full,

&=Qf(k& &of+ZQ&&!k I&s&&.';
c

F. Some important qualities of the PIT

It may seem that all the transformations and
manipulations of the last several sections led sim-
ply to the derivation of effective-mass equations,
which contain a pseudopotential U~ instead of the
true potential U or a screened Coulomb potential.
It may be argued that a one-band approximation is
still made, whereby there remains a question about
its applicability to deep levels. It may be argued
further than an effective mass m* is still used in
all space, including the central cell, where some
authors have argued the free-electron mass mo is

0.g 0'; 4.g + 4. 4~ &. . 2. 42

The first term in Eq. (2. 41) or (2. 42) corresponds
to what appears in the KL-EMT, where one has
only

P(r) =QE(k)g„'(r) . (2. 43)

The other two terms, which are Schmidt orthogo-
nalization terms, perform a very important role,
in that they reorfhogonalize pk9(r) from being or-
thogonal to the /of [oscillations from orthogonality
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to the P,p are removed by the P Q„- term in Eq.
(2. 41)] to being orthogonal to the new core func-
tions P,„- and g, (new orthogonality oscillations in-
troduced by the PQ& term). This suggests why the
term UR in U~, which is merely a reflection of the
last two terms in Eq. (2. 41), has been called the
reorthogonalization potential. At this point we can
also see that for an isocoric impurity we have
P =Pa whereby Eq. (2. 41) reduces to the Ki -EMT
result. Similarly, for such impurities, U~ —0,
showing that the pseudo-EMT reduces completely
to the KL-EMT.

It will now be shown that the reorthogonalization
terms in Eq. (2. 41) are important only in the cen-
tral cell, where they indeed remedy the old
KL-EMT in the case of nonisocoric impurities.
This can be seen best by using forms (2. 31) and

(2. 32} for P and P and rearranging the terms
somewhat. For a substitutional impurity at Ro we

get

4(r) =+f(k) 0'„-(r) +Z(~.'0 I bf &n ~(r —Ro}
k C

-E( . , lv';) .,t -Rl) ~ ~}, (2. 44~)
c'

whereas for an interstitial impurity at Ro the re-
sult is

0( )-Zf(e 4W-E( .., lg';) . ,( —Rl) &).
p7 c'

(2. 44b}
In Eqs. (2. 44), & is a small correction given by

~= QQ(zv o~jg~g&u (0r —R,)-QQ (w, ,, ~rj)os&

c jg0 c~ j&0

X B~,~(r —R~). (2. 45)

It is small because Hj —-Rj and u&,j =~,j for j+0;
physically these approximations mean that lattice
relaxation and distortion of host atomic-core or-
bitals, respectively, are negligibly small (see Sec.
III}. The smallness of Eq. (2. 45) is simply a re-
flection of the fact that the nodal structure of P(r)
is basically the same as that of /go(r) over the sites
j& 0. Therefore, the important reorthogonalization
terms are those written out in Eq. (2. 44) which are
localized within the impurity cell. The net result
is a preferential treatment of the impurity cell, so
that the correct form of g(r) is constructed. Take
substitutional arsenic in silicon, for example. The
second term in (2. 44a) removes the 3s-3p-3d-like
oscillations that P~&(r) had at the impurity site before
the arsenic atom was introduced, and the third
term builds new 4s-4P-4d-like oscillations to yield
an appropriate form for g(r). In the case of an in-
terstitial impurity, the situation is different since
pf(r) has no orthogonality oscillations at interstitial
sites, where it is very nearly a plane wave. Hence
the expression (2. 44b) is such as to simply build

appropriate oscillations at the site of interest, de-
pending on the core states of the foreign atom.
Finally, with Eq. (2. 44a) we see more clearly how
the pseudo EMT reduces to the KL-EMT for iso-
coric substitutional impurities for which zo, p N) 0.
With Eq. (2. 44b), we see that for interstitial im-
purities the pseudo EMT would reduce to the KL-
EMT only when the impurity has no core states at
all. This would only be interstitial hydrogen and
helium. '0

On closing this discussion, we might add that an
attempt to reorthogonalize P~» in a fashion similar
to Eq. (2. 44a) was used as a starting Point by the
authors of Ref. 21, but their expression contained
g„- in place of P~ in the Schmidt terms. Since
(w~l g~ &

= 0, it is clear that their expression fails
to produce reorthogonalization.

2. Many-band nature of the pseudo-EP1T calculation

where we defined

f.(k}4f(k')(C-.Iyfo&=f(k)(q.'f ~ef),

gt

f"(k)= -f(k)(4. I4;'&.

(2. 4'la)

(2. 47b)

(2. 4Vc)

It is easy now to note from Eq. (2. 46) that in the
construction of P(r) we have three distinct contri-
butions: (a) the P~&, namely the Bloch functions of
the band of interest (conduction band for donors,
valence band for acceptors); (b) the g,f, which are
the core-band Bloch functions of the perfect crys-
tal; and (c) the g,p and g... which are not perfect-
crystal functions. The term involving the $,g is
generally nonzero away from the impurity site and

simply cancels the contribution of the 5,„- term in
that region. In any case, the tI},„- are accurately
expressible in terms of the tt);„, so that we are still
within the subspace of the perfect-crystal core-
band Bloch functions. The P, ,(~), however, present
an interesting contribution: they are essentially the
impurity-atom core orbitals. Some of these are
still basically within the g,~ subspace. But for
some impurities, some of these, for example the
4s-, the 4P-, and 4d-like core orbitals of antimony
in silicon, belong mainly to the subspace of excited-
silicon Bloch functions, particularly those of the
4s-, 4P-, and 4d-like excited conduction bands.

In Sec. II F 2 we saw that even though only one band
is retained in the expansion of P in terms of the Q„-„, as
in Eq. (2. 38), the expression for gis the more compli-
cated form given by (2. 42), which may be rewritten as

0( )=Z(f(k)Pg( ) Zf (kIP!a( )

Ef':t&N'z(~) Ef!(fc)&. ( )), (2. 48)
c' gl
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The latter lie above the lowest conduction band on
the energy axis.

In summary, in, the case of donors, the conduc-
tion band contributes through mechanism (a}, the
core bands through mechanism (b) and partly
mechanism (c), and the higher conduction bands,
when necessary, contribute through mechanism
(c}. The net result is the construction of a trial
function with appropriate nodal structure, as we

saw earlier. One may legitimately wonder, how-

ever, as to when and how can the valence band
contribute. The answer is that it would have to
contribute through mechanism (a} on an equal
footing with the conduction band. The reason its
contribution is generally negligible was discussed
in paper I. ' For one thing, because of the indi-
rectness of the energy gap in silicon, even "deep"
levels are close to the conduction band and very
far from the valence band (Fig. ll of paper I').
Perturbation theory can show then that valenee-
band contribution is very small. On the other
hand, the symmetry of the top of the valence band is
incompatible with the symmetry of the donor ground
state. ' Finally, experimental observations seem
to indicate negligible coupling of the donor ground
state with the valence band. ' A similar discussion
would apply for contributions of the conduction band
to acceptor states.

3. Real electrons, pseudoelectrons, and effective masses

H~f~ = —(8 /2m*)V + U+ Us, (2. 48}

where we wrote U~ as in Eq. (2. 26). This yields
to an interpretation from both a "pseudo" and a
"real" point of view, so to speak. From the
"pseudo" point of view, the contribution to the en-
ergy E of the first term in {2.48) is kinetic energy
and the rest is potential energy. Hence, the pseu-

In this section we examine the concept of the ef-
fective mass. In order to do this we first distin-
guish between the real impurity electron, which is
described by the wave function $(r), and the Pseudo
electron, which is described by the pseudo wave
function P(r). These two wave functions are eigen-
functions of different Hamiltonians, have different
spatial distributions and hence describe two dis-
tinct "particles. " The only common point is that
they both have the same mass and the same station-
ary energy. From the development of the present
pseudo EMT in Sec. II E, it is clear that it is the
pseudo system (2. 23) which is transformed into the
effective-mass equation. . Therefore, it is the
pseudoelectron which is described by an equivalent
particle of mass»2* which moves in the potential
U~; its kinetic energy operator is, in a simple
case, given by —(h /2m*)V . The total effective
Hamiltonian, which determines the total energy E,
is then given by

doelectron has an effective mass»2* in all space
and move in the potential U+ U„ to maintain a con-
stant total energy E. From the "real" point of
view, we recall that U is the only true perturbation
potential, ~hereas U~ is actually kinetic energy in
disguise. Thus, the real electron, which moves
in the potential U, has a kinetic energy operator
given by —(h /2m~)V + Us. Since Us turns out to
be mainly localized in the impurity-cell region, we
see that the real electron, described by P(r), has
an effective mass»2* only outside the impurity-cell
region. Inside the impurity-cell region, the kinetic
energy operator has the complicated form —(tt /
2»2 )7 +UR. If one insists on interpreting this re-
sult in terms of an "effective" mass, one can
formally define a mass p, by

—(h /2p. )V —= —(5 /2n~*)V + Us . (2. 49)

p. could then be written formally as

1 1 2»2+ UR{r, r )
02 I2 7

(2. 5O)

which shows that it asyn2potically becomes»2*,
whereas in the impurity-cell region it is a position-
dependent, even nonlocal, complicated function.

We thus conclude that in the pseudo EMT, the
real electron is described by a many-band expan-
sion of p and by an "effective" mass which is»2*
outside the impurity-cell region, but is a compli-
cated function of position within that region. More
discussion on this point appears in Sec. III. We
note here, however, that all this should not be con-
fused with the fact that »2*comes from an expan-
sion of E (k} to order h . The contribution of the

term has been shown to be generally small. '

As a last note here, we point out that the concept
of pseudoelectrons (and pseudoholes, in the case of
acceptors) is not unique to the semiconductor im-
purity problem. Even though such terminology has
not been used, it may be used to illustrate vividly
certain properties, wherever pseudopotentials are
used. For example, in the case of a metal, such
as aluminum, we know that the energy-band struc-
ture is very nearly free-electron-like. We also
know that the real electrons are described by the
true Bloch functions P„„-, which are nof plane waves,
but orthogonalized plane waves (OPW) with rapid
oscillations in atomic-core regions. It is the pseu-
doelectrons, which are described by the pseudo
Bloch functions @„„-, that are free-particle-like,
since the P„p are nearly plane waves. This adds
comfort to accepting that the pseudoeleetron in the
impurity problem can be described by the band-
minimum effective mass»2* in all space, even
though this cannot generally be done for the real
electron.
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G. Concluding remarks on the general theory

The pseudo EMT presented in this section in its
general form appears to have the power to treat
most common impurities in a semiconductor like
silicon. The number of approximations involved
is sizable in accord with the complexity of the
problem. More approximations are made when U~
is calculated (Sec. III). Each one must be checked
for its validity in specific calculations and esti-
mates of the corresponding accuracy should be
made. In comparing with experiment, it must also
be borne in mind that the theory calculates the en-
ergy states or quantum energy levels at tempera-
ture T= 0'K when the lattice is frozen (except for
zero-point vibrations), whereas experiment usually
measures transitions between states which occur at
finite temperatures. The levels then are usually
broadened by —k~T and shifted slightly.

In Sec. III the theory is applied to donors in sili-
con, both shallow and deep, substitutional and in-
terstitial, and, although with varying degree of ac-
curacy, the final results for the ground-state en-
ergies agree exceedingly well with the experimen-
tal binding energies.

III. APPLICATION TO DONORS IN SILICON

In this section, the pseudo impurity theory (PIT),
developed in the previous section will be appli. ed to
the study of donors in silicon. These are the
group-V elements N, P, As, Sb, Bi at substitu-
tional sites, which act as single donors (conclusive
experiment for N is lacking); the group-VI ele-
ments 0, S, Se, Te, Po also at substitutional sites
should be double donors, capable of binding one or
two electrons. Experiment has been fairly conclu-
sive only for sulfur. ' ' Oxygen, on the other
hand, has generally been found to form complexes.
As for interstitials, lithium (a single donor) and
magnesium (a double donor) are the ones identified
with certainty. Less accurate information exists
on some transition metals.

A. Calculation of impurity pseudopotentials

In Sec. II the general expression (2. 34) for U»
was obtained. For further development, the atom-
iclike potentials are written as

v (r —R, ) = v04(r —R, ) + v, (r —R&), (3. la)

v, (r —R&) = v"~(r —R&)+v, (r —Rz). (3. 1b)

Here, v~~ and v '& are the same ioniclike potentials
as the ones appearing in Sec. IV of paper I' while
v, and v„describing the redistribution of valence
electrons, are related to V, and V, of Ref. 1 via

V,'(r) = Q v,'(r —R, ), (3. 2a)

V, (r) =Qv, (r —R,') . (3.2b)

Then U~ can be written as

U~ = U»+ U~, , (3.3)

U» = U~ + Uza (3.8)

where U, is the same as in Sec. VI of paper I, and
U» is given by

U» —-g [I P, v"&(r —-R,'.) +P,vo (r —.R, )] .
J'

(3.7)

Simple results are obtained, as in paper I, when
the following approximations are valid: (a) Lattice
relaxation is neglected so that R]=R,.; (b) the core
electrons at all sites except the foreign atom site
remain unperturbed. This means that

v "(r —R,') = vo~(r —R, ), j&0 (3.8)

&v, ,(r —R,') = wo(r —RJ), je 0

where Ro is the impurity site.
Equation (3.8) results in U» being given as in

paper I and (3. 9) results in P& ™Pofor j0 0, whereby

U„= P, v" (r-)+Pj'v,"(r) (3. Ioa)

(3. 9)

for substitutional impurities, and

Us» = P) v"(r) . - (3. 10b)

for interstitial impurities, where the origin of co-
ordinates was taken at Ro in both cases.

The potentials vo~(r) and v" (r) and hence U»(r)
may be calculated as in paper I. ' Using the same
approximations, w, (r) and w, ,(r) may be taken to
be free-atom or free-ion core wave functions, with
certain reservations when a heavy impurity is
studied (see Sec. III D). In this manner, U»» is ob-
tainable in numerical form by making use of the
Herman-Skillman computer program for atomic
structures. Because of the operator nature of

U» cannot be plotted as was U~ in Ref. 1.
For plotting purposes only, a local approximation
amounts to operating with U» on the constant func-
tion 1. Thus

U";"(r)= J d r'U, (r, r'). (3. 11)

Plots of the local approximants of U~, for some
typical donors are given in Fig. 2 in tandem with
the true potentials U~ in order to exhibit the can-

where

Uo =P [(I P,-)v"&(r —R,') —(1 P, )-v ~o(.r —R,.)]

(3.4)
and

U», = g [(I P;)v-, (r —R,') —(1 P, )v-, (r —R, )] .

Clearly, U», the bare impurity pseudopotential, is
the result of changes in the ionic pseudopotentials
and U~, is the result of valence electron redistri-
bution. First we concentrate on U~~, which, we
note, may be written a.s
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FIG. 2. "True" and
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plotted.
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p~(q) = e'U. (q)/4v . (3. 12)

Figure 3 shows such plots for typical donors. Re-
calling the criterion for the applicability of the
EMA, namely

cellation generally produced by U». Again, we
plot the corresponding effective charges Z» and

Z~. These plots are meant only for qualitative il-
lustration of the cancellation effect and are not ap-
propriate for numerical calculations. For exam-
ple, use of the local approximant U»(r) for inter-
stitial magnesium, shown in Fig. 2 (plus its screen-
ing Uo, ), in the multivalley EME to calculate the
ground-state energy yields a value which is about
25Vj smaller in absolute magnitude than the one ob-
tained by using the full nonlocal pseudopotential.

The bare pseudopotentials can also be displayed
Fourier-transformed. Again, however, (k+qlU»lk)
is not amenable to plotting since it depends on both
k and q. Choosing k = 0, we plot the resultant
U~~(q) in tandem with the corresponding U~(q).
Again, the quantities actually plotted are p»(q) and

p, (q), where, for example,

R " ~1 hwo
I p»(q) I

(3. 13)

we see that it is generally satisfied. At very large
K„, p»(q+K„) may be seen to start growing again
(no effective cancellation) but this does not invali-
date the EMA: We recall' that Eq. (3. 13) comes
from R~R„«1, where R„ is the corresponding
ratio for a point-charge potential. Since R„ is
vanishingly small at very large K„, the growth of
p~~(q+K„) is neutralized, so that we always have

R,R„«1.
For the calculation of U~„again we depend on

linear-response theory. From the general proper-
ties of U~ described in Sec. II, it is expected that
the method should be a good approximation in gen-
eral. Indeed, particularly because of the recon-27

struction-of-bonds argument of Sec. III D, whereby
Uo(K~) must be very small, local-field corrections
are justifiably left out. Because of the nonlocality
of U», however, the prescription

(3. 14)
e(q)

is not strictly valid. Instead, one can show" that
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(k+ql U~ ik) can be written as

(3. 15)

where the function ef(q) can be written as (see Ap-
pendix A)

1 1 hf(q)
ef(q) e(q) ~(q}

The correction hf(q) depends on how strongly
(k+ql U„lk) depends on k; it is not a general
crystal function like e(q), but depends on the per-
turbing potential as well. Indeed for a local poten-
tial 4„-(rI)=-0. Using Eq. (3.6), we have

( !U, !k&= ' q R' (3 17)
c(q)

For the second term in Eq. (3. 17) the correction
h„(q) in e-„(q} is estimated to contribute only about
I-2' and hence e.„(q)= c(q). Using Eq. (3. 17) we

can then write the total pseudopotential operator
U~ as

(3. 18)U~ =U+U~,

where U is a local term whose Fourier transform
1S

U(q) = U~(q)/~(q) . (3. 19)
It should be noted that it is not necessarily true
that U= Uor U~ =U„except when U~ is very small
(phosphorus, sulfur in silicon). This is because
the separation (3.18) is purely mathematical, while

it is not true that the "true" part (U~) and the re-
orthogonalization part (U») of U» may be screened

separately.
From Eq. (3. 19), U(r) is obtained directly by in-

verse-Fourier-transform as U(r) was obtained in
paper I. ' As for UR, even if ei,(q) is approximated
by e(q), the inverse transformation cannot be car-
ried out in closed form to give UR(r, r '). The dif-
ficulty can be circumvented, nevertheless, and the
matrix elements of U~ in a variational calculation
can be calculated (see Appendix A).

In summary, the bare impurity pseudopotential
is calculated as the difference in the pseudopoten-
tials of the impurity and host atoms with their va-
lence electrons removed. All that is necessary
for this is a set of core orbitals for the impurity
and host atoms. These are obtained in numerical
form from a Herman-Skiliman program (some of
these were displayed in Figs. 9 and 10 in paper I).
In terms of these, the "true" potentials of the ions
are constructed in the Hartree-Fock-Slater ap-
proximation using Eqs. (4. 10)—(4. 13) of paper I;
the "repulsive" terms in the pseudopotentials are
constructed by using Eq. (3. 10). Again, all that is
used are the same core orbitals in order to con-
struct the operators P, and P, [Eq. (2. 32)], plus
the ionic "true" potentials just described. It
should be noted that the energies of the core states
are not needed in the Austin-Heine-Sham form of
the pseudopotential employed here. Finally, the
total bare pseudopotential is screened by using the
dielectric function computed by Nara as given by
Eq. (4. 22} of paper I. The details of the evaluation
of the various matrix elements are given in the
appendixes and the errors introduced by the various
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TABLE I. Ionization energies of group-V impurities
in silicon using the pseudo impurity theory.

TABLE III. Ionization energies of interstitial irnpuri-
ties in using the pseudo impurity theory.

Impurity

point charge
phosphorus
arsenic
antimony

Nitrogen (N )

Nitrogen (N )

a (a.u. )

17.80
21.79
14.44
37. 50

7. 50
8. 60

Theory
ci

0.924
0. 977
0. 922
0. 986

1.0
1.0

E (meV)

48. 8
44. 3
53.1
31 7

335.9
52. 5

Experiment
E (meV)

~ ~ ~

45. s'
53 7b
42. 7"

e ~ ~

4S. 0'

Impurity

One-elec tron centers

Theory
a (a. u. ) E (meU)

Experiment
E (meV)

lithium
sodium
magnesium (Mg')

34. 80
32. 96
10.13

33.8

34. 6
259. 0

31.Ob

56

~o-electron centers

magnesium (Mg ) 11.70 98. 0 107 5'Same calculation as in paper I (Ref. 1).
Reference 28.
Discrepancy between theory and experiment is account-

ed for in Sec. III D.
N~ center binds one electron like the other group-V

elements.
'N center binds two electrons, both in the 1s(Ai) state

with an orbit radius of 8.60 a.u. They have a total en-
ergy of 388.4 meV, so that the first ionization energy
for this center is 52. 5 meV.

Reference 29. No identification of the charge state
is made in the experimental paper. See also discussion
in text.

'State of A& symmetry. Ground state (and thence ion-
ization energy) is T2+E. See Ref. 31.

"State of Ai symmetry. Reference 31.
'Reference 32

I-ID. In all cases, except interstitial lithium, the A,
state is also the ground state, whence its energy rep-
resents the binding or ionization energy of the elec-
tron relative to the conduction band as mell.

C. D&scussion of results

approximations inherent in this scheme are esti-
mated in Sec. IIID.

B. Calculation of ground states

TABLE II. Ionization energies of group-VI impurities
in silicon using the pseudo impurity theory.

Impurity

One-electron centers

Theory
a (a.u. ) E (meV)

Experiment
E (meV)

two point charges
sulfur (S')
selenium (Se')
tellurium (Te')

Two-electron centers

5.46
6.75
5. 58
9.32

1085.3
709. 8
921.3
246. 0

613.6 b

two point charges a 6.43 489. 0 ~ ~ ~

sulfur (S0) 7. 60 334.4 302. 0
selenium (Se~) 6. 53 358.4 ~ ~ ~

tellurium (Teo) 11.56 71.9

'Same calculation as in paper I {Ref. 1).
"Reference 22.
'Values for Tellurium are corrected in Sec. III D.
Reference 23. The value 302.0 is the thermal activa-

tion energy. The ionization energy should be at least
15 rneV higher.

'Reference 30.

140.0

Having constructed the impurity pseudopotentials
for the various donors, the multivalley effective-
mass approximation (2. 37) is used to calculate the
ground state. The calculations are similar to those
of part I except for the matrix elements of the re-
orthogonalization potential U„. The same trial
functions are used. The matrix elements of U~ are
given in Appendix A.

Numerical results for the lowest state of A. , sym-
metry for group-V and group-VI substitutional and
some interstitial donors in silicon are given in Tables

TABLE IV. Comparison of present predictions with
predictions of Ref. 14.

Impurity Present

Ionization Energy (meV)
Present

corrected Ref. 15 experiment

selenium (Se')
selenium (Se')
tellurium (Te')
tellurium (Teo)

921.3
358.4

246. 0
71.9

456. 9
136.8

1123.0
585. 0
539.0
265. 0 140.0

See Sec. IID. Reference 30.

A quick perusal of Tables I-III shows that agree-
ment with experimental data is excellent in all
cases, with the exception of antimony and telluri-
um. The reason for this exception is discussed in

Sec. III D and a satisfactory account for the dis-
crepancy is given. For selenium and Te', there
have been no experimental data. Ning and Sah"
predicted energy levels for these impurities by
doubling the parametric potentials fitted to the
arsenic and antimony experimental levels, respec-
tively. A comparison is made in Table IV. For
nitrogen, which is found to bind up to two electrons,
there is scant experimental information. We quoted
the result obtained by Zorin et al. 9 and assigned
it to the N center. No identification of the charge
state is made in that paper; the paper does men-
tion, however, the existence of deeper levels as-
sociated with the same nitrogen center, in agree-
ment with the present theoretical predictions. It
should be said, homever, that ion implantation, which
mas used in Ref. 29, generally produces considerable
damage and defects with bound states which impede
identification of the bound states of the impurity ion.

The accuracy of the calculations will be discussed
at length in Sec. III D. For the remainder of this
section, we pursue a discussion and analysis of the
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TABLE V. Partial contributions (in meV) to the ground-state energy of donors in
silicon to illustrate the cancellation effect between "true" and "reorthogonalization"
potentials U —U~+~ and UR. T denotes kinetic energy. The column marked 2s lists
the contributions of 2s mixing, while all the others list only matrix elements of f&~(r}.

Impurity a (a.u. } UR

p. C.
P
As
Sb
N

Li
Na
lVIg'
S+

Se'
Te

17.80
21.79
14.44
37.50
7. 50

34. 80
32. 96
10.13
6.75
5. 58
9.32

174.6
109.9
289. 0
34. 0

1564 ~ 8
39.8

44. 6
706. 5

2057. 8
3322. 1

879.3

—219.9
—157.2
—322. 2
—73 ~ 3

—1227. 9
—80. 6
—86. 5

—1307.1
-3046. 0
—4407. 0
—1556.0

6.7
—174.6
—24. 4
847. 8

7 0 2
—22. 7

—603.2

328. 9
—2129.3
—1394.4

—2 4
164.0
32. 0

—1520.6
14.2

30.0
944 ~ 8

—50. 5
2292. 9
1825.1

3
1 ~ aJ

—9.3
0. 0

0. 0
0.0

—44. 3
—53. 1
—31.7

—335.9
—33.8
—34. 6

—259. 0
—709. 8
—921.3
—246. 0

If the point-charge (pc) level is determined variationally using only f& (z), it is
found to be —47. 3 meV at a =- 21.4 a. u. (Table III). Hence 2s mixing lowers the en-
ergy by only 1.5 meV. Similarly for phosphorus the lowering is actually only 0.8

meV and for arsenic it is 3. 5 meV.

numerical results for the purpose of illustrating
the nature of the method and substantiating the gen-
eral claims and speculations of Sec. II with specific
examples.

As pointed out in Sec. II, the most important fea-
ture of the pseudo-EMT method is the cancellation
effect, which is present in donors other than phos-
phorus and sulfur. This was illustrated already in

Figs. 2 and 3 and accompanying discussion. Here
we examine the actual contributions of the various
terms in the total pseudopotential to the total
ground-state energy. As seen in the previous sub-
section, Uo consists of U and UR where U is nearly
equal to the true impurity potential U. (Separation
of U into U a.nd UR is not feasible from a computa-
tional point of view. ) U can then be written as

U(r) = U„(r) + W(r) (8. 20)

where U~(r) is the screened point-charge Coulomb
potential of paper I' and W(r) is a short-range core
potential. It was a strong W(x) that invalidated the
KL-EMT for most donors in paper I.

The kinetic energy, and the contributions of

U„(r), W(r), and Us to the total energies of the
various donors are listed in Table V. The cancel-
lation between W and U„ is evident in all cases,
even for phosphorus and sulfur for which both S'
and UR are very small. It should be noted that if
U~ were to cancel out 8' exactly, then the donors
would be described exactly by a point-charge Cou-
lomb potential. This shows that, in the context
of the PIT, the point-charge model can be justi-
fied as an approximate or model pseudopotential,
whereas in the KL-EMT it was justified as an
approximation to the true impurity potential U only
for phosphorus and sulfur (two point charges). For
the other donors, it had the wrong asymptotic form

as ~ -0.
In reality 8'+UR is not quite zero and accounts

for the deviations of the ground state of the differ-
ent donors from that of the point-charge potential
U„(r). It can rightly then be termed "chemical
shift. " With the ground state of U„(r) being at
48. 8 meV below the conduction-band edge (N. B. ,

that U„(r) is e(q)-screened and the calculation in-
cludes intervalley interaction), the newly defined
chemical shifts" are small for phosphorus, arsenic
and antimony and larger for lithium. Further-
more, the calculations predict a very large chemi-
cal shift for the neutral nitrogen donor, making it
a deep level. This is quite noteworthy, especially
since the true impurity potential U(r) for nitrogen
in silicon has a repulsive core I Fig. 2(d)]. The
binding comes about from the strongly attractive U„.
Some insight into this odd behavior of nitrogen may
be gained by comparing the free-atom ionization
energies for the four group-V elements with the
impurity ionization energies in silicon. This is
done in Fig. 4. On the free-atom side, the solid

-)8 N Sh
Q,Q

2 " -IQQ.G

i -200.0 a
E

LLi

-, -500.0

-3 -40QQ

Free Atoms impur i t i e s ~n Sihcon

FIG. 4. Compa, rison of the free-atom ionization en-
ergies of nitrogen, phosphorus, arsenic, and antimony
with the corresponding ionization energies of the elements
a,s impurities in silicon.



650 S. T. P ANTE LIDES AND C. T. SAH

TABLE VI. Demonstration of the importance of the intervalley mixing.

Impurity

arsenic~

magne slum

nitrogen

Intravalley
Intervalley
Total

Intravalley
Intervalley
Total

Intravalley
Inte rvalley
Total

T (meV)

218.4
70. 6

289. 0

443. 9
262. 6
706. 5

761.5
803.3

1564.8

U~ (meV)

—186.4
—135.8
—322. 2

—596. 5
—710.6

—1307.1

-440. 0
-787.9

—1227.9

W (meV)

17 ~ 2
—157.4
-174.6

—70. 0
—533. 2
-603. 2

104.8
743. 0
847. 8

UR (mev)

5. 4
158.6
164.0

31.2
913.6
944. 8

—50 4
—1470.2
—1520.6

As in Table V, only the ls contribution is listed here.

lines are theoretical, "and the dashed lines are
experimental. " In both cases, nitrogen turns out
to bind its outer electron stronger than the other
three group-V elements. It should also be recalled
that the nitrogen isoelectronic trap in GaP is strong
enough to bind an electron. Finally, the compari-
son of Fig. 4 shows that the relative position of the
phosphorus-arsenic-antimony levels is a very sub-
tle effect resulting from the delicate balancing of
attractive and repulsive forces of both electrostatic
and quantum-mechanical origin.

Chemical shifts for the double donors have not
been analyzed previously. They should be defined
with respect to the two-point-charge model U„,
which has a very deep level at 1085 meV from the
bottom of the conduction band. This level is prob-
ably too deep for our approximations to hold, and
lies below the top of the valence band. In the KL-
EMT such shifts would be measured relative to a
value of about 125 meV, which is the one-valley
ground state of —2e /er. As Tables II and III show,
the experimental results span the entire range be-
tween the two extremes. An interesting compari-
son can be made, however, between substitutional
sulfur and interstitial magnesium, which illustrates
once more the power of the pseudo EMT. For both
of these, we have U(r) = —2e /er at values of r away
from the imperfection site. On the other hand, as
r-0 we have U(r)- —2e /cr for sulfur and U(r)- —12e'/r for magnesium; however, this strong
attraction is so effectively cancelled that the Mg
levels come out quite shallower than those of sul-
fur, in excellent agreement with experiment (Ta-
bles II and III).

Going back to Table V and the values of U~, we
recall that U„ is actually kinetic energy for the real
electron and can be looked upon as a modification of
the electron's effective mass in the central cell.
It is seen from Table V that U„ is in general posi-
tive. For phosphorous and sulfur, U& is negative but

too small to be important {-Ko of kinetic en-
ergy). Most notably, however, U„ is nega-
tive and very large for nitrogen in silicon. This
means that the real electron's "effective" mass
is highly reduced in the central cell. Indeed,
comparing the value of (Ua) with that of the kinetic
energy and recalling that (Ua) comes entirely from
the central cell while the kinetic energy comes
from all space, we conclude that the "effective"
mass of the real electron is negative in the central
cell I This seems to contradict intuition which
claims an "effective" mass equal to»&0 as r- 0. ' '
A closer examination, however, reminds us that
the true potential U(r) for nitrogen in silicon is re-
pulsive to an electron at small r. Therefore, the
real electron, while being bound at the center,
avoids the core region. In other words, the elec-
tron acts as a hole in the core region and hence has
a negative "effective'* mass. This makes clear the
distinction between the real electron and the pseu-
doelectron. The latter has an effective mass m*
throughout space.

Another aspect of the calculation that should be
illustrated is the role of the intervalley interaction.
In Table VI three examples are used to demonstrate
the relative magnitudes of the intravalley and inter-
valley terms. It is clear that the intervalley mix-
ing is very important. Finally it may be of interest
to see how much of the potential energy comes from
the Kohn-i. uttinger potential —e /er, as was done
in paper I. For arsenic, its contribution is —165.2
meV. Adding this to the intravalley kinetic energy
term, we get a Positive 53. 2 meV to the energy.
All the rest of the contributions, the "central cell
corrections, " account for —106.3 meV, so that the
total energy is —53. 1 meV below the bottom of the
conduction band. This illustrates once more that
central cell contributions cannot be equated uith
Ne discrepancy betueen experiment and I'aulkner's
value of —31.2 "/ meV.
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Z(r) =10+4e '", (3.22}

which has the correct asymptotic form. The con-
stant o is about 4. 3 a. u. (compare Ref. 21). Then
we can vary vo'(r —R,.) by changing o to o + &o. This

D. Investigation of the accuracy of the calculations —corrections

As in paper I, ' the accuracy of the calculations
depends on (a) the approximations made in deriving
the multivalley effective-mass equation and (b) the
approximations made in constructing the impurity
pseudopotential. For the first item, the discussion
in Sec. V C of paper I applies here as well, since
the only difference between the two methods is the
exact pseudopotential transformation of the eigen-
value problems (2. 1) and (2. 3). This of course is
crucial, as it results in a weak perturbation pseu-
dopotential which makes the EMA applicable to non-
isocoric impurities. Indeed for isocoric impuri-
ties, as noted earlier, where the KL-EMT is ap-
plicable, ' the present pseudo impurity theory re-
duces to the same results (since U„ turns out to be
negligibly small). The accuracy estimates of
paper I apply both to the present general theory and
to its special case, the KL-EMT of paper I. Here
then, we present some studies on the approxima-
tions made in constructing the impurity pseudopo-
tential itself for the various cases. This again
will apply to the special case of paper I. Fuller
discussion of all the approximations was made in
Ref. 18.

The first approximation made in obtaining a
working expression for U~ was the neglect of lat-
tice relaxation, namely R,' = R&. Lattice relaxation
is expected to be small in the case of donors when
the Jahn-Teller effect is not present. It is suffi-
cient to say here that the correction to the energy
would be proportional to (R,' —R&} and hence small.
It will be discussed further elsewhere. It should
be noted& however, that even though the magnitude
of R& —R~ may be related to an effective "size" of
the donor atom, it is not true that the present cal-
culation has neglected to incorporate a "size ef-
fect. " This is obvious from Figs. 2 and 3, where
one notices that the pseudopotentials for the various
impurities have different effective radii of non-
(- e /er) behavior in the impurity cell. This is, of
course, incorporated automatically in the calcula-
tion.

The second approximation, the independent-core
assumption, was seen to imply Eqs. (3.8) and

(3.9). The accuracy of this approximation can be
estimated by assuming that so;(r —R,.) varies slight-
ly from w', (r —R;), which implies that v"~(r —R;)
varies slightly from v04(r —R~}. Instead of using
the numerical potentials we write

eo'(r) = —e'Z(r)/~

and a.pproximate

would result in an additional potential 4U be present
in the perturbation. Treating 60 as a sma1. 1 quanti-
ty, it is easily shown that

b, U(r ) = 106' ~ ' ~R (3.23)

(4U)= 175 meV (3.26)

for a state of orbit radius a = 10 a. u. which is a
fairly deep level (close to the Mg' level). For
shallower levels it is even less. Now, the value of
& cannot reasonably be expected to be more than
0. 1 (namely a 10k change in the nearest-neighbor-
core charge density), whereby the correction is
about 1-2 meV even for deep levels, and less for
shallow levels.

Next in the series of approximations is in the
construction of v"(r) and vo (r) for which free-
atom core orbitals were used, as described in
Appendix B. The calculations were repeated by
using free-ion core orbitals and the change in the
resultant energy level was negligible. For the
pseudo-EMT, the effect of the uncertainty in ~,
and u, , in the reorthogonalization potential U~ was
found to be more pronounced. For the shallow
levels and the average-depth magnesium levels the
uncertainty is not more than 1%, while for the deep
selenium levels it is about 5'Po. For this same rea-
son, the nitrogen levels may actually be even deep-
er than reported here. In order to study further
these uncertainties in the choice of core wave func-
tions and core charge densities for the potentials
v" and v~, we calculated distorted core wave func-
tions by the prescription

&'(r) = & (r+~goonr)

renormalized them, and used them to calculate the
ground-state energy level. Results for magnesium
are displayed in Fig. 5 and show that a 1% uncer-
tainty in the core wave function translates to about
2. 5% uncertainty in the energy level. Positive p
implies pulling the electron distribution toward the
origin where the impurity is located, i.e. , the
wave function is "squeezed. " As expected, "squeez-
ing" the wave functions makes the level deeper.
A 100% "squeeze'* would reduce the center to a
two-point-charge center. Similar results were

where the contribution of only the atomic site R, is
included. The contribution to the energy level is
given by

(4U) = f d'r
~

F(r)
~

'LU(r) (3.24)

and, since b, U(r) is localized about RJ and F(r) is
nearly constant in that region, we get

(AU) = E(R, ) ~2 f d'rnU(r) . (3. 25)

This can be evaluated in a straightforward manner.
Including only nearest neighbors as being perturbed,
this gives an estimate of
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obtained for the other cases.
Next, a number of approximations are involved

in using linear dielectric screening to calculate
U~, from the bare U». First of all, the applica-
bility of linear screening is justified from the fact
that U» (or U~ in paper I, ' when applicable) does
not have strong high Fourier components, since it
does not bind any core electrons. This was also
illustrated earlier through the ratio R~ and Fig. 3.
Two approximations in the use of linear screening
for U~, are discussed in Appendix A. Finally, un-
certainties exist in the function c(q). The function
used here is the one given by Eq. (4. 22) of paper
I. ' The effect of uncertainties in &(q} on the energy
levels was investigated by first varying e(0) in Eq.

12

10

FIG. 7. Forms of &(q) as functions of the parameter
A Eq. (4. 22) of paper I (Ref. j.). Energy levels obtained
with these and intermediate forms are displayed in Fig.
9.

(4. 22) of paper I and then by varying the parameter
A. The resultant functions are plotted in Figs. 6
and 7, respectively, and the energy levels for cer-
tain impurities as functions of e(0) and A are dis-
played in Figs. 8 and 9. In both cases, the levels
become deeper with reduced screening, as expected.

Summarizing, we can safely say that the accura-
cy of the present calculations for donors in silicon
is about 5% for shallow levels and about 10% for
deep levels. A look at Tables I-III shows that the
agreement with experiment is excellent in all cases
with the exception of antimony and tellurium. For
antimony, for which experiment is very accurate,
the discrepancy is about 25%. A check of all the
approximations involved revealed that the discrep-
ancy should be caused by the large size of the cores
of these impurities. One possibility is to assume
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FIG. 6. Forms of &(q) as functions of &(0). Energy
levels obtained with these and intermediate forms are
displayed in Fig. 8.
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FIG. 8. Donor energy levels as functions of &(0).
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that the smeared-out d-like core states of these
impurities extend out appreciably and push away the
nearest neighbors. Another possibility is that the
core wave functions of the impurity are squeezed
by the surrounding crystal. Comparing with our
findings for magnesium (Fig. 5), we expect about
10% squeeze to account for the discrepancy in the
energy level. Various amounts of "squeezing"
were indeed applied to the antimony core wave
functions and the result on the energy level is
shown in Fig. 10. It is seen that a. 9.15/o squeeze
would give the correct energy level. The reliabili-
ty of this correction is enhanced when we apply the
same "squeezing" on the tellurium core wave func-
tions, recalling that Te and Sb have almost identical
cores. The results are shown in Table VII, which
show an excellent improvement in the agreement
with experiment. This also brings the S-Se-Te
levels more in line with the pattern of P-As-Sb
levels.

E. Excited states

A word should be said about the excited states.
As seen in paper I, ' nothing further is to be said

-12.0
0.0 I.O

r (a.u. )

SI li COn

FIG. 11. Bare pseudopotentials for the A&, the T2,
and the E states of interstitial magnesium in silicon. Due
to the absence of E-like (d-like) core states, the pseudo-
potential for the E state is equa. l to the true impurity
potential.

about the P-like, d-like, etc. , states which are de-
termined entirely by the Coulomb tail of the poten-
tial and a one-valley calculation. For the "other
members of the split ground state" —namely the
T2 and E levels of s-like envelopes —the pseudo
impurity theory faces the same difficulty described
in paper I, namely the inadequacy of the spherical-
effective-mass approximation. The calculation is
very instructive, however, since the reorthogo-
nalization potentials are different from those of the
A, -level potentials. The sums over c and c' are
over the P and d core orbitals for the T2 state and
over the d core orbitals for the E state. This gen-
erally results in little or no cancellation at all, as
is illustrated in Fig. 11, and raises additional
questions about the applicability of linear screening
and even the EMA itself t The detailed expressions
for the energy are given in Appendix B and numeri-
cal results for the various donors given in Table
VIII. The agreement with experiment is still good,

35.0 35.0 TABLE VII. Corrected tellurium donor levels in sili-
con.

I

30.0 I ~ I I I 30.0
2.0 4.0 6.0 8.0 10.0

4 "squeeze"

FIG. 10. Effect of "squeezing'* the antimony core wave
functions on the ground-state energy. The experimental
value is obtained with a 9.15% "squeeze. "
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a (a.u. )

7 33
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Heference 30.
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456. 9
136.8
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TABLE VIII. Energy levels of & and T& symmetry of
donors in silicon. Reference point is the bottom of the
conduction band.

Impurity Symmetry
Theory

a (a. u. ) E (mev)
Experiment

F. (meV)

nitrogen

phosphorus

arsenic

antimony

sulfur

selenium

tellurium

lithium

sodium

magnesium

E
T2

E
Tw

T2

E
T2

T2

38. 2

35. 6

39.0
37.8

40. 6
40. 6

42. 8

44. 0

19.
17.

20. 8
19.8

22. 5
23. 2

40. 2

39.2

41.
42.

21.6
21.0

—31.0
—32. 6

—30. 5
—31.3
—29. 6
—29. 8

—28. 5
—27. 8

—118.2
—130.4
—113.2
—118.6
—107.3
—106.0

—30.0
—30. 5

—29. 1
—29. 0

-110.8
—113~ 6

—32.6
—33.9
—31.2
—32.6

—30. 5
—32.9

—188.3"

2 8c
—32.8

Reference 28. Corrected using theoretical value for
3p~ from Ref. 21.

See Ref. 23. The identification of this level is some-
what uncertain due to the weakness of the transition.

Reference 31.

F, Comparison with previous theoretical work

In this section we discuss briefly previous theo-
retical work on the donors in silicon in order to
bring our results into perspective and for further
comparison.

Since the development of the original effective-
mass theory by Kohn and Luttinger and others,
many attempts have been made to improve the cal-
culation. These can be divided into two classes:
those which included intervalley mixing and those

the average discrepancy being about 1(P/z. One in-
teresting result is that nigrogen falls in line with

the other donors, and magnesium has T2 and E
levels close to the one-valley estimate of 125 meV

using —2e'/&r Ho and. Ramdas" searched for
these levels but were unable to observe them. Fi-
nally, it is noted that the experimentally observed
inversion of the relative positions of the A, and

E+ 72 of interstitial lithium" did not materialize
from the calculations presented here. This is a
very subtle effect and inversion can be obtained by
slightly changing the perturbation pseudopotential. '8

This and other aspects of interstitial impurities
will be the subject of a future paper.

which did not. Since with the work of Refs. 14,
44, and the present results, it has been established
that intervalley mixing is very important and can-
not be omitted, no direct comparison can be made
with any papers that used a one-valley approxima-
tion. ' "" Any agreement with experiment ob-
tained in these papers may be considered fortuitous.

The papers that included intervalley mixing are
very few. Baldereschi ' was the first to do it using
a point-charge model for the impurity potential.
The intervalley contribution was computed from
perturbation theory using wave functions from a
one -valley calculation. A direct not-perturbation-
theory calculation of the point-charge model was
done in paper I, ' showing an improvement over the
results of Ref. 45. The chemical nature of donors
was not considered in Ref. 45, and deep levels were
not treated at all.

Ning and Sah'4 carried out a study of donors in

silicon including intervalley mixing. For the
group-V shallow donors, they fitted a two-param-
eter phenomenological potential to the two lowest
1S states, A.„and T, states. For the group-VI
deep donors, they used the same fitting procedure
for sulfur and the obtained potential was very near-
ly the same as the one obtained for phosphorus, ex-
cept for a factor of 2. This Led them to double the
arsenic potential to predict levels for selenium
and, similarly, to double the antimony potential to
predict levels for tellurium. These predictions
are compared with the present work in Table IV.
The results of Ref. 14 obtained by the "doubling"
technique are not as reliable as the present re-
sults obtained from first-principles potentials.
The fact that "doubling" works for sulfur is easily
understood, since

(3.27)

on account of the position of Si, P, and S in the
Periodic Table, i. e. , S and P are isocoric to Si.
Here Zx is the atomic number (nuclear charge) of
element X. No such equalities hold even approxi-
mately for the nonisocoric Se and Te impurities in
Si, for which the "doubled" potential is probably
deeper than it should be.

A cellular approach is taken by Morita and

Nars. ' They used EMT only outside a central
cell of radius ~0 and solved the full Hamiltonian
within the well. Application of the theory was made
to the shallow P, As, Sb, and interstitial lithium. As
pointed out at the end of Sec. II F 1, the theory ex-
pression used to reorthogonalize 5g. to the impurity
core states does not accomplish the desired effect.
Their numerical results may thus not be reliable. '

Recently, Schechter~ published a pseudopoten-
tia1. calculation of the shallou P, As, and Sb donors
including intervalley mixing. There are three
main differences between the present work and that
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TABLE IX. Comparison of present predictions xvith

those of Schechter (Ref. 14a), before strain fields are
included.

Impurity
Ionization energy I, meV)

Schechter Present Expt.

phosphorus
arsenic
antimony

53.0
34. 0
29. 0

44. 3
53.1
31.7

45. 5
53 7
42. 7

Deference 28.

IV. CONCLUSIONS

We have presented an alternative approach to the
problem of energy states localized at point imper-
fections in semiconductors. The new pseudo im-

of Schechter. First, Schechter uses a local ap-
proximation to the pseudopotential. As pointed out
earlier, our calculations showed that a local ap-
proximation could introduce an error in the range
of 20%. In the present work, a local approximation
is not used. Second, Schechter employed dielec-
tric screening for the true impurity potential.
Since this potential is very strong in the cases of
nonisocoric impurities —when it is capable of bind-
ing a number of core states —dielectric screening
may not be valid. ' This was first pointed out by
Cohen and Phillips, 3 who showed that only the total
pseudopotential, which is weak, can be calculated
using dielectric screening. This is the procedure
used in the present work. Finally, Schechter uses
the same pseudopotential for the states of Ag T2,
and E symmetry. Pseudopotentials are, however,
known to be symmetry dependent: The core states
used in constructing the "repulsive" terms must be
the ones of the same symmetry as the state being
calculated. This was done here (see, for example,
Fig. 11 and Appendix B). In Table IX we compare
our results for the ground state of P, As, and Sb
with those of Schechter before corrections due to
strain fields are added. (For the comparison in
Table IX, it should also be noted that Schechter
uses e(0}= ll. 7—we used e(0}= ll. 4 and checked
the effect of this uncertainty in Figs. 6 and 8—and
that the value of I" used by Schechter (not given in
Ref. 42) may not coincide with the one used here. )

Finally, in conclusion, we remark that except
for the parametric calculations for Se and Te of
Ref. 14 discussed earlier, there exists no other
previous theoretical calculation of the deep levels
which we treat here. No other theory exists, for
example, for magnesium, for which we obtained
excellent agreement with experiment. For our
predictions for the deep nitrogen level there is
neither experimental nor previous theoretical re-
sults for comparison.

purity theory combines pseudopotential theory with
effective-mass ideas. Its main feature is that the
impurity-electron wave function is expressed in
terms of many bands in such a way that the appro-
priate nodal structure, required by the Pauli exclu-
sion principle, is built-in automatically. Further-
more, the kinetic energy of the electron is given by
a complicated operator which asymptotically re-
duces to the effective-mass expression —(ho/2m*}V
outside the impurity cell. The theory has been
found applicable to a variety of shallow and deep,
substitutional and interstitial donors in silicon and
excellent agreement with available experimental
data has been obtained. The theory reduces to the
KL-EMT of paper I in the special case of isocoric
impurities, namely impurities whose cores are
isoelectronic with the host cores.

(k '
+ q I Uo, I k ' )

(k+ql Uoo I k) (Al)

which shows that &f(q}= 0 if (k+ql U» Ik) does not
depend on k. The magnitude of b~(q} may be esti-
mated by assuming an average deviation of
(k '

+ q I U» I k
' ) from (k + q I Uo, I k). It was thus

found' that the approximation eg(q}= e(q) introduces
a small uncertainty of a few percent in the poten-
tial matrix element.

APPENDIX B: ENERGY EXPRESSIONS

For variational calculations the matrix elements
of the effective Harniltonian are calculated between
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APPENDIX A: DIELECTRIC SCREENING FOR A
NON-LOCA L PERTURBATION

Due to the absence of strong high Fourier com-
ponents in the bare pseudopotential U», the cor-
responding screening potential Uo, may be calcu-
lated by linear-response theory. In other words,
the change in the valence pseudoelectron charge
density caused by the presence of U» may be cal-
culated to first order in U~~. A complication
arises, however, due to the nonlocal nature of Uo,
whereby (k+q I U» Ik ) depends on both k and q.
This effect was studied by Harrison and by Ani-
malu. 44 It was shown in Ref. 18 that the terms can
be arranged to obtain Eqs. (3.15}and (3. 16},where

6vre ~~ Igo „-,,;I e"'I~a- ) Io

Eo(k iq) Eo(k )
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TABLE X. Decomposition of the (2l + 1)-dimensional
representations of the spherical harmonics into the ir-
reducible representations of the Tz group.

so that

Uat";(r, r ') = u~,(r)w,*(r ')v(r ') . (B6)

Label
Dimension

(~1+ x) Decomposition

Ag

T2
E+ T2

Ag+ T(+ T2

Using this in (B4), we get for the typical term

,'*(F);(F)
e(lk, -k, l)

dx'F, '*r w, re'"'

d x' &e, r' zl r' I" r' e'"»'. (B7)

&k+a IU. Ik&= &k+~ IU.s lk&!e(&) (Bl)

For this reason, E|I. (BSb) of Ref. 1 cannot be
used directly. The integral may still be evaluated
by sandwiching complete sets of plane waves on
either side of URb. The result is

(Ua) = Q g n& n; Z Z E, '*(k)

&kl U„~1k') E„,( ))
c(lk -k'I) (B2)

where E, (k) is the Fourier transform of E, '(r).
given by

Ems(k) f ds~Ems(r)e-i(k-))!) r {83)

for m =1, 2. Noting that E, '(k) is localized about

k=k& and E, (k') is localized about k'=k, , we can
approximate e(lk —k'I) by e(lk, . -k; I). This was

essentially the approximation used by Baldereschi45
for the point-charge model. The accuracy depends
on the value of a. It was found'8 that this approxi-
mation would go bad for values of a smaller than

any obtained in the present calculations.
Expression (B2) can then be transformed back to

coordinate space, yielding

the trial functions given in paper I. Explicit ex-
pressions for the kinetic energy terms, for the
local part of the perturbation potential, and for the
electron-electron interaction for two-electron cen-
ters were given in Appendix B of Ref. 1 and are
identical for the present calculations. In this ap-
pendix we give explicit expressions for the matrix
elements of the nonlocal term in the impurity pseu-
dopotential, namely the reorthogonalization poten-
tial UR.

The first difficulty is that UR is not obtainable
directly in the form Ua(r, r '). Instead, it is known

in its Fourier-transformed form

The result, as usual, will depend on I' but not on p, .
In order to proceed further we recall (Sec. II D)

that only the u, of the same symmetry as the state
being calculated have nonvanishing contributions.
In order to check which atomic-core orbitals should
be included, we must find linear combinations of
them that transform according to irreducible repre-
sentations of T~. This amounts to decomposing the
spherical harmonics Y, of the spherical-symmetry
group to the Kubic harmonics of the point group T„.
The decomposition for values up to l = 3 is shown
in Table x.4'

This shows that for the state of A, symmetry we
must include only s-like core states (if one were
to treat bismuth in silicon, the f-like core states
should also be included. Bismuth has, however,
too large a core for our approximations to be valid
(Sec. III D). For T2 states we must include P- and
d-like core orbitals and for E states we must in-
clude d-like core orbitals.

Before the integrals and summations in Eqs. (BV)
can be performed, the correct Kubic harmonics
must be constructed which correspond to the set of
0. » chosen in Appendix B of Ref. 1. In general,
then, each w, should actually bear three indexes
u', «and can be written as

n'. )r(r) =Its)(rW)'"(tl, 0)', (BB)

where KI )(6, &f&) is the Kubic harmonic (abbreviated
KH) of I' symmetry and angular momentum I.

TABLE XI. Constants c"(I ) for I =-A&, T2, E. [Note:
&"(I') is not defined for the entries left blank, since m

ranges from —/ to +l. ]

d x' U» r, r' I'" r')e'"»"

Now a typical term of URb is of the form

Ua7= iso, )&N), lv,

(84)

(B5)

Il

Il 0
0

1/ ~2

—i/ v2I

0
—v'3/2'

1/~
—»/ v2

0

0
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There should actually be one more index to number
the KH that form a basis for the I' representation
of the symmetry group. When necessary, we will
use the additional index p. . There is a direct anal-
ogy in the terminology with that of free atoms. The
index c is simply the principal quantum number,
normally called n, l is the angular momentum
quantum number, and p, corresponds to the mag-
netic quantum number ~. p. replaces m because
T„symmetry has replaced spherical symmetry.
Indeed, we have

K', "'(9, 4)=P c„(r)y,.(9, 4). (B9)

The constants c'(1), which also depend on I, must
be determined, 47'48 so that the KIr' (8, @)transform

among them (in the index p, ) in the same manner
as the constants n,'(I'), in the index p. , under the
operations of T~. The radial functions R„(r) are
the same as those of the atomic-core wave func-
tions.

Before we determine the constants c'(I') for the
cases of interest, we obtain a general expression
for (U~~') by substituting Eq. (B9) in (B7) and
using the expansion

e'"'=4~++i' j,,(kr)I'*, (e„y,)I', (e„, y„)
(B10)

for the exponentials e"",where j,(kv) arethe cylin-
drical Bessel functions. Then, using the ortho-
normality of spherical harmonics, we get

(U," ).„=(4 )'gg ' ' gg „'*(r} ', (r)I', ,(9,, y, )I'*, (8, , @,.)
i=i J=l e( tk& —k~ I } m I'

x r' dr FJ (r)R„(r)j,(kox) r 2dr 'R,*,(r')F" (r')j, (kor')v(r ) .
0 0

(811)

x I'~* xP„r gr ~ox xd

x F",'(r ')P*„(r')j,(k,r')v(r')r'dr',
0

(B12)

The constants c~(I') for the cases of interest
were found4 and are given in Table XI. The inte-
grals and summations can then be done, though
laboriously, particularly for the E symmetry.
Naturally, since the energy depends only on I' and
not the index p, , any p. can be chosen for each I".
The contribution of l = 2 to the T~ state turns out to
be zero. The final results can be written in the
compact form

3

(UtyP) 4 G(&} g I g~(I') I

&(~~)

where we wrote

P„(r)= rR„(r) (B13)

and the constants G(I') are

G(A, ) = 1, G(T2}= 3, G(E) = '85 . (B14)

The constant g~ are the same as those of Appendix
B of Ref. 1. It is to be remembered that E = 0 for
A.

g
l = 1 for T2 and l = 2 for E. Then expressions

like (B12) can be directly evaluated numerically by
the computer, once the P„and v are known. This
result is, of course, for a typical term (C29) of
Us~(r, r '), so that for a particular impurity a num-
ber of them is summed up.
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