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In this paper the Kohn-Luttinger eA'ective-mass theory is reevaluated using first-principles impurity

potentials. In the past, it has generally been believed that the theory is valid for shallow levels and

inapplicable to deep levels. Here, a new result is obtained, namely that the theory is valid for both

shallow and deep levels but only for the special eppes when the impurity atom is substitutional and is

from the same row of the Periodic Table as the host atom. Such atoms have the same number of core
electrons and have been called isocoric for convenience. On the other hand, the theory is found to be
invalid in the cases of the general nonisocoric impurities, whether shallow or deep. These results are
confirmed by calculations of donors in silicon. Excellent agreement with experiment is found for the

isocoric phosphorus and sulfur impurities (both one- and two-electron sulfur levels are deep). No

adjustable parameters are employed. These results are understood in physical terms as the one-band

approximation can yield correct nodal structure for the impurity-electron wave function only in the case
of isocoric impurities.

I. INTRODUCTION

Point imperfections in semiconductors, such as
substitutional or interstitial chemical impurities,
and lattice defects, such as vacancies and inter-
stitials, introduce localized energy levels in the
otherwise forbidden energy gaps of semiconductors.
Accurate first-principles theoretical description
of these bound states has been lacking.

For shallow levels, namely, levels lying close
to the conduction- or valence-band edge, a simple
picture gives a good description. In these cases
the bound-electron (or hole) orbits are sizable and
the energy levels are largely determined by the
Coulomb tail of the perturbation potential. The re-
sult is a hydrogenic spectrum of levels given by

where m* is an effective mass for the electron or
hole and E is the static dielectric constant of the
semiconductor. '

This effective-mass-theory approach was put on
a rigorous foundation by Slater~ through a theorem
by Wannier. 3 Application to real materials in a
quantitative way was made by Kittel and Mitchell'
and by Kohn and Luttinger. ' ' The latter authors
carried out more detailed work on the subject and
the method has been referred to as the Kohn-Lut-
tinger effective-mass theory (KL-EMT).

In the original KL-EMT, the perturbation po-
tential was taken to be

U(r) = - e /cr
(hence the levels given by Eq. (1.1) in the case of
a simple band) and excellent agreement with ex-
periment was obtained for the excited states. For
these states, the bound-electron wave function has

vanishing amplitude at small r. The potential (1.2)
had limited success for the ground state, whose
wave function has large amplitude in the region of
small r, where Eq. (1.2) is a poor approximation.
Many papers have been published attempting to im-
prove the ground-state result by including addi-
tional contributions to the perturbation potential. ~'
The prevalent attitude is that the KL-EMT is a
valid method for shallow levels. Qn the contrary,
the method is generally believed to be inapplicable
for deep levels, which lie at considerable distance
from a band edge. The simple KL-EMT estimate
for, say, sulfur in silicon is off by a factor of 5.

For deep levels, the bound electrons or holes
have orbits of small radius and theoretical models
have been developed based on the "defect molecule"
concept. " Molecular-orbital and Huckel-theory
techniques have been used in this context with large-
ly qualitative results. '

~ ' The band-theory ap-
proach has also been unable to produce reliable
results. "

In this paper the applicability of the KL-EMT is
examined when the perturbation potential U(r) is
constructed from first principles for individual
impurities. In Sec. II the main aspects of the KL-
EMT are presented and a quantitative criterion for
its applicability is obtained without using an ex-
plicit expression for U(r ). In Sec. III the multi-
valley effective-mass equation (MV-EME) appro-
priate for donors in silicon is presented. In Sec.
IV, the perturbation potential U(r) is constructed
from first principles for various donor impurities
in silicon and the applicability of the KL-EMT is
checked in each case. A striking result is ob-
tained: from among the shallow donors, the KL-
EMT is found to be applicable only in the case of
phosphorus. Furthermore, contrary to traditional
understanding, the KL-EMT is shown to be appli-
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cable for the deep sulfur levels. Again, the meth-
od does not apply for other deep donors. Numeri-
cal calculations are presented which verify these
predictions. Excellent agreement with experiment
is obtained for both phosphorus and sulfur. New

calculations for the point-charge model, on which
the original KL-EMT was based, are also pre-
sented, suggesting a new definition of "chemical
shifts. '* Explanation of the above results in terms
of physical reasoning is presented in Sec. V. Sec-
tion VI contains a brief discussion of excited states
and Sec. VI summarizes the results on the power
and shortcomings of the KL-EMT. In the following
paper, ' a new method is developed, based on pseu-
dopotential theory, which remedies the shortcomings
of the KL-EMT and is applicable to a wider range
of impurities. '

II. KOHN-LUTTINGER EFFECTIVE-MASS THEORY (KL-EMT)

This section contains a presentation of the effec-
tive-mass theory as developed by Kohn and Lut-
tinger, but without using an explicit form for U(r ).
A quantitative criterion for its applicability will
be obtained.

The problem is to solve the perturbed crystal
eigenvalue problem

U(r)= Z U(q)e" (2. 5)

whereby

&e!Il U14~ &= ~U(q&&e.'Ile"'le~I & (2 7)

In order to simplify further we use the Bloch
form of tt)„-„, namely

q0 ( ) (I/Iif )1/2 0
( ) (2. 8)

where NQ is the volume of the crystal, and expand
the periodic function:

W. (r)~.'e &r &=ZCF~"«h) e '""'. (2. 9)

Here K„are the reciprocal-lattice vectors of the
perfect crystal. We get

(~i.gl s" 'l 0. ; &
= 2 C„-"„",(K„)5;„=„-;-„„.(2. 10)

E„(k)F„(k)+g p (g ) U
l if'~ „;) E„.(k ) = EE„(k)

n' 1P'

(2. 5)
(primed and unprimed quantities have been inter-
changed). Now, the matrix element of the pertur-
bation potential may be written by Fourier-analyz-
ing U( r ) in the form

Hg = [- (8' /2m, )v'+ V]g = Ef, (2. 1)

H'tco; = [- (e'/2~, )V'+ y']t)0„- = Zo(k)g; (2. 2)

where V is the total crystal potential. The method
assumes that the perfect crystal eigenvalue prob-
lem, namely

Using this result and~a

nn'

Eq. (2. 7) becomes

&@kl UI &! ~"&

(2. 11)

and U' is treated as a perturbation to the system
(2. 2).

The most rigorous way to proceed is as in Ref.
5, but the method of Ref. 7 reproduces the same
results. Briefly, the impurity-electron wave func-
tion g is expanded in terms of the complete, ortho-
normal set of Bloch functions as

q(r ) =2 2 +.(k)C.'t &r & .
n g

(2. 4)

Inserting this in Eq. (2. 1) using (2. 2) and (2. 3},
multiplying on the left by g„,„-,, and integrating, we
get

(superscript 0 for all perfect-crystal quantities,
no superscript for perturbed-crystal quantities)
has been solved. Here p' is the perfect-crystal
periodic potential, g„„- are the Bloch functions,
and Eo(k) is the energy of the nth band as a function
of the wave vector k in the first Brillouin Zone.
The potential V' is then written as

(2.3)

= U(lk —k l)+ P U(lk —k +K„l } cmf, (K„) .
h80

(2. 12)

In the KL-EMT, ~ 7 one drops the h w 0 terms in
Eq. (2. 11) so that (2. 5) becomes

E„'(k)S„(k)+ZU(lk-k l)Z„(k') =ZS„(k) . (2. 13)

Clearly, from Eq. (2. 12), this approximation is
valid if the quantity

~Zoo U(lk-k +K„l) C~~.(K„)
U(lk-k 1)

(2. 14)

is small compared with 1, i. e. , if U(r) has no
strong high Fourier components. This is equiva-
lent to requir'mg that U(r ) must be a smooth poten-
tial that varies slowly with position. 2 ~ The require-
ment that p«1 gives a quantitative criterion for
"smoothness. " A consequence of this smoothness
is that the perturbation U is so weak that it does
not couple Bloch functions from different bands,
giving the one-band result (2. 13). This criterion
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e2 AE (k)= (k„—k, ) + (k, +k, ) .2~l

One then must write

(3. 1)

The complete band structure of silicon is shown
in Fig. 1. For donors, the perturbation is nega-
tive, whereby the relevant band is the lowest con-
duction band. This band is known to have six
equivalent minima of ellipsoidal shape along the
[100] direction (Fig. 2). For example, around the
minimum along the + x direction, located at k, ,
the energy may be expanded as

-l8 -IB F(k) =Z n,.F,.(k), (3. 2)

-20
L

i

X UK

FIG. 1. Energy-band structure of crystalline silicon
(from various sources).

will be developed further in Sec. IVB and a more
direct physical interpretation will be arrived at
in Sec. V.

The usual one-band effective-mass equation
(EME) is obta. ined from Eq. (2. 13) by further ex-
panding E„(k) to powers up to k about the band ex-
tremum (or extrema) of the nth band. In the sim-
plest case of a spherical minimum at k= 0 (as in

GaAs), this is just

E„'(k) = (n'/2m*)k', (2. 15)

where yn* measures the curvature of the band
minimum and is the effective mass for the electron.
Then, multiplying Eq. (2. 13) by en', summing
over k and using

F, (r ) = g F,(k) e'&" "»'
k

(3. 3)

The result is

where F,.(k) is centered about the fth minimum.
The constants 0, are determined from group the-
ory by requiring that the total impurity-elec-
tron wave function &)&(r) belongs to an irreducible
representation of the point group of the Hamilto-
nian H. For substitutional donors, this is the
tetrahedral group T~.

The effective-mass equation for a many-valley
band was first obtained by Twose22 as reported by
Fritzsche. It is derived by substituting (3.2) in
(2. 13), multiplying by e'" &", summing over k,
and using

F(r ) = ZF(k) e&"' (2. 16)

(where we dropped the band index n for clarity
since it is a one-band model anyway), one gets the
conventional one-band EME

[- (8 /2m*) v '+ U(r )tF(r ) = EF(r ), (2. 17) =k„
from which the bound-state energy levels E may be
determined. In obtaining Eq. (2. IV), the sum over
k in the potential matrix element was extended to
cover all of k space. This is consistent with the
one-band approximation and is valid again when

II«1, in which cases F(k) vanishes rapidly outside
the first Brillouin zone. This approximation is
actually counterbalanced by dropping the k and
higher-order terms in Eo(k).~' Numerical esti-
mates for these approximations will be given in
Sec. V.

kx

FIG. 2. Constant-energy ellipsoids around the con-
duction-band minima along the six [100j directions of
silicon.
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(5)

E
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used multivalley expressions, made a. spherical-
valley approximation, and fitted an empirical im-
purity potential to the split ground state.

Finally, when U(r) binds two electrons, a helium-
like model has been developed in the multivalley
approximation. ~'*28 In the ground state, both elec-
trons occupy the state of A, symmetry of lowest
energy and interact via a screened Coulomb poten-
tial. No correlation is included. The details are
given in Appendix B.

(I )
A)

FIG. 3. Splitting of the ground-state energy level of
donors in silicon. Numbers in parentheses indicate the
degeneracy (not including spin degeneracy).

6

P &, «&& &&&'-[T,(-i~)+U(r) E]F-,(r) 0, =

(3.4)
where T&(k) is the expansion of Eo(k) around the
jth minimum as in Eq. (3.I). It should be noted
here that in the original work 7 and most subse-
quent papers, intervalley mixing, also called
valley-orbit interaction, was considered negligible,
and the energy was obtained from a one-valley
EME. The approximation implicit in such a one-
valley approach may be seen rigorously from Eq.
(3. 4) by rewriting it as

n, [T,(- iV)+. U(r ) —E]F,(r )+ g o,e""~-"~"

IV. KL-EMT WITH FIRST-PRINCIPLES POTENTIALS

In this section the applicability of the KL-EMT,
as described in Secs. I-III in its extended multi-
valley form, will be tested by using first-princi-
ples po'.entials in the cases of both shallow and
deep donors. This is meant to check KL's specu-
lation that the true impurity potential U(r) would
vary too rapidly in the central cell for the EMA to
be valid. Another check is to be made on the prev-
alent understanding that a one-band approximation
breaks down for deep levels situated around the
middle of the energy gap. An indication that this
intuitive understanding is not necessarily true
comes from symmetry considerations2 and from
a comparison of emission rates from the localized
center to the conduction and valence bands. For
example, the deep sulfur donor has been found to
have negligible hole emission to the valence band.

A. Impurity potentials

First we describe how the impurity potential U(r)
for each impurity is calculated. %'e saw already
that U is given by

&&[T~( —sV)+ U(r) —E]F (r) =0 (3 5) U=V- V (4. I)
the sum represents the intervalley mixing (iW j
terms). When it is negligible, as indeed it is for
excited states, the bound-state energy can be ob-
tained from the simple one-valley EME

[T~(- iV) + U(r ) —E]&,(r ) = 0 . (3.6)

This equation has proved very successful for the
excited states. ' The importance of the intervalley
terms for the ground state was first recognized by
Baldereschi. 34 He calculated them by perturbation
theory and by omitting the exponential factor ap-
pearing in Eq. (3.5). He was able to show that
intervalley mixing was largely responsible for the
splitting of the ground state into a singlet of A,
symmetry, a triplet of P~ symmetry, 2~ and a doub-
let of E symmetry. This splitting had been ob-
served experimentally~6 "and is not accounted for
by the original one-valley KL-EMT according to
which the ground state is sixfold degenerate (Fig.
3). Subsequent work by Ning and Sahas substan-
tiated the importance of intervalley mixing. They

Vo may be mritten as

V(r ) =Q v'*&(r —R,'.)+ V, (r), (4. 3)

where now v"&(r —R,) is the potential of the ion at
the site R, , mhose ionicity is + z&. The new sites
are denoted by R, and are, in principle, different
from R,. because of lattice relaxation. Further-
more, in the case of an interstitial impurity, the

V (r ) =P vo~(r —RJ) + V, (r ) (4 3)

where vo (r —Rq) is the potential oI the Si' -like
ion at the site R& and Va(r ) is the potential arising
from the valence electrons. ' In principle, these
potentials are nonlocal because they include ex-
change, but they are denoted as functions of r for
simplicity. The local Slater approximation for ex-
change will ulti. mately be used.

Similarly V, even though it is not periodic, may
be written as
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sum over j in (4. 3) must include the occupied in-
terstitial site as well. Finally, as before, V, (r)
is the potential of the valence electrons.

Combining Eqs. (4. 1)-(4.3), we get for U
2.0—

U= Ub+ U, ,

where

(4 4) 0.0
P

U, (r) =Q[v'*~(r —R,') —v", (r —R, )] (4 6)
N

(4. 6)

In order to be able to compute U(r ), two approxi-
mations are first made: (a) Lattice relaxation is
neglected, whereby R&—-R, ; (b) the core electrons
at all sites except the foreign-atom site remain
unperturbed (independent-core assumption). De-
noting the imperfection site by j=0, this means

v"~(r —F,) =v()4(r —R~), jx0. (4. 7)

-6.0

-8.0
C) D

I

-IO.0

r (a.u. )

2.0 3.0

Estimates for the error introduced by these ap-
proximations will be discussed in Sec. V.

Kith these approximations, and setting 80=0, we

get

FIG. 4. Bare impurity potentials [effective charge
Zb{r) =rUb{r)/e j for single donors in silicon, compared
with {the Coulomb potential of) a point charge {p.c.).

U, (r ) = v" (r ) —vo (r )

for a substitutional impurity, and

(4. 8)

p'(r ) = e'Z
I x (r )I (4. 11)

U, (r ) = v" (r ) (4. 9)

where
(4. 10)

for an interstitial impurity, where, in both cases,
we recall that z indicates the number of valence
electrons of the impurity atom. For group-V sub-
stitutional donors v =5, for interstitial magnesi-
um @=2, a,nd so on.

We thus see that for substitutional donors, U~(r )
is essentially the difference between the potential
of an impurity ion and a host ion; and for interstitial
donors, U, (r) is simply the potential of an impurity
ion. These results could indeed have been written
down from the beginning by intuition; we chose to
derive them starting with Eq. (4. 1) in order to
identify the approximations involved in a systemat-
ic way. Finally, U, (r ) arises from the redistribu-
tion of valence electrons in the crystal, caused by
the presence of U~(r ). We will return to this
shortly.

Construction of the potentials v04(r ) and v" (r )
is straightforward in terms of the orbitals X~0(r )
of the core electrons at a silicon site in the crys-
tal and the orbitals y„,(r ) of the core electrons at
the impurity site. Using the local Slater approxi-
mation for inclusion of exchange, we have

g' is the atomic numberofthe host and a=1. Sim-
ilarly

~here (4. 12)

(4. 13)

with P the atomic number of the impurity atom.
Presumably, the )fo(r) in the crystal must be inter-
mediate between the core orbitals of a free ion and
a free atom. ~ The two extreme choices are es-
sentially indistinguishable and either may be used
as a very good approximation. In general, one ex-
pects the same assumption to be good for the y„.
as well. For heavy impurity atoms, such as an-
timony and bismuth, it is likely that the ~. are
distorted from the free-atom or free-ion forms
and one must exercise caution.

Using a version of the original computer program
of Herman and Skillman, 33 we can generate the wave
functions g„and X„ for atoms or ions. The poten-
tials vo (r) and v'*(r) are then constructed using
Eqs. (4. 10)-(4.13) and averaging over the angles.
The resultant potentials U~(r) for a number of do-
nors, calculated from free-atom orbitals, are
shown in Figs. 4 and 5. The quantity plotted is
actually the effective charge Z, (r) defined by
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2.0 2,0

0.0— 0.0

-20

-4.0—

-6.0—
-s.o

I-

-80—oo o~o
I

0.00.0
)

1.0 2.0 3.0

-~0.00.0 1.0 2.0—q (a.u)

U, (r ) = e'Z, (r)/r . (4. 14)

It is seen that Z, has the correct asymptotic form

FIG. 5. Bare impurity ootentials [effective charge
Z&(r) =rU&(r) je2] for double donors in silicon, compared
with (the Coulomb potential of) two point charges (2 p. c.).

FIG. 7. Fourier transforms of the potentials of Fig.
5 [quantity plotted is pq(q) =q Uq(q)/4m].

for both kinds of donors. Actually Z~(r) attains
the constant value yg at a distance of a few atomic
units. The value of n is z —4 for substitutional
donors and z for interstitial donors. This allows
us to write

z, (r) ——(z- z')
r-0

for substitutional donors, or

r-0

for interstitial donors, and

z (r) — —n
00

2.0

0.0

(4. 15a)

(4. 15b)

(4. 16)

where the first term is simply the Coulomb poten-
tial of n point charges, and W, (r ) is localized with-
in a few a. u. It is clear from Figs. 4 and 5 that
only in the cases of phosphorus and sulfur in sili-
con, U, (r ) is very nearly equal to the bare Cou-
lomb potential of one or two point charges, respec-
tively —in other words, TV, is very small —whereas
in all other cases U, (r ) deviates considerably
from the point-charge model. Similar conclusions
are also drawn from the Fourier transforms of
these potentials, shown in Figs. 6 and 7. Again,
for convenience, we plot p~(q)/e~ where p, (q) is
defined by

—2.0 (4. 18)

CU
Q)

—4.0

-6.0

-iO.O
l.O 2.0

q (a.u. )

3.0 4.0

Finally, before we check the applicability of the
EMA for the various potentials, we see how U, (r)
is calculated. As noted already, it may be viewed
as the response of the valence electrons to the
presence of U, (r), but linear-response theory (di-
electric screening) is not necessarily valid in all
cases. Indeed, as it is shown in Appendix A it is
valid only in the cases of a point-charge model,
phosphorus and sulfur in silicon. In these cases
U, is given Fouri. er-transformed by

(4. 19)
FIG. 6. Fourier transforms of the potentials of Fig.

4 [quantity plotted is p&(q) =q U&(q)/4m]. The net result is that U(q) is obtained from
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here (t'a ra)

er and Cohen

form for it may be given. It should be noted, how-
ever, that, for a potential given in numerical form,
it is impractical to calculate the Fourier trans-
form, divide by &(q), and integrate back to r space.
Instead, the general form (4. 21) with (4. 20) is
modified to

0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2 .0

qd /2'

FIG. 8. Dielectric function &(q) of silicon used here
compared with other calculations {Brust, Ref. 36; and
Walter and Cohen, Ref. 37). d is the lattice constant
(5. 431 A.).

W(r) = W,(r) +j dr 'E(r, r ')W, (r ')r'r
, (.4. 25)

The function E(r, r ) is a generalized dielectric
function and is given in Appendix A. Equation
(4. 25) is then integrated numerically.

For the other donors, the dielectric-screening
procedure is of course inapplicable. The calcu-
lation of U, (r ) in these cases would be a forbid-
able task. As we shortly shall see, however, the
EMA is not applicable for these donors, so, at
least for the time being, we do not have to worry
about calculating U, (r ) for them.

and

U(q) = U (q)/~(q)

U(r ) = Z U(q) e"' .

(4. 20)

(4. 21)

B. Checking the applicability of the EMA

Having constructed the impurity potentials, we
are ready to check the criterion

(4. 26)

U( r ) = U„( r ) + W( r ) . (4. 23)

It should be noted that this separation is simply a
mathematical convenience and does not imply that
linear screening theory would apply to each piece
sepa. rately. U„(r) is then the screened Coulomb
potential of n point charges. With e(q) of Eq.
(4. 22), it is given by

U~ ( r ) = (- ne /Er)

X[I+Aee "+(1-A)se o' —e ], (4. 24)

where c stands for e(0). The short-range part
W(r ) is obtained in numerical form and no explicit

The function s(q) for silicon has been calculated by
several authors. Here we used the function ob-
tained by Naraw normalized to &(0) = 11.4, which
is the low-temperature static dielectric constant
for silicon. ' The numerical results were fitted '
to the analytic expression

1 Aq (1 —A)q [I/E(0)] y

e(q) q'+ n' q'+ P' q'+ r'
with A =1.175, ~ =0.7572, P=0.3123, and y=2. 044
a. u. This function is shown in Fig. 8, where it is
compared with the corresponding functions calcu-
lated by Brusts and by Walter and Cohen. 7 The
consequences of uncertainties in the form of s(q)
are discussed briefly in Sec. V and more thorough-
ly in the following paper. '

In performing the calculations, the convenient
separation (4.17) can be maintained by screening
each piece separately, so we can write

where ft is given by Eq. (2. 14). First we look at
the special case of the point-charge model for
which ff, denoted ff,„ is given by

~ IU„(lk-k +K„I) ' -
(

o~o U„(k —k I)

Thus, if we assume that ~ g„~«1, i.e. , the ap-
proximations are valid for the screened-point-
charge model, we can replace Eq. (4. 26) by

/
ff/ff „f (4. 28)

Then, using Eqs. (4. 18) and (4. 20) and the defini-
tion of U„as the screened-point-charge potential,
R can be written as

Ugc(lk-k +K„l)p, (lk-k'+K„l)
a~o U„( I k -k '

I ) p, ( I k -k '
I )

kk ( h) (4. 29)

By comparing Eq. (4. 29) with (4. 27), we see that
(4. 28) is satisfied if

0
p~(q)

(4. 30)

At the same time, we note that Eq. (4. 30) is re-
quired only for the first few nonzero values of K„.
This is because the quantities Cff, (K„), as obtained
from a band-structure calculation, are nonzero
only for a finite number of K„. Clearly, if CP„,(K„)
=0 for a particular K„, the contribution to g is zero
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Impurity Theory
a (a. u. ) cl F- (meV)

Experiment
E (meV)

TABLE I. Ionization energies for donors in silicon for
which the KL-EMT in the multivalley approximation is
applicable.

The value of m* is chosen to reproduce Faulkner' s
result in the one-valley calculation with a Coulomb
potential —e /er. This value is m*=0.298'imo.
The trial function was taken to be a sum of 1s- and
2s-like hydrogenic functions

point charge
phosphorus

two point charges (+)

two point charges (0)
sulfur (S')
sulfur (S )'

17.80
23. 25

5. 46
6. 43
6. 80
7.60

0. 924
0.985

1.0
1.0
1, 0
1.0

48. 8
42. 4

1085.3
489. 0
659. 3
297. 1

45„5

~ ~ ~

613.6
302. 0

F,(r) =c,F", (r)+c,F, (r ),
where

F 1s( r ) (v&3)-i/2 &-r/a for all

(4. 32)

(4. 33)

all other donors theory inapplicable (see text)

Reference 27, corrected with theoretical result of
Ref. 8 for 3P, state.

One electron is bound, so the center is positively
charged.

'Two electrons are bound so the center is neutral.
Reference 38.

'Reference 39. The value 302. 0 is the thermal activa-
tion energy. The ionization energy should be at least 15
meV higher.

whether (4. 30) is satisfied or not. In a final analy-
sis, what we do amounts to looking at the nonzero
K„WO terms for a given potential U, and if each of
them is smaller than or equal to the corresponding
term of the point-charge potential U,'„ then we
conclude that the EMT must be as good for U as it
is for U„.

The validity of the EMA for U itself has been
assumed in the literature, "'~'4 even though it
was originally established for a point-charge po-
tentia. l screened by the dielectric constant e.
still remains smaller than unity Ldespite the factor
a(q)/e(q+K„), about 10]because of the smallness
and signs of the constants C„-„,(K„). This will be-
come clearer in the following paper. ' Here our
intention is to compare realistic potentials with

U„. More general questions of accuracy will be
discussed in Sec. V.

With the validity criterion in the form (4. 30)
we can use Figs. 6 and 7, and, in a straightfor-
ward manner, predict that when realistic impurity
potentials are used, the EMA would be valid only
in the cases of phosphorus and sulfur in silicon.
Next, we shall see how the numerical calculations
substantiate these predictions. A more compre-
hensive analysis of the results is given in the dis-
cussion in Sec. V.

F, (r ) = (32va )
'/ (2 - r/a) e "/, for all i;

(4. 34)
c„c2, and a are variational parameters. With
such a trial function, a 2&&2 secular matrix is ob-
tained, which must be diagonalized. The secular
matrix and the explicit form of the matrix elements
in terms of the variation parameter a are given in

Appendix B.
For the two-electron centers the simpler trial

function

F Fls(r ) (4. 35)

is used for both electrons. The total energy is
then minimized. The first ionization energy is then
obtained by subtracting the energy of the one-elec-
tron system. For consistency, then, the latter
was also calculated using Eq. (4. 35).

Calculations were performed for phosphorus
and sulfur in silicon using the impurity potentials
constructed earlier in this section. For compar-
ison, calculations were also carried out using the
screened Coulomb potentials U„(r) of one and two

point charges, which were seen to approximate the
two impurity potentials, respectively. The results
are presented and compared with experiment in

Table I and will be discussed in Sec. V.
For the other donors, it has been seen that the

EMA would not be applicable. In addition, linear
screening would not be justified in calculating U, (r).
Nevertheless, the latter gives the correct asymp-
totic form for U(r) for both r-0 and r greater than
a few a. u. and was used by Morita and Nara. As
an additional check, therefore, linear screening
was used for other donors and calculations of ener-
gy levels were attempted. No bound state in the
region of interest was found, confirming the failure
of the KL-EMT in these cases.

T, (k ) = ff'x'/2m* (4. 31)

C. Calculations of energy levels

For the calculations for one-electron centers,
Eq. (3. 4) is used. The ca.lculation is done varia-
tionally. As in Ref. 28, we are forced to use the
spherical-band approximation for T&(k),

V. ANALYSIS OF RESULTS AND DISCUSSION

Agreement between theory and experiment is
seen from Table I to be very good. We will di.s-
cuss the accuracy of the calculations at the end of

this section. First we discuss the physics behind

the results just presented and then make a connec-
tion with the conventional point of view.



10 THEORY OF LOCALIZED STATES IN SEMICONDUCTORS. I ~

0.0 0.2

2.0

0.0

2.0

0.4
I

0.6
I

0.8 1.0
I

Si li con

Phosphorus

1.2 unsatisfied and the EMT inapplicable.
From this discussion, one can conclude that, as

it has always been known, the EMT is good when
the impurity potential is weak. Unlike the tradi-
tional understanding, however, which associated
weak with shallow levels and strong with deep lev-
els, the present work establishes that ueak means
that U(r) does not bind any core etectrons.

The above conclusion can be corroborated by
another simple observation: In the KL-EMT, the
total impurity wave function is given by

- 0.0I

(5. 1)

2.0
Sul fur

0.0

I

0.0 0.2
I I

0.4 0.6—r (a.u. )

O.S 1.0
I

1.2

FIG. 9. Core wave functions of silicon, phosphorus,
and sulfur.

A. New results

The result that effective-mass theory has been
shown to work extremely well for deep levels (sul-
fur) while failing badly for some shallow levels
(As, Sb, etc. ) contradicts directly the traditional
conception of the capabilities of this theory. In
mathematical terms this came about because of
the presence or absence of strong high Fourier
components in the potential U and the satisfaction
of criterion (4.30). A look at the Periodic Table,
however, reveals very directly in physical terms
when this should be the case: phosphorus and sul-
fur, for which the EMT proved to be successful,
are in the same row as the host, silicon; hence,
all three have the same core electronic structure,
in this case ls 2s 2p (Fig. 9). For convenience
in subsequent discussions we call such impurities
isoconc. For such impurities the perturbation
potential U(r) is not responsible for the binding of
additional core electrons in the impurity cell;
hence, it has no strong short-range core part (Figs.
4 and 5) or, equivalently, no strong high Fourier
components, whereby criterion (4. 30) is satisfied
and the EMA is applicable. The opposite happens
in the cases of nonisocoric impurities, e.g. , As
in Si, which has 1& electrons more than the host
core (Fig. 10). This implies a strong short-range
core part in U (Fig. 4) and strong high Fourier
components (Fig. 6), which render criterion (4. 30)

Each term in Eq. (5. 1) is a Bloch function of the
bottom of the conduction band multiplied by a smooth
envelope. The Bloch function gf~ (r ) is known tok]
have a predominantly 3s-3p-3d-like nodal structure
at each atomic site in order to be orthogonal to the
1s, 2s, and 2p core states. It is obvious then that
for an isocoric impurity the approximate form (5. 1)
for tt) has the correct nodal structure in both the
impurity cell and the rest of the crystal. On the
other hand, in the case of the nonisocoric arsenic
impurity, t)t(r) should have predominantly 4s-4p-4d-
like nodal structure in the impurity cell, whereby
(5. 1) and hence the one-band EMT are inapplicable
in that region.

One might still legitimately wonder, however,
how good a one-band approximation can be, par-
ticularly for deep levels, like those of sulfur.
The first point to note is that most of the other
bands cannot be expected to contribute significant-
ly, because in that case, they would introduce un-
desirable nodal structure in g. The valence band
is an exception, however, since its Bloch functions
also have a 3g-3p-like nodal structure and thus
would not damage the structure of g. One might
then argue that the two bands ought to be included

3.0

2.0

0.0

- I.01-

I.0
(a.u. )

FIG. 10. Core wave functions of arsenic.
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c

tributions from other bands in an average way.
These have been seen to be negligibly small for P
and $. In the following paper, where a. many-band
method is developed which is applicable to the other
donor. , we will see how those results can be inter-
preted in terms of such a position-dependent effec-
tive mass for the impurity electron. Otherwise,
any ad hoc replacement of m* with some function
m*(r) is not rigorously justified.

0
)I

LLI

B. Connection with the conventional point of view

The conventional point of view as regards the
EMA, is to solve the effective-mass equation (EME)
using the point-charge potential Eq. (1.2), obtain
the effective Rydberg Eo, and then look at the dis-
crepancies between this value and the experimental
ionization energies E, as "chemical shifts" caused
by "central cell corrections" to the potential Eq.
(1.2). The chemical shift is then defined as

o X (5. 2)

FIG. 11. Illustrating the localized sulfur level (marked
F) in k space. Due to the indirect gap, the localized lev-
el is not very close to the valence band {only one of the
six equivalent minima is shown).

on an equal footing, especially for the sulfur levels
which lie midway in the energy gap. This is not

so, however —as is illustrated in Fig. 11—because
of the indirect nature of the gap. For one thing,
the top of the valence band (k =0) cannot contribute
for symmetry reasons, 2 whereas in the region of
ko the valence band lies considerably away from
the impurity level. In this region, symmetry or
any other considerations do not prohibit valence-
band contributions, but a perturbation-theory cal-
culation can show that, through the energy denom-
inator, the contribution is negligibly small. '~'
This is also suggested by experiment, as men-
tioned in the preamble of Sec. IV.

Finally, anothe r question might be raised, based
on intuition. It has been argued at times that,
especially for deep levels, the effective-mass m*
should be replaced by the mass mo of the free elec-
tron in the impurity cell region. Ansatze expres-
sions have been used in this context. Examin-
ing this question from a rigorous point of view,
however, we see that the only allowed correcti. on
to m* is the inclusion of k terms in. the expansion
of d'(k). This would result in a k-dependent effec-
tive mass. Such a correction can be estimated
directly (see Sec. VC a.nd Ref. 21) and shown to
be small and counterbalanced by a respective cor-
rection in the perturbation-potential-energy ma-
trix element. From another point of view, a posi-
tion-dependent ng* can be thought to include con-

and measures the deviation of the impurity poten-
tial from that of a point charge embedded in a di-
electric medium. In the case of donors in silicon,
using Eq. (1.2), one finds that a one-valley EME~
gives ED=31 3 meV 8 Other authorss-&4 attempted
to improve this number for the point charge within
the one-valley model. Baldereschi' first calcu-
lated the intervalley mixing by perturbation theory
by replacing e by e(bk) where hk is the intervaliey
separation in k space. He obtained some splitting
and 40.5 meV for the ground (A, ) state. The pres-
ent calculation is the first in which the bare Cou-
lomb potential is screened with e(q) and the cor-
rect (though spherical) multivalley EME is used
for the energy levels. Table II shows the status of
the point-charge model through the years.

The present value of 48.8 meV for the point-
charge ground state or its improved value using
the correct ellipsoidal MV-EME is the appropriate
value to use as the reference point for defining
chemical shifts. In this framework. the chemical
shift for phosphorus is very small and negative
(-3.3 meV). It should indeed be small, since the
point charge should model accurately substitutional
phosphorus. Furthermore, an inspection of F ig.
4 shows that U(r ) for phosphorus is slightly weaker
tha. n U„(r ), which accounts for the negative chemi-
cal shift of —3.3 meV (it makes the phosphorus lev-
el skalfourer than that of the point charge). A

similar pattern is seen to exist in the case of sul-
fur and the two-point-charge model (Table I and

Fig. 5). As for the chemical shifts of the other
donors (arsenic, interstitial lithium, etc. ), they
cannot be explained using the present KL-EMT.
Indeed, in view of the large deviations of U(r) for
these donors from U„(r) in the central cell shown
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TABLE II. Donor ground state in silicon using a point-charge model for f;he per-

turbatiou, as calculated by various authors.

Authors

KM
KZP
BST
Muller
Faulkner'
Baldereschi
Present work~
Experiment"
for phosphorus

Year

1954
1.955
1964
1965
1969
1970
1972

One-valley or
multivalley

one-valley
one-valley
one-valley
one-valley
one-valley
multivalley
multivalley

Screening

~(0) =12
~(0) =12
e (r)
~ (r)
~(0) =11.4
~(0), ~Qk)
&(q)

Obtain
splitting

No

No

No
No
No
Yes
Yes
Yes

&(Ai) (mev)

29. 8

29. 0
50. 0

40. 0

31, 3
40. 5

48. 8

45. 5

~Kittel and Mitchell, Ref. 4.
Kohn and Luttinger, Ref. 6.

'Breitenecker, Sexi, and Thirring, Ref. 12; &(x) is cut off at arbitrary radius r„
=4. 44 a. u. , result highly sensitive to this cut-off radius, see footnote d.

Reference 11; same & (r) as e with r„=3. 55 a. u.
'Reference 8.
Reference 24. Intervalley terms are calculated by perturbation theory.

~Proper screening with & (q). Direct calculation.
"Reference 27.

in Fig. 4, the KL-EMT is not even capable of in-
dicating qualitatively why their ionization energies
are close to that of the point charge and phosphorus.
This fact will be explained using a new method in
the following paper. "

Finally, even though in the present work ground-
state energies were calculated directly by minimiz-
ing the total energy, it is instructive to examine
the various contributions to the total energy by
writing, symbolically,

where the subscripts denote intravalley terms [i
=j in the sums of Eq. (3.4)] and intervalley terms
(i Wj ) The in.tervalley terms were omitted in pre-
vious one-valley calculations. For further illustra-
tion, we split Fin U„and Was in Eq. (4. 23) and

we list in Table III the various contributions from
variation calculations. It is clear that the inter-
valley terms are very important and cannot be ne-
glected nor calculated accurately by perturbation
theory as previously done.

Equation (5. 3) serves to illustrate a.nother point.
Instead of Eq. (4. 23), if we write

In the original one-valley KL-EMT, ' ' one ignores
the square-bracketed term in Eq. (5. 6). The first
two terms give a variational value of E=Ep= 31 3

meV, measured from the bottom of the conduction
band. The point to be made is that the quantity 6
defined by (5. 2), and improperly called chemical
shift, is zot generally equal to the contribution of
the terms in the square brackets in (5. 6), even if

is known exactly 6; nor is 0 equal to ( W )„„„
as assumed to be the case in Ref. 47 and, pre-
sumably, in Ref. 48 as well. The reason for this
is that when the complete expression (5. 6) or,
equivalently, (5. 3) is minimized, the minimum E
is obtained at values of the variation parameters
different from those obtained by omitting the term
in square brackets in Eq. (5. 6). Consequently the
value of the first two terms in Eq. (5. 7) is no lon-
ge& —31.3 meV, andhence the value of the term in

square brackets does not correspond to h. For
example, for the phosphorus level calculated here,
the value of the first two terms is only —23.7 meV.
In the following paper, ' we will see that this num-
ber may even be positive.

V(r) =-e'/~r+ W'(r), (5. 4)
C. Accuracy of the calculations

W'(r) = W(r )+[V„(r) —e'/er],
we get

(s. s)

E =
& T &„„.+ &- e'/sr &„,

+ [(r&„„,+(- e'/e~&„„, +(w')„„,+(w')„„,].
(5. 6)

where W (r) is the so-called "central-cell correc-
tion" and can be written as

The numbers appearing in Table I seem to agree
very well with experiment. It is desirable to ob-
tain an estimate of their uncertainty. This task
can be divided in two parts —namely, investigating
the accuracy of the multivalley EME and then the
accuracy of our calculation of U(r ). For the first
part, there are two major approximations: (a) the
contribution from the high Fourier components of
U is considered small, so that criterion (2. 13) is
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satisfied —the one-band approximation and extend-
ing the sum over all k-space are consequences of
this —and (b) the k' and higher-order terms in the
expansion of Eo(k) may be dropped. Both of these
contributions, which are not included in the fi.nal
equations, have been estimated ' and are discussed
below. Each is found to be of order (X/a)' smaller
than the included contributions where A. -1.4 a. u.
and a is the va. riation parameter (orbit radius) of
the state being calculated. For a shallow level
(a-20 a.u. ) this correction is less than I /~ and
for a deeper level (a-5 to 10 a..u. ) it can be as
high as 8/(;. Fortunately, however, the two omis-
sions are of opposite sign, making the EMA quite
accurate even for deep levels. Minor uncertain-
ties are introduced through the value of ng* and ko
(the distance of each minimum in k space from k=0,
taken here to be 0.82 of the distance of each X point
from k=0)"; these have also been studied. " The
results for variations of m* are displayed in Fig.
12 and show that a I /p uncertainty in ml' translates
into 2 j~ uncertainty in the energy level for phos-
phorus (shallow level) and 3/~ for sulfur (deep lev-
el). In Fig. 13 the energy for the point-charge
model is plotted over a wider range of m* to show
that the dependence is quite complicated. The
variation with ko is plotted in Fig. 14 showing that
a 1/, uncertainty in its value translates into I /~

uncertainty in the value of E. Finally, the varia-
tional method employed in the calculations only
gives an upper limit to the true eigenvalue. More
flexible trial functions were used, but no appre-
ciable lowering of the energy was obtained.

The uncertainties in the calculated impurity
potentials arise from (a) neglect of lattice relaxa-
tion, (b) rigid undistorted neighboring ionic cores,
(c) the use of free-atom core orbitals for the core-
charge density in Eqs. (4. 10)-(4.13), (d) the use
of the Slater approximation for the exchange terms
in the same equations, (e) the use of dielectric
screening for U, (r), and (f) the choice of e(q) from
the literature. Estimates of the corresponding un-
certainties have been made2' and were found to be
not very large. Some of the detailed results are
presented in the following paper. " The net re-
sult is that over all, including all approximations
for the EMA and the potential, the final numerical
values are accurate to better than 51 for the
shallow levels and to about 10/p for the deep
levels.

VI. EXCITED STATES

In the previous sections, we calculated and dis-
cussed the A, singlet ground states of donors in
silicon using the KL-EMT with first-principles
potentials. The excited-state wave functions
either have zero or very small amplitudes at the
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FIG. 12. Effect of uncertainty in m* for KL-EMT en-
ergy levels.

FIG. 14. Effect of uncertainty in k() for KL-EMT en-
ergy levels.
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FIG. 13. Variation of the ground-state energy level
of a point-charge potential with m~: (a) illustrating the

deviation from straight line, and (b) illustrating the de-
viation from a parabola.

origin and the energies are largely determined by
the Coulomb tail of U(r). There are two cate-
gories of excited states, however. Directly above
the ls(A, ) ground state lie the ls(T2) triplet and
the lz(E) doublet which, in the one-valley approxi-
mation4 8

a,re degenerate with the ls(A, ) singlet.
Above these 1s excited states are those corre-
sponding to the hydrogenic spectrum (2s, 2p,
etc. ). The latter are very accurately accounted
for by a one-valLey calculation using the potential
—e /er, as is shown in Ref. 8. The ls(T2) and

ls(E) states, however, have a basically ls en-
velope and in the one-valley approximation, they
both lie at the ls(A, ) value of 31.3 meV. In the
multivalley calculation, each is shifted slightly

upward (Fig. 3) from this value because, for
them, the intervalley terms almost cancel out,
owing to the values of the constants ~, The cal-
culations are straightforward, as that of the Ay

level and the results are listed in Table IV. The
simple trial function (4. 35) was used, since the
inclusion of a 2s contribution as in Eq. (4. 32)
was found to lower the energies by a negligible
amount. The uncertainty is about the same as
that of the A, levels, except that one thing is
ahorse. The use of a spherical-band approxima-
tion is justified for the fully symmetric A, state
where all six valleys come in with a coefficient
z, = 1/v 6. For the Tz state, however, only two

of the valleys come in with n, =+ 1/v 2, in which
case the a.nisotropy of each valley should be im-
portant in calculating the intervalley mixing. This
may account for the small discrepancy between the-
ory and experiment.

VII. SUMMARY AND CONCLUSIONS

In this paper the Kohn-Luttinger effective-mass
theory was reevaluated using impurity potentials
constructed from f ir st-princ iple s c rystal and
atomic properties. In the past, it has generally
been believed that the theory is valid for shallow
levels and inapplicable to deep levels. In this
paper a new conclusion was obtained which shows
that the theory is indeed valid for both shallow and

deep levels but only for the special cases when the
impurity atom is substitutional and is from the
same row of the Periodic Table as the host atom.
Such atoms have the same number of core electrons
and have been called isocoric for convenience. On

the other hand, the theory was found to be invalid
in the cases of the general nonisocoric impurities
whether the levels are shallow or deep. These re-
sults have been confirmed by calculations of donors
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TABLE IV. Energies of the other members of the
split ground state. States of T& and E symmetry and s-
like envelope. Reference point is the bottom of the con-
duction band.

Impurity
Theory Experiment

Symmetry a (a. u. ) E (meV) E (meV)

point charge

phosphorus

bvo point charges

sulfur

E
T2
E
T2

T2
E
T2

39.2

38.2

39.0
37.8
20, 0
18.0
19.6
17.4

—30. 4
—31.1
—30. 5
—31.3

—116.8
—127. 0
—118.2
—129.2

-32.6'
-33.9'

—188.3 b

aReference 27, corrected with theoretical result of
Ref. 8 for 3p~ state.

~See Ref. 49. The identification of this level is some-
what uncertain due to the weakness of the transition.

in silicon. Excellent agreement with experiment
was found for the isocoric phosphorus and sulfur
energy levels (both the one- and two-electron sul-
fur energy levels are deep). The theory employs
no adjustable parameters. The experimentally ob-
served splitting of the ground state into a singlet,
a doublet, and a triplet has been reproduced the-
oretically. The results mere compared mith those
for a point-charge model and the concept of chemi-
cal shifts mas redefined.

For the general nonisocoric substitutional and
interstitial impurities it has been shown that a
many-band expansion of the impurity-electron
wave function is necessary. This mill be accom-
plished by employing the pseudopotential transfor-
mation in the following paper. '
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APPENDIX A: USE OF DIELECTRIC SCREENING

where Vo(r) results from the charge density p(r)
of the electrons in the va, lence band of the perfect
crystal, given by

In this appendix, we examine the conditions under
which U, (r ) may be calculated as linear response
of the valence electrons to the introduction of P~(r).
We have seen that

p'(r ) =Zq, (r )ii', (r ), (AZ)

(A3)

In linear-response theory, g„g is written as

p„f=gf+p p a„(k+q)g ~; (A4)
n

and the coefficients a„(k+q) are determined to first
order in U(r):

(Q,Wi Ui gr, )
(A 5)

Z„(k) —E„(k+q)

From Eqs. (Al)-(A5) one can then get Eq. (4. 19)
and an explicit expression for e(q) in a straight-
forward may. 0 Clearly then this approach would

apply when first-order perturbation theory is ade-
quate for the a„(k+q). This is so in the cases of
phosphorus and sulfur in silicon which have almost
identical cores with the host atom (Fig. 9) so that
the noda, l structure of g„g is the same as that of /„'„-

over all the atomic sites, including the impurity
site. It is not so, however, for other donors, such
as arsenic, because g„„-has more nodes in the im-
purity cell than P„„-, in order to satisfy the Pauli
principle. First-order perturbation theory is not
capable of introducing additional nodes.

The use of a dielectric function e(q) which does
not include umklapp terms, a, nd hence ignores lo-
cal-field corrections, is supported by the fact that
umklapp terms would be important if U(q) had
strong high Fourier components U(q+K„). We saw
that this is not true for the potentials calculated
for phosphorus and sulfur in silicon. That this
might be the case can also be demonstrated from
the folloming physical argument: Silicon is a co-
valent solid because the crystal periodic potential
V (r) is strong in the tetrahedral directions. This
means that the bonds are caused by strong high
Fourier components, particularly a strong Vo(KB)
where Ks is the reciprocal-lattice vector in the
[Ill] direction. If we assume that when a phos-
phorus or sulfur atom replaces a silicon atom,
four of their valence electrons reconstruct the
broken bonds with neighboring silicon atoms, this
must be the result of V(K, ) being equaily strong
as Vo(K,). Consequently, U(K, ) = V(K~) —V'(K, )
must be very small, or, more generally, U must
not have strong high Fourier components.

where g0„- are the valence-band Bloch functions.
Similarly V, (r) results from the charge density
p(r ) of the electrons in the valence band of the per-
turbed crystal. Writing the perturbed band func-
tions as iiI„„-(r) (no superscript), where k denotes
only their asymptotic form away from the impurity,
we have
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Once e(q} and U3 are known, therefore, U(r) is
calculable from

(-) d'q Us( I) in r-"

(2»»)3 e(q )

This procedure is impractical for numerical po-
tentials. For example, to get W(r) from W, (r),
instead of calculating Ws(q) and using Eq. (A6) di-
rectly, we write

W, (q) = f »f'r W, (r) e"" (A7)

TABLE V. Constants g), (I') resulting from the summa-
tion. over the six equivalent minima of the conduction
band of silicon.

metry
T2

—1

0

and use it in Eq. (A6). It is easy to show then that
W( r ) is given by Eq. (4. 25) where »2(A, ) = (1, 1, 1, 1, 1,1)

1

&6
(B42.)

E(r, r ) = — sin(qr) sin(qr ) .p

& o &(q)
(A8)

Using e(q) given by Eq. (4. 22), one gets

E(r, r ) =-Ane " sinh(»rr) —(1 A)Pe —2" sinh(Pr)

»2(E) = 2 (I i 1, —I i —I, 0, 0)

= —'(1, 1, 0, 0, —1, —1)

»2(TZ)= (1, —1, 0, 0, 0, 0)
1

2

(B4b)

+, )ye
"" sinh(yr), r& r

E(0
(A9) (0, 0, 1, —1, 0, 0)

1
y

= —A»2 e ™sinh(»rr ) - (1 —A) pe ~ sinh(pr ) 1
(0, 0, 0, 0, 1, —1)

W2
(B4c)

+,
)
ye ""sinh(yr'), r -r

E(0

and the integral (4. 25) can be performed numerical-
ly.

The results can be given in compact form by making
use of the constants g1(y) resulting from the summa-
tions (Table V). We have, in terms of the varia-
tion parameter g,

APPENDIX B: ENERGY EXPRESSIONS

A. One-electron states

When the trial function (4. 30) is used, a 2 x 2

secular matrix is diagonalized and the lower eigen-
value is minimized. Its matrix elements are writ-
ten as

1 ~ 8(2+azaz)
T11 2 is y ~ glL( ) (4+azg2)2

1 ~ (1+2az»3, „2)z + 2'
T12 —

2 4, 2 ~ g1( ) (9 zdz)34+a

(B5a)

(Bl)

When the trial function (4. 33) is used, the quantity

(B5b)
3

kz 1 ~ (l-+2a 6„) + —,

T21 —
2 s i 2 ~ g1(F) iQ 2 2&3 (B5c)2m* v 2a (4 +a bz)

E(g) =Q»»/+» (B2)

is minimized. We have

6 6

T = Q Q»r*n (F '(r)~ T, (-zx)~F"'(r)e""'"&")
5=1 j=1

(B3a.)

6 6

U~n = Q Q»2»so»» (+P(r ) e»"»'
I Ul Fns(F) e»lT» r)

4=1 j= 1

(B3b)

8 1
L g (F)

FPl 0

1+4a a~ 3a'az(I —a'a'„)
(I + aZg2)2 (1 ~ azn 2)4

3
16

&1 = Z g'1.(F)
(4 2~2)2

3
1 —2ag 1 —gQ

2 gz (1 + pn 2)4

(B5d)

(B6a)

(B6b)

6 6

(F ins( r )
e-ilT&'r

~

Fns( r )»k» r )
i=1 j=1

(B3c)

The sums and integrals can be carried out for any
set of ~ s, such as sets corresponding to A„T2,
or E symmetry. These are

where ~~ represent the distances between valleys,
namely 6, =0, b2=2Ao, 46=&2AO, and where ko is
the distance of each of the six conduction-band
minima from k = 0.

For the potential matrix elements we have two
cases. First, the term U„(r) is given in analyt-
ical form by Eq. (4. 24) and explicit expressions
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are obtained. Writing Eq. (4. 24) in the more com-
pact form (

sin(b, „r)
A~y'

(81O)
4

V„(r)=- P S„e"",
where

S„=(l,Ae, (1 —A)e, —1}

'. =(o, n, p, r),

(BV)

(88a)

(88b)

and the integrals are performed numerically. The
potentials &(r }, are calculated as described in
the text using the Herman-Skillman program for a
mesh of 441 points, four times more dense than
the ones published.

8. Two-electron states

where

4

xQ 2" (d„„-c))
V=1 d),V

(89b)

and

d~„=(1+ac„) +a ~~

3 4

cc ii e A (2+a. )2+ 2~2
) =1

(89a)
~2 ne'

(~,.)„=(~,.)„=- „-2~'r)
X=1

When two electrons are bound at a donor center,
the ground state is when both electrons occupy the
ls(A, ) state with opposite spins, a. situation analo-
gous to the helium atom. We can easily, however,
study the more general state with each electron
occupying any of the three one-electron states
ls(A, ), ls(T2), and ls(E). If we denote by I', the
state of the one electron and by 1, the state of the
other electron (I', may or may not be equal to r, ),
and use the simple trial function (4. 33) with varia. —

tion parameters a, and g, respectively, the total
energy of the two electron system is given by

E(a, a)=E(I", a)+E(I', a)
3

(p„)„=— g z,(r)
2E'Q (~..)

x,(r,)x,(r, )
' (811)

S„2 ~ 2 2 2 3(i+ac„) —ab, 'a o„+a h~-2+
v 1 2d„V

(89c)
For a short-range potential W(r) given in numer-

ical form, we get

W =4& r dxF; r WrE" r

where E(I', a) is the same as E(a) defined by Eq.
(82), but with the symmetry dependence denoted
explicitly. Similarly N, (r) is given by (88a); again
1 denotes the symmetry dependence of &1 Ex-
pressions for E(I', a) and N, (r) were given in the
first part of this appendix, so that now we concen-
trate on the electron-electron interaction term
(U„). We have

(v..) =P P n,*. (r, )n, (r, )

6

x P P nc. (rz)n;. (rz)(E;.(ri) e ' 'F,&(r, ) e ' i ~ '2i p (r-„r,)~F". (r-) e"&'iy'»(r ) e'"i"'2)
i'=1 j'=1

(812)

Now, U„(ri, r2) is a screened Coulomb interaction.
The unscreened interaction is e2/~ r, —r2~, whose
Fourier transform is 4me~/q 2, so that

4m
U (r-, r-)=(»)' d'q — e""i'2'. (813)ee ii 2 gc(q)

Angular integrals and sums may be performed ex-
actly. ' The result is

where

J„,.(q) = [4+ ai(q —n, )'][4+a', (q ~,)']
x [4+a2(q-a„.)'][4+a',(q+n„.)']. (814')

For the ground state, for which I', =1"~=A, and Q1
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= a, = a, this simplifies to'

(
3

Ay Rx( 1) (BiS)
~, [4+a'(q -a~)'] [4+a'(q+a, )']

The integrals over q in (B14) or (Bl5) a.re then
performed numerically on a computer.
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