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Theory for two-beam two-photon photoconductivity in solids
and its application to ZnS crystals*
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A theory for two-beam two-photon photoconductivity is presented that explains most of the features of
the two-beam two-photon conductivity measurements recently reported by Koren and Yacoby in Zns.

The advent of the high-power laser has stimu-
lated considerable work on multiple-photon photo-
conductivity in both semiconductors and insu-
lators. ' ' In the work discussed here, a study
was made of changes in conductivity as a function
of intensity and pulse width. ' The change in
conductivity as a function of intensity can be used
to determine A„, the basic parameter of multiple-
photon absorption, which is related to the ab-
sorption coefficient a =nkcuA„I" '. The experi-
ments just cited were performed with one laser
beam. More recently, two-photon photoconductiv-
ity using two laser beams was reported by Koren
and Yacoby. ' They were not only able to measure
the change in conductivity as a function of intensity,
but also the change in conductivity as a function of
one of the laser lights. In the present paper we

present a theory for two-beam two-photon photo-
conductivity and use this theory to explain the
experimental results of Karen and Yacoby (KY).

When the excitation of a laser beam is not too
high, say below 20 MW/cm', the experimental evi-
dence shows that the recently developed theory"
explains two-photon photoconductivity quite well."
According to this theory, the change in conductance
for any type of excitation can be written
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Coefficient n» is related to the transition prob-
ability by the expression
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Equations (3) and (4) are nonlinear differential
equations, and they are very difficult to solve.
But in the case where 25+2 (E~ and I, » I„we
may ignore both the first term in Eq. (3) and the
second term in Eq. (4), giving

where ILi., and p, ~ are the mobility of the electrons
and holes, respectively, and v is the lifetime of
the free carriers. Other variables occurring in

Eq. (1) are defined in Fig. 1, while E is any type
of generation rate. In the two-beam two- photon
case, the generation rate can be written in the
form'

W = Z = a„(I,(x)) '+ a„[r,(x)] '+ a„I,(x)I,(x),

x 5(Ei —E& —Ii&u, —h&u, ) .

Equations (5) and (6) can readily be solved as
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(2) where

where I, and I, are the intensities of the two laser
beams in the solid and where they satisfy the fol-
lowing differential equations: and

c, = (1 —It)[I,'- (s(u, /h(u, )I,']
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I (current)
In the case in which 1 & h+, C,a»1,„, Eq. (10) be-
comes

&C = a„r(a/c)e(i, + q,)I',I,'(1- It)'

x [I,——,'I,'(1 —It)a, »(k&u, I', + h&u, I2)]

laser light

For a general band structure, u» is very difficult
to evaluate. %'e shall therefore limit our work to
cubic crystals, whose wave functions for con-
duction and valence bands can be approximated by
Kane's wave functions' at k =0:

conduction band:

g,, =
I
iS' &) ', g,, =

I
&S'4) '

valence band V, :

q„=[(X- g Y)t]'/W, y„= [(X+IY)i]'/~,

l I valence band V, :

y„, = (3)'»[(x- I Y)c]'/W + (-'.)'"(z't) ',

FIG. 1. Crystal geometry used in the derivation of
Eq. (1).

(12)

C( =(8+,/K(u, )C, .

After substituting the intensities given in Eqs. (8)
and (9) into (1), we obtain

(a/Tc)e(g, + p~)I,'I2(1 —R)(e" 2 &» —1)
R~,I', exp(l~, C,a»1 }—&~,I,'

e-' ~"cos-,'e'
e-' ~'" sin-,'8' g& ~"cos-,'g

cos8' cosp' cos8' sing' -sin8'

Y' = -sing' cosQ' S'=S.

sin8' cos(II} ' sin6}' sing' cos8' Z

The angles O', P' are the usual polar angles of the k vector referred to the crystal symmetry axes z, y,
and z with 8' measured from z and P' measured from x.

Substituting the wave functions given in Eq. (12) into ( I), we obtain the following results for the coef-
ficient a».
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where c is the velocity of the light, m is the mass
of a free electron, ~„e, are dielectric constants
of the medium, and

1/m, „=1/m, + 1/m„(i = 1, 2, 3),

Both of the light beams are randomly polarized,
in the experiment of KY. Hence, we have to use
(a»)„ in Eq. (10) for the photoconductivity

nC =ifeIO(1 —It)'(q, a~,c)(u„)„

where m„, m, , and m„are the effective masses of
1, "3

the holes in the valence bands V„V„and V„
respectively. The 8 in Eq. (13) is the angle be-
tween the two polarization vectors of the two lin-
early polarized beams.

Equation (13) is for the case where one linearly
polarized light beam interacts with another linearly
polarized light beam of a different frequency. For
the case where one or both of the light beams is
randomly polarized, one must average o.» over
the angles of the random polarized beams to ob-
tain a correct o.», which we call (a»)„. After
a few simple calculations it can be shown that in
both of these cases (a»)„can be obtained from
Eq. (13) by simply replacing cos'8 by 3.

x [1-—,
' I( 1- It)(~ „)„(n~,I,0+3~, I 0)j, (14)

where

Z = ~ (p. , + p, )I.a/c,

and g, is the number of photons per cm' with ener-
gy ~x.

The matrix elements

8 2

ax

can be obtained from the experimental absorption
curve of Panizza' by assuming that at A'my+@(/02

=4.2 eV and at I,'=15 MW/cm', the measured ab-
sorption coefficient is equal to that obtained from
the equation o =R&u,(a»)„I,'(1 —R), i.e. ,
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Using the matrix elements in Eq. (15), the theo-
retical plot of a as a function of h(d, +A~, is shown
in Fig. 2, together with the measured absorption
curve.

Since the mobility and the lifetime of the car-
riers were not given in the work of KY, we have
lumped the lifetime-mobility product together and
determined it from the photoconductivity curve of
KY at Sw, +S(d, =4.6 eV,
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FIG. 2. Comparison between the two-photon absorption
coefficient Q.'as a function of &co&+ ~~2, obtained from
the experimental results (points) of Ref. 9, and the the-
oretical results gine and crosses) of o.' = ~~f(of fp)~I2
x {1-R),for Nru& =1.17 eV, and for m~„& =0.34m (i =1,2,
3).

FIG. 3. Comparison between the two-photon photo-
cunductivity DG as a function of S~&+ &~2, obtained from
the experimental results (4) of Ref. 6, and the theoreti-
cal results (circles) of Eq. (14), for I&o

——16 MW/cm2.

g =10 3, and m, „=0.34m(i =1,2, 3).
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FIG. 5. Comparison between the two-photon photo-
cunductivity AG as a function of the dye laser intensity
at two different wavelengths, obtained from the experi-
mental results of Ref. 6, and the theoretical results of
Eq. {14), given I', =16 MW/cm', &~, =1.78 eU. Case I
experimental (circles) and theoretical {solid line) for
&~& =2.7 eV; and case II experimental (squares) and
theoretical (solid line) for &~& —-2.15 eV.
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K—= 10 ' cm'/V. (16)

In the experiments of KY, the dimensions of a,
c, and I. are, 0.4, 0.1, and 30 & 10~ cm. There-
fore, (aL/c)=1. 2X 10 ' cm. Using Eq. (15) to-
gether with K in Eq. (16), we have plotted aG as
a function of the sum of the wavelength of the two
laser beams, as a function of ruby light intensity,
and as a function of the dye laser intensity. (See

FIG. 4. Comparison between the two-photon photo-
conductivity AG as a function of the ruby laser intensity,
obtained from the experimental results (circles) of Ref.
6, and the theoretical results {solid line) of Eq. (14).
q~

——10 photons cm sec, Scu& -—1.17 eV, hu2 ——2.6 eV
(dye laser).

Figs. 3, 4, and 5, respectively. )
Based upon the comparison between the theo-

retical results and those from measured values
for LG and a, the theory presented in the present
paper predicted the two-beam two-photon ab-
sorption and photoconductivity quite well for
choosing the constant K. The biggest error that
occurs in the present theory is a consequence of
the simple model used in evaluating the coefficient
n». Other errors arise from the fact that the
crystal used in this experiment is not really a
cubic crystal but a composite of both hexagonal
and cubic structures. Hence, the present theo-
retical work may be too idealized for such a crys-
tal structure.

Because of the simple band model used to calcu-
late n~, the present theory cannot explain the
change in conductivity for bc', +R&u, & 4.6 eV.

Work performed under the auspices of the U. S. Atomic
Energy Commission.
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