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Phonon frequency shifts and linewidths in germanium have been studied in the temperature range

80-880 K by means of thermal neutron spectrometry. The results cannot be described in terms of the

quasiharmonic approximation in which phonon frequencies are solely volume dependent. Theoretical

calculations are found to be more satisfactory for the Raman frequency than for most other modes. A

good account of the observed shifts is given by a proposal due to Barron, according to which the

relative frequency renormalization of a crystal is proportional to the total harmonic vibrational energy.

An analysis of the gradients of measured dispersion relations in the principal symmetry directions at 80

K is presented. It is shown that accidental degeneracies may influence the dispersion.

I. INTRODUCTION

Experimental studies of anharmonic effects in

crystalline germanium have been reported for
specific heat, volume expansion, temperature and
pressure dependence of the elastic constants, fre-
quency shift, and line broadening of the Raman
mode with increase of temperature. These effects
are either average properties or long-wavelength-
limit phenomena. By means of tunnel-junction
techniques Payne' and Zavaritskii observed pho-
non resonances as functions of pressure at 1 K at
the reciprocal-lattice point L on the zone boundary.
Measurements by the present authors of phonon
frequencies all over the Brillouin zone and of line-
widths for principal-symmetry-direction modes in
germanium at 80 K have been published else-
where. ' (Some of these results are illustrated in
Fig. 3. ) Brockhouse and Dasannacharya' mea-
sured miscellaneous modes at 100 and 700 K and
reported observations of frequency shifts.

Few theoretical studies of anharmonicity have
been made on germanium and related solids. Doll-
ing and Cowley calculated Qruneisen parameters
in germanium assuming only first-neighbor cen-
tral anharmonic force constants which were deter-
mined by a fit to thermal-expansion data. Cowley
used the same model to generate frequency shifts
and widths of the Raman line with a rise of temper-
ature. The predicted shifts have subsequently
proved to be in good agreement with experimental
results. Jex extended the model of Dolling and
Cowley to include second-neighbor central inter-
actions. Linewidths at 300 K were calculated for
the branches bz, 65(A), and AB (A) together with

some frequency shifts for the 4 and the A branches.
The results show a considerable frequency renor-
malization for transverse-acoustic modes around
the zone boundary. The characteristic difference

between diamond and germanium as regards the
dispersion of these branches should thus, to a
great part, be due to anharrnonic effects. Subse-
quently, Jex has reported calculations of phonon
linewidths at 80 K for all branches in the principal
symmetry directions. These results are in fair
agreement with experiment except for the acoustic
branch Z3(A), in which case there is a considerable
discrepancy,

In the present paper we present experimental re-
sults of frequency shifts and linewidths for phonon
modes at I', X, and I in germanium in the temper-
ature range 80-880 K. The data are also analyzed
and compared with other theoretical and experi-
mental results.

II. EXPERIMENTAL

The present experiment was carried out using a
double- monochromator crystal spectrometer' and
the 50-M% research reactor A2 at Studsvik. In
most respects the procedures adopted and the re-
solutions applied were identical with those de-
scribed in Ref. 3. Optic modes were, however,
not observed with a resolution as good as that pre-
viously obtained because the monochromator of the
present instrument was restricted to Cu (220) re-
flections. [In the previous work (420 reflections
were also available. ] Typical figures for the en-
ergy resolution of optic modes were 0.30-0.40
THz for modes with vanishing frequency gradients.
This had, however, an almost negligible influence
on the accuracy of the recorded frequencies of the
modes considered in the present work.

The i ntr inis ic phonon linewidths of ger manium
are small and, in consequence, their extraction
from the observed peak widths requires very good
counting statistics. At temperatures above 300 K
this requirement was not fulfilled except for trans-
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FIG. 1. Phonon frequencies vs temperature as obtained by the present authors (filled circles), Payne (Ref. 1) (filled
triangles), Zavaritskii (Ref. 2) {crosses), and Brockhouse and Dasannacharya (Ref. 5) {filled squares). The errors
quoted by Payne do not exceed the size of any of the filled triangles. Brockhouse and Dasannacharya listed no errors
and their results are shown only when they lie within the frames of the figures. The dashed-dotted and the dotted curves
represent the mean results of Raman scattering experiments by Cerdeira and Cardona (Ref. 11) and by Ray et al. (Ref.
12), respectively. The open circles mark the results of a calculation by Cowley (Ref. 7) when normalized to 9.01 THz
at 300 K. The dashed curves represent the frequency variations as predicted by a quasiharmonic approximation (Ref.
14) when normalized to the present data at 80 K (see Sec. III B). The solid curves were obtained by least-squares fits
of Eq. (5) to the present data.

verse-acoustic modes.
The germanium crystal was one-third the size of

that used in Ref. 3 (from which it was cut). The
crystal was mounted in a thermostat shielded so
effectively as to limit temperature variations at
the sample to a few degrees at 800 K.

III. RESULTS AND DISCUSSIONS

A. Measured phonon frequencies

The modes studied were those of the symmetry
points I', X, and I.. These are associated with
most of the characteristic features of the phonon
density-of-states spectrum and they are accord-
ingly significant for all phenomena dependent upon
one- or two-phonon densities, such as, e. g. , in-
frared absorption. The present results are plotted
in Fig. 1. Brockhouse and Dasannacharya found
that the relative frequency shifts accompanying a
change of temperature were approximately con-
stant for all modes considered. This does not ap-
ply to the results obtained in the present work,
where the relative shifts may vary by as much as
one-third about their mean value. The actual val-
ues are —0. 53(I'oe), —0. 54(Lo), —0. 52(L~),
—0.43(L2), —0. 82(Lo), —0. 75(X4), —0. 47(X,), and
—0. 88(Xo) when expressed as percent per 100 K.

By means of tunnel- junction techniques Payne and
Zavaritskii observed phonon resonances in germa-
nium at 1 K at the reciprocal-lattice point I. and
in the latter work even at 1". The results are in
fair agreement with those obtained at 80 K in the
present experiment. The temperature dependence
of the Raman-active mode I'~5 has been studied by
Cerdeira and Cardona and by Ray et al. The
results of the present work are in best agreement
with the former's data and also with those of a pre-
vious Raman scattering experiment by Parker et
al. ,

' who reported the value 9. 015 THz at 300 K
(not shown in Fig. 1).

B. High-temperature frequencies

The frequency ~& of a vibrational mode is, in the
general theory, a function of the mutually depen-
dent thermodynamic variables P, V, and T. We

may write

In the harmonic approximation p;& is independent
of T. The volume does vary with temperature,
however, and in the so-called quasiharmonic ap-
proximation v;,. is allowed to change with volume
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TABLE I. High-temperature phonon-frequency derivatives in units of 10 K 'sec ' for the modes studied in the pres-
ent work. I, values obtained by least-squares fits of straight lines to the data in Fig. 1 above 80 K. II, same as for I
from the quasiharmonic approximation as described in the text. III, values obtained by Zavaritskii (Ref. 2) and from
high-temperature lattice expansivity and compressibility data. IV, the purely anharmonic contributions as obtained by
means of Eq. (3) and columns I and III. V, same as for IV from Eq. (1) and columns I and II. The figures listed within
parentheses in columns II, IV, and V are the absolute values of the ratios between the several derivatives and the fre-
quencies, in units of 10+ K '.

mode

(&v;,./aT)p () (-3~/~) (e~„./e~), ,

IU

(Bv-,./BT)

~25

L3
L1
Lg

L3
X4
X1
X3

—4.7~0.4
—4.6 ~0.6
—3.7y0. 4
—2. 8y0. 4
—1.5y0. 3
-6.0y0. 5
—3.3 y0. 4
—2. 0+0.3

1.3 {0.15)
1.2 (0.14)
1.0 (0.14)
0. 96 {0.15)
0.27 (0. 15)
1.2 (0. 15)
1.0 (0. 14)
0.34 (0.15)

—2. 0 ~0. 1
—2. 0y0. 1
—2. 2 y0. 1
—0.5 +0.1
+ 0.6 +0.1

—2. 7 y0. 5
—2.6 y0. 7
—1.5+0.5
—2. 3+0.5
—2. 1 60.4

(0.30)
(0.31)
(0.21)
{O.35)
0.15)

—3.4y0. 4 {0.38)
-3.4+0.6 (0.40)
—2. 7 +0.4 (0.38)
-1.8+0.4 (0.26)
—1.2+0. 3 (0.66)
—4. 8 y 0. 5 (0.60)
—2. 3 y 0. 4 (0.32)
—1.7~0.3 (0.73)

while the interaction between different modes is
considered to be negligibly small. Thus (Bv;,/BT)v.
is a purely anharmonic term. The variation of
vB&(V(T)) has been calculated in the quasiharmonic
approximation using the deformation dipole model
developed by Tolpygo. (The lattice-constant data
were taken from Carr et al. and from Gibbons
in the ranges 8-130 K and 130-300 K, respectively.
Above 300 K the required values were obtained by
extrapolation from the Gibbons data employing a
fitted third-degree polynomial. ) The results, nor-
malized with respect to the present data at 80 K,
are presented as dashed lines in Fig. 1. They
show that the major part of the frequency shift is,
according to Tolpygo's model, due to purely an-
harmonic effects. (A check of the accuracy of the
calculated quasiharmonic frequencies is given in
Sec. IIID. )

By definition

and the modes at I. under hydrostatic pressure.
These derivatives, which were found to be indepen-
dent of P, are applicable only if it is assumed they
are constant in T. Table I demonstrates, however,
that clear differences exist between (Bv;,/BT)v" o

and (- 3n/)() && (8vS,/BP) r'f . (The compressibility
data needed were taken from McSkimin. '} An ex-
perimental check would .probably reveal that the
assumption of temperature independence for
(Bv~/BP)r is invalid. It would be particularly in-
teresting to check the postulated change of sign of
this quantity for the mode I.3 between the low- and
the high-temperature regions.

Finally, columns II and V in Table I show that
the frequency shifts with temperature due to vol-
ume expansion are constant, provided they are ex-
pressed in the form (Bv&,/BT)v/vB, .while the
(BvB,/BT)v/vS, . for the purely anharmonic effects
vary by a factor of 3 between the smallest and the
largest value.

P =3@= —— andy= ——— (2)
C. Barron's theory of frequency renormalization

where a is the linear coefficient of thermal ex-
pansion and X the isothermal compressibility. Eqs.
(1) a,nd (2) give

(3)

Barron proposed that the frequency renorrnal-1S

izations might be evaluated by assuming the rela-
tive shifts to be proportional to the harmonic vi-
brational energy of the crystal, i. e. , Bv/v
= A(E„",~). This may be written

where a and X relate to the appropriate values of
P, V, and T. Inspection of Fig. 1 reveals that
(SvS /BT)v o is, within the limits of experimental
error, a constant at higher temperatures. The
quasiharmonic derivatives (8v&/BT)~v". 0 seem not
to be quite constant in this region but let us assume
they are so. The anharmonic contribution
(SvB /ST)v can then be obtained either from Eq. (1)
via the identification (Bv~/BT)J,"= (SvB&/BV)r
x (BV/BT)v or, if (Bv@/SP)r is known, from Eq.
(3). Zavaritskii measured (Bv~/SP)r. , for I'2,

1
vB~(T) = vB, 1+ Z hvBh, (nB, +-,'), (4)o-8 4,

where ~ is the harmonic frequency and n,- is its
Bose-Einstein distribution function. Barron's con-
stant A, usually assumed to be identical for all
modes, has been redefined to include a tempera-
ture, O~, characteristic of each mode. Feldman
et aE. showed that for the nearest-neighbor cen-
tral-force model Barron's proposal 1eads to an
exact expression for the frequency shifts due to
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the quartic term in the expansion of the lattice po-
tential energy. The contributions from the cubic
term were found to be exactly described in the
high- and low-temperature limits. It is known that
in a solid such as germanium bond-stretching
forces between nearest neighbors dominate the in-
teractions. Equation {4) should thus be expected
to yield a good first approximation for most of the
frequency renormalizations. Barron' also pointed
out that a shift obtained from neutron scattering is
the same as that obtained from the entropy but not
to that obtained from the free energy. Although
this relationship is not exact, as was shown by
Horton, the discrepancy is probably negligible for
weakly anharmonic crystals like germanium. Thus
the average vibrational energy in Eq. (4) may in
the present case be replaced by 3Arhvr(n +-,'),
where v~ is the geometric mean frequency associ-
ated with the entropy. v~ has been determined to
5. 110+0.015 THz from specific-heat data by Flu-
bacher et aE. ' and the value 5. 11 THz was obtained
from neutron scattering data. Equation (4) then
reads

tv~ 1 1)4 l+ sr crier l +
2
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A fit of Eq. (5) to the present data by the method
of least squares with v& and O~,. as free parame-
ters, presented in Fig. 1 and Table II, is found to
be good. The data at 80 K are close to the har-
monic spectrum. The v;, {0)'s lie within the limits
of experimental error, while the v&'s exceed the
error limits by 0.03 THz, or 0. 6$(- of v~, on the
average. The contributions t;o the frequency shifts
from the cubic and the quartic terms in the expan-
sion of the lattice potential are of opposite sign.
The negative values obtained for the 8-.'s show
that the cubic terms dominate. It is also notewor-
thy that these values are of the same magnitude as
those characteristic of the temperatures corre-
sponding to the energy differences between the
lowest conduction-band and the highest valence-
band levels.

Cowley calculated the renormalization of I'~5

assuming nearest-neighbor central interactions
and contributions only from third-order terms in
the lattice potential. His results, normali-ed to
9. 01 THz at 300 K, are represented in Fig. 1 by
open circles. The temperature dependence is
somewhat stronger than that found in the present
work but still within the limits of error. The re-
normalization at absolute zero, roughly —0. 05
THz, is close to the present value of —0. 06+0.02
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FIG. 2. (a) Specific heat at constant pressure, Cp, of germanium as obtained by Flubacher et al. (Ref. 21) (filled
circles), Piesbergen (Bef. 26) (open circles), Smith (Bef, 28) (crosses), Greiner (Bef. 27) {open square), and Gerlich
et gl. (Bef. 29) (filled triangles). The dotted curve represents the mean of the results obtained by Chen and Turnbull
(Bef. 25) and the bars indicate the maximum scattering of points. The curves labeled Cp and Cz show the results of cal-
culations from the present data as described in Sec. IIID. The arrow marks the value of the constant of Dulong and Petit.
(b) The differences between three of the data sets in (a) and C~~, namely, for Flubacher et al. (dashed curve), Piesbergen
(dashed-dotted curve), and Chen and Turnbull (dotted curve). The solid curve represents Cz —C~~ of the present calculation.

THz. Jex extended Cowley's model to include
central forces with second nearest neighbors. His
frequency-dependent renormalizations for the
transverse-acoustic branches b, s(A) and A~(A)
amount to roughly 10%%uz at the zone boundary. The
renormalizations of the remaining b and A

branches gave values which are one order of mag-
nitude lower. The latter result is in fair agree-
ment with the present findings while the former is
in sharp contrast.

D. Specific heat

The specific heat at constant and vanishing pres-
sure is given by the relationship

If the phonon system is assumed to be weakly in-
teracting it may be approximated to an ideal Bose
gas. This yields the entropy

Equations (5) and (6) may be written

v~(T) = vs'(0) F(T), F(T) = [1+y/(e""i —1)]. (9)

in Eq. (9) it is assumed that all modes are subject
to the same percentage frequency shift with tem-
perature. The a,ctual value y = —1.385&&10 is ob-
tained from the mean value of e~ in Table II.
Standard procedures then yield

CJ, =SNk (y sinh y)g(v)dv 1 — —T
"max 3 F'(T)

0

y = hvF(T)/2kTF(80} (10)

The frequencies and the density of states are those
obtained at 80 K. ' The "harmonic" specific heat
C"„(including the zero-point motions} is obtained
from C~ by setting F(T) =F(80) and omitting the ex-
pression within the braces.

Figure 2(a) shows the results of the present cal-
culation of Cp and C"„ together with experimental
data. The agreement of C~ with the well-estab-
lished data of Piesbergen and Flubacher et al. '
and of C~~ mith the constant of Dulong and Petit, as
mell, is good. The results of Greiner, Smith,
and Gerlich et al. receive little support from the
low-temperature data. The differences between
the "best" specific-heat data and C~ is plotted in

Fig. 2(b) together with the present values for CJ,
—C&. If the results of Piesbergen were correct
an error of about 80%%u(- is inferred for the present
value of hC ~ at 270 K. The anharmonic contribu-
tions extracted from the data by Chen and Turn-
bull exhibit smaller percentage deviations from
the present results than those of Piesbergen but

they have a strange shape, as can be seen even
from Fig. 2(a). The deviations from the data of
Flubacher et al. are considerably smaller and,
moreover, these authors performed a calculation
of C ~ up to 300 K which gave results in excellent
agreement with the present values of C&. A defi-
nite statement of hom well the mean frequency shift
of the symmetry-point phonon modes represents
the mean of all modes must, however, await more
accurate high-temperature specific heat data.

Owing to volume expansion the specific heat re-



10 PHONON ANHARMONICITY QF GERMANIUM IN THE. . .

ceives a contribution

Cp —Cv=Q Tv(g

where e is the molar volume. At 300 K, C~- C~
= 2. 3x10 ~ (cat/g atom K), while the corresponding
value obtained from the quasiharmonic shifts of the
present study (see Sec. III B) is 1. 6x10 (cat(
g atom K}. The difference is 'P/(; of the total anhar-
monic contribution, 4C ~, and the errors of the
calculated quasiharmonic shifts should therefore
have no influence on the conclusions drawn in Sec.
III B.

E. Phonon linewidths

A very striking feature of the present results is
the lack of an evident broadening of the peak widths
with temperature for the transverse-acoustic
modes X3 and I.3. The widths observed only slight-
ly exceed the calculated resolution widths. More
noteworthy, however, is the fact that even the ob-
served widths are smaller than theoretically es-
timated linewidth values. lit should be remem-
bered that an observed peak is a convolution of the
resolution function with the neutron cross section
(phonon line). j At 300 K, for instance, Jex pre-
dicts a linewidth of 0. 23 THz for 1.3, while the
width of the observed peak is 0. 13+0.01 THz. In
the high-temperature limit, the linewidths are ex-
pected to vary approximately linearly with temper-
ature. Then, if scaled to 700 K, the values of Jex
would read 0. 30 THz for X3 and 0. 54 THz for I.3,
while we have recorded 0. 13+0.01 and 0. 12+0.01
THz, respectively. %e believe the phonon line-
widths of these modes do not exceed a few units of

0. 01 THz anywhere in the temperature region cov-
ered.

The rest of the modes considered were not very
suitable for linewidth studies as a. function of tem-
perature because of insufficient counting statistics
and, at the highest temperatures, multiphonon con-
tributions and incoherent processes that interfered
with the one-phonon resonances.

The valence-force-field model seems to be the
best existing harmonic approximation to the lattice
dynamics of germanium. ' ' This mode l is founded
on bond-stretching and angle-bending forces and
interactions between them. The former are cen-
tral two-body forces which operate between near-
est neighbors and the latter are three-body forces
which act between first and second nearest neigh-
bors. In this theory the dynamics of transverse-
acoustic branches are dominated by the angle-bend-
ing forces and the zone-boundary modes L3 and X3
are entirely governed by them. Angular forces
were not included in the calculations by Jex. It is
possible that omission of angular forces may lead
to erroneous results for transverse-acoustic
br an che s.

IV. ACCIDENTAL DEGENERACIES AND GRADIENTS

Kagan and Zhernov used the Green's-function
method to analyze the influence of anharmonicity
on phonon dispersion near a point of accidental de-
generacy. It was found that modes involved in such
a degeneracy may have different renormalizations
and lifetimes. Even when branches come close to
one another, without actually intersecting, they

q 1

qp

Lp

Lp

5-
FIG. 3. Phonon disper-

sion relations in germanium
at 80 K. The symbols q,
are explained in Sec. IV.

L3

L
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I IG. 4. Velocities of the phonon modes of the high-symmetry directions in germanium at 80 K as obtained by calcu-
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the root mean squares of the experimental errors and the filled squares indicate the velocities of the acoustic modes in
the long-wavelength limit as calculated from the elastic constants {Ref. 17). The solid curves and the symbols q; are
explained in Sec. IV.

should influence each other significantly, An ob-
servation of the removal of an accidental degener-
acy may lie beyond the possibilities of present day
neutron physics. However, according to Kagan
and Zhernov even matrix elements belonging to
wave vectors close to the one under consideration
are affected by the anharmonicity so that anomalies
or "kinks" are to be expected in the dispersion re-
lations. Such effects are likely to be more easily
observed than a removal of degeneracy. Cowley
has questioned the validity of the conjecture of Ka-
gan and Zhernov. From a group-theoretical point
of view it is difficult to understand why a perturba-
tion with the same symmetry as the crystal should
cause a coupling between phonons belonging to dif-
ferent irreducible representations. In fact, Eagan

and Zhernov tacitly assumed the existence of non-
diagonal elements with this property. The syrn-
metry properties of the phonon progagator for an
arbitrary crystal have actually been studied by
Maradudin and Ipatova. Their work shows that
nonvanishing off-diagonal elements only cause a
coupling between solutions of specific modes,
These are modes whose polarization vectors trans-
form ac cording to the same irr educible repres en-
tation.

In the case of germanium at 80 K an inspection
of Figs. 3 and 4 reveals the following:

(i) The wave vector of the accidental degeneracy
between the branches h2 and h~(0) is marked by the
symbol q, in Figs. 3, 4(a), and 4(b). Pronounced
kinks are observed at q, in the gradients of the
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well-separated branches bz and 6, . Within the
limits of error, no kinks are clearly visible in the
velocity curves for a5 (A) and 4,(0), but they have
a change in slope around q, .

(ii) qa marks the wave vector below which the
two branches A, (0) and A~(0) could not be resolved.
When a region of close contact is so extended, it
is difficult to separate surmised anomalies from
the general behavior of the curves [see Figs. 4(c)
and 4{d)]. However, the velocity curve of the well-
separated branch A, (A) obviously possesses irreg-
ularities in the region considered. It is to be noted
that the irreducible representation ~& corresponds
to the same phonon polarization at ~, and b 2,

namely, the linearly polarized longitudinal mode.
The representations ~~3 and b, 5 are associated with

the linearly polariz ed transverse mode.
(iii} Another region of close contact between

two branches is afforded by Q(A) and Z~(0). The
symbol q3 indicates the wave vector of minimum

frequency for the branch Z~(0). When passing
through q3 the slope of the velocity curve changes
for both Z, (A) and Zs(0). The same effect is ob-
served for all Z branches except, maybe, Z3(A).
The larger scattering of points around q3 in Fig.
4 than elsewhere originates from the fact that pho-
non frequencies were determined for a more dense
selection of wave vectors in this region.

(iv) The last region of interest in Fig. 3 is that
marked by q4 at the point of accidental degeneracy
between the elliptically polarized branch Z, (0) and
the linearly transverse Zz. (All other branches
are elliptically polarized, except that of Z&, which
is linearly transverse. } Figures 4{e)-4(g) exhibit

nothing irregular at q4 with the possible exception
of the branch Z4.

(v) Figure 4(a) shows an unexpected dip, marked

q5. Its origin may, perhaps, be connected with the
fact that q, coincides with the minimum of the ve-
locity curve of 65(0) [see Fig. 4(b)]. As seen from
Fig. 3, however, nothing noteworthy is present in

any of the branches at q, .
A nine-parameter version of the deformation di-

pole model, which is equivalent to the shell mod-
el, affords an excellent fit to the 4 and the ~
branches of germanium at 80 K. This fit is even
somewhat better than that of the valence-force-
field model. If the ~ direction is included, how-

ever, the good fit is lost. The velocity curves of
the b, and the A branches as obtained from this fit
are represented by solid lines in Figs. 4(a)-4(d).
The kinks observed in the experimental results are
obviously not compatible with this model.

In conclusion, the present analysis does not

prove that the irregularities observed in the phonon
gradients are of anharmonic origin. It indicates,
however, that an accidental degeneracy or a close
approach between branches may well influence the
dispersion. The observed irregularities may also
be explained on the basis of a more sophisticated
harmonic model or in terms of a perturbation
which does not share the crystal symmetry.
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