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Raman and x-ray spectra of single-crystal Bi-Sb alloys
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Raman and x-ray spectra have been recorded for single-crystal Bi-Sb alloys over most of the
compositional range. The long-wavelength optical-phonon frequencies of pure Bi and Sb are changed
only slightly by alloying. At least one new Raman mode appears in the mixed crystals which cannot
be explained by a model of random atom occupancy of lattice sites. X-ray diffractometer studies rule
out most, but not all arrangements of long-range order in the alloys. A broadening and splitting of
x-ray peaks is observed and is interpreted as indicating macroscopic inhomogeneities either of crystal
composition or crystal domain orientation.

I. INTRODUCTION

The vibrational modes in a large number of al-
loy systems have been studied through Raman and
infrared spectra in recent years. ' In alkali-halide
systems, a single long-wavelength mode is usually
observed, while zinc-blende-type mixed crystals
typically show a two-mode type of behavior. In
Ge-Si alloys, a third mode appears. ' ' This mode-
number progression is believed to be related to
crystal binding, from the strong long-range elec-
trostatic force in ionic crystals to the nonionic
predominantly nearest-neighbor force in Ge-Si.

Bi-Sb alloys have received attention in the past
because of the appearance of semiconductivity for
Sb concentrations of approximately 10-20'/o. As
in Ge-Si, bonding in Bi-Sb crystals is nonionic.
However, in the diamond structure of Ge and Si
the optical modes are degenerate at k =0, so that
each element exhibits a single frequency, while
assymmetry in the crystals of As, Sb, and Bi splits
the degeneracy, giving rise to Geo optical frequen-
cies in each elemental crystal. Here the point-
group symmetry is DM with three optical lattice
modes, type A„and E, all Raman active and in-
frared inactive, where the two E, modes are de-
generate for zone-center phonons. ' ' In these
crystals, atoms are located on planes of alternate
spacing perpendicular to the trigonal axis. For
phonons propogating along that axis, the A, mode
represents a pure longitudinal motion (LO} of the
atom planes and the Z, mode is a pure transverse
motion (TO} of the planes. ' It is worth noting also
that analysis of neutron-diffraction data for Bi
indicates the importance of long-range forces in
the crystal. "

The Raman spectra of As, Sb, and Bi have al-
ready been reported. " Remarkably, they show
that the ratio of frequencies A„ to E, in each of
the three elements has almost exactly the same
value, namely, 1.32 (which is suspiciously close
to ~for a crystal with trigonal symmetry). There

is no theoretical basis for this result, which may
or may not be accidental.

It was of interest to compare the mode behavior
in Bi-Sb alloys with the types already known, and
also to observe the effect of alloying on the A, ,/E,
frequency ratios. The mode behavior should re-
semble that for Ge-Si, except that two sets of
modes are to be expected. Further, it has been
suggested that the third mode in Ge-Si alloys may
be due to clustering of atom types, long-range
ordering, or macroscopic inhomogeneities, ' ' all
typical subjects for x-ray studies (which apparent-
ly have not yet been made on Ge-Si}.

The present work is perhaps the first to report
both Raman and x-ray measurements on the same
crystal alloy system.

II. EXPERIMENTAL RESULTS

All samples were single crystal, and all spectra
were taken on surfaces cleaved perpendicular to
the trigonal axis. A backscattering geometry"
was employed for Haman measurements, with an
incident illumination intensity of 0.5 W at 4880 A

from an argon laser. Similar spectra were also
recorded with 0.1 W at 6328 A from a He-Ne laser.

Figures 1 and 2 show the Raman spectra at
300 K. Measurements also were taken at 80 K,
and a comparison of Stokes-anti-Stokes intensity
ratios at the two temperatures verified that the
observed peaks represent one-phonon processes.
Resolution was limited mainly by peak broadening
and the close spacing of the peaks, so that addition-
al peaks may very well be hidden in the spectra.

Figure 3 shows a plot of the frequencies of identi-
fiable peaks as a function of alloy composition. In

pure Bi or Sb, the upper frequency is the A„mode
and the lower is the E, mode. The mode frequen-
cies in pure Sb decrease slowly and monotonically
with the addition of Bi, while the mode frequencies
of pure Bi increase slowly with the addition of Sb.
This differs from the Ge-Si system, where the
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analysis of the Bi structure by Varnell et al, '
we find that the curves in Fig. 3 at -150 and -100
cm ', which represent A.„-type Sb-Sb and Bi-Bi
vibrations, can be fitted nicely using only a simple
parameter besides those used for the pure ele-
ments, namely, a Bi-Sb force constant. (We are
speaking here of the long-wavelength limit. ) The
same model does equally well for the E,-type
Sb-Sb and Bi-Bi modes at -115 and -75 cm ',
again with a single new parameter. For either
set, the required value of the Sb-Bi force constant
falls between those for Sb-Sb and Bi-Bi. If a value
smaller than either the Sb-Sb or Bi-Bi values is
chosen, the curves of frequency versus composi-
tion will have the properties of the Ge-Si system,
where the characteristic frequency of each element
is lowered by the introduction of the other.

The model, despite its dependence on Sb-Bi
force constants, predicts that only Sb-Sb and Bi-Bi
vibrational modes can have a nonvanishing Raman
intensity, i.e., a total of four A„and E, Raman
peaks. Random-atom displacement in an otherwise
perfect lattice does not explain the fifth peak ob-
served at -125 cm ' in Bi-Sb alloys, or the third
peak in Ge-Si.

In the perfect lattice, atoms lie on pairs of
planes, or planes of alternate spacing, perpen-
dicular to the trigonal axis. Each hexagonal unit
cell is intersected by six planes. The hexagonal
arrangement of atoms within each plane repeats
every third plane, so the set of six planes through
a ceLL can be labeled ab-ca-bc.

It is instructive to consider several types of
compLete ordering in a 50-50 alloy, specifically
where atoms in any one plane are either all Sb
or al/ Bi. Such planes will be denoted by Sb or Bi.
The arrangement SbSb-BiBi-SbSb ~ can be dis-
carded, since it leads to a unit cell of twice as
many planes and twice the length, contrary to the
x-ray data of Fig. 4. The arrangement
SbBi-BiSb-SbBi likewise can be ruled out.
However, the ordering SbBi-SbBi-SbBi ~ ~ would
give a diffraction spectrum of exactly the type
observed, characteristic also of pure Bi or Sb
or of a random-atom-dispLacement lattice. More-
over, the structure factor calculated for the to-
tally ordered arrangement is identical to that of
the random-atom case for (00n) planes. " (For
other sets of planes there will be some difference
in structure factors. )

From the example given, we conclude that the
absence of new peaks in the mixed crystal x-ray
spectra of Fig. 4 rules out most, but not all the
possibilities of long-range order.

The following hypothetical case is suggestive.
In a 72/q Bi alloy, assume that 35/o of the volume
consists of crystal domains of 50% Bi composition
in which there is complete ordering of the type
described above, and that 65/o of the volume is
taken by domains of 84/o Bi composition in which
there is no long-range order. The two domain
types differ by 34/o in composition, corresponding
to a 0.2-A difference in unit-cell dimension, with
the result that each diffraction order splits into
two peaks separated by the full width shown in
Fig. 5. Aside from the portion between the split
peaks, the simplified example is entirely consis-
tent with all features of the x-ray spectrum while
the occurrence of long-range order in domains that
occupy about —,

' of the crystal is sufficient to ex-
plain the appearance of additional Raman modes.

IV. SUMMARY

Optical lattice modes in Bi-Sb alloys are anal-
ogous to those in Ge-Si alloys in most of the basic
features. As in Ge-Si, explanation of all observed
modes requires more than a model based on ran-
dom-atom occupancy of lattice sites. X-ray spec-
tra rule out most, but not all arrangements of
long-range order. Analysis of at least one ar-
rangement reveals the experimental difficulty of
proving the absence of all long-range order by
means of x-rays. The broadening and splitting of
x-ray peaks in the mixed crystals indicates macro-
scopic inhomogeneities in composition or in crys-
tal-domain orientation.

The connection between the order-disorder prop-
erties of the lattice as revealed by x-rays and the
optical modes revealed by Raman scattering has
not yet been established. Future experiments will
include prolonged temperature-annealing of the
crystals and diffractometer studies on planes other
than (00n).
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