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The self-consistent electronic energy band structure of a 13-layer (001) film of lithium has been
calculated using the method described previously. The crystalline potential is described in terms of a
nonlocal pseudopotential, with exchange-correlation effects treated in terms of the local approximation
used in the Lang-Kohn jellium studies. The planar averages of both charge density and local part of
the potential exhibit Friedel oscillations that are appreciably greater than a superposition of the jellium
results on the bulklike envelopes in the inner selvage region; in the outer selvage the planar average of
the potential agrees well with the jellium result. The (unoccupied) surface state appearing in the X
gap of the two-dimensional band structure in our initial communication has descended almost to the
bulk band below, and in its place a surface state of complementary planar symmetry has descended

into the X gap from the bulk band above.

I. INTRODUCTION

In a recent paper’® (hereafter referred to as AK)
we presented a method for calculating the energy
bands of thin films with free surfaces. The method
has the advantage that the potential varies continu-
ously from the interior of the film out into the
vacuum regions, and it can be made self-consis-
tent. To illustrate the method, AK presented the
results of a band calculation over the surface
Brillouin zone (SBZ) of a 13-layer Li (001) film,
for which the potential was taken as a superposi-
tion of atomic pseudopotentials. Those results
verified the insight—drawn partially from phonon
calculations for thin films®—that, even for ultra-
thin films of a dozen or so atomic layers, surface-
localized excitations characteristic of essentially
infinitely thick films can be resolved out of the
size effects.® The potential used in AK, however,
was nowhere near self-consistent in the surface
region, so that the details of the results in AK,
e.g., the character of the surface state, had to be
regarded as preliminary. The present paper re-
ports the results of carrying our method to self-
consistency for the 13-layer Li (001) film.

To place the present work in perspective, we
might characterize it and the recent work by
Appelbaum and Hamann® (hereafter referred to as
AH) as marking the first realistic confluence of
what has heretofore been two equally old, but
largely separate streams of development in the
theory of electronic structure of crystalline sur-
faces, particularly those of metals.® One stream
has been the analysis of the interacting inhomo-
geneous electron gas for which the nuclei are
treated in lowest order as a smeared-out uniform
background of neutralizing positive charge (“jel-
lium model”). In the more advanced work, the ef-
fects of the discrete lattice on energies such as
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surface energy and work function are entered as
corrections via the use of pseudopotentials in per-
turbation theory. An extensive review of this area
has just been given by Lang.® The other stream of
development is marked by an emphasis on the in-
teractions between the conduction electrons and
the ionic lattice and on the ways in which the
termination (and other modifications) of the crystal
potential at a surface can give rise to localized or
quasilocalized surface states. A major difficulty
with this approach has always been the crucial
question: What is the modification of the crystal
Hamiltonian at a surface? The full answer to that
question involves not only the self-consistent solu-
tion of the electron system in a fixed bulklike ar-
ray of ions (“level one of self-consistency”), but
also the self-consistent solution which allows the
array of ions in the surface region to relax from
their bulklike positions to new equilibrium posi-
tions which may even change the planar symmetry
of the surface and which may vary greatly with
temperature (“level 2 of self-consistency”). In the
absence of such an answer, it is not surprising
that the problem of surface states has been sub-
jected to a multitude of model calculations in
which the content of physical reality ranges from
irrelevant and even misleading to fairly good; we
refer the reader to two recent reviews’ for discus-
sion and evaluation of this body of work and for
further references.

Since the methods presented in AK and AH
achieve results in somewhat different and comple-
mentary ways, we think it useful to devote the re-
mainder of this section to an overview of the major
points of similarity and difference. Both methods
are similar in their applications to nearly-free-
electron (NFE) crystals in that pseudopotentials
are used to treat the electron-ion interaction at a
level of realism approaching that of current stan-
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dards of practice for bulk band-structure calcula-
tions. Both treat the electron-electron interac-
tions at a level approaching that of the best current
work on the inhomogeneous electron gas near a
jellium surface.®® (Our treatment of exchange and
correlation as described below is a bit more ex-
plicit than AH.) In carrying the methods to self-
consistency, neither has been taken beyond level
one; the far more difficult level two of self-con-
sistency remains a future goal. The similarity
between our work and AH, as applied to NFE met-
als, persists up to the expandion of the (pseudo)
wave function in a basis of two-dimensional plane
waves (2DPW’s) to account for the translational
symmetry of the surface. For local pseudopoten-
tials, used by AH, the one-electron Schrodinger
equation in this mixed representation becomes a
set of coupled ordinary differential equations in
the remaining spatial coordinate z (normal to the
surface), each member of the set belonging to a
given 2DPW. AH then numerically integrate this
set of coupled equations between the vacuum re-
gion and a matching plane two or three atomic
planes deep into the crystal where the integrated
wave functions are matched to bulk-wave functions.
Since the principal focus of AH is on the self-con-
sistent charge density near the surface, they do
not investigate individual states; indeed their cal-
culation explicitly omits consideration of the eva-
nescent waves of the bulk-band structure which
would have to be matched to surface-state wave
functions (this omission is not essential to their
method and has been lifted in a subsequent paper®).
Because the step-wise integration of a small set
of coupled linear differential equations is a rela-
tively fast procedure, in terms of computer time
required, the AH method is very quick.

In Sec. II we describe our method in some detail,
but here we briefly summarize the important
points of contrast with the AH method. Since we
are interested in the band structure of the thin
film, we focus on the high-symmetry points and
lines of the SBZ, where the 2DPW’s are collected
into symmetrized 2DPW’s transforming according
to the various irreducible irrepresentations of the
groups of the planar wave vectors k. The remain-
ing z variation of the Schrodinger equation is ex-
panded in a set of basis functions that approximate
the vanishing of the electron wave functions in the
vacuum region, so that the Schrdodinger equation
becomes a matrix eigenvalue equation. Thus, un-
like AH our method can as easily accomodate non-
local potentials as local potentials. Indeed, for Li
which has no p-like components in the repulsive
part of its pseudopotential, a nonlocal potential is
greatly preferred'® and we use such a potential in
AK and the present work. Furthermore, the solu-

tion of the matrix-eigenvalue equation of the thin
film for the negative eigenvalues yields the com-
plete band spectrum of the film—surfacelike and
bulklike levels together—without intermediate
steps such as calculating evanescent waves of the
bulk and matching procedures. These intermediate
steps introduce the possibility of inadvertent er-
rors, and a thin-film calculation such as ours pro-
vides a valuable independent check. To illustrate
the nontriviality of this point, we cite our collabo-
ration with Caruthers in a series of thin-film cal-
culations for aluminum?!! which yielded surface
states which were apparently missed in an earlier
evanescent-wave-matching calculation.'? The oc-
cupied surface states of crystals are of obvious
interest. Even the surface state levels lying be-
tween the Fermi level and the vacuum level (which
are the only surface states found in the monovalent
NFE metals) are of interest in that they are indi-
cators of the crystal potential near the surface;
Lundquist et al.'® have recently proposed a com-
bined photo- and field-emission experiment that
can probe such unoccupied surface states. As a
final point, we note that thin-film calculations such
as these can answer questions of interest for thin
films per se, e.g., trends in the band structure of
films as they become progressively thicker,!’ and
possible band-structure effects in the quantum-
size effect of thin metal films.*

II. FORMULATION

In this section we summarize our method as it
applies to NFE metals, with particular application
to the (001) surface of lithium in the bee structure.
We consider a film of N, atomic (001) planes, tak-
ing the origin of our coordinate system midway
between the two surface planes and the coordinate
z to be along the surface normal. Vectors perpen-
dicular to the surface normal will be distinguished
by an over-bar, e.g., T=(x,y) so that ¥ =(F, z).

To make use of the symmetry under reflection in
bulk (001) planes, we take N, odd, N;=2n,+1, so
that our film origin coincides with a z-reflection
plane. Since reflection in this median plane is a
symmetry operation for the film but does not ef-
fect F coordinates, we can discuss planar and z
symmetry separately. (For an example of a case
in which T and z symmetries are necessarily inter-
twined, see the treatment of an fce (111) film in
Ref. 11c). For the (unreconstructed) bce (001 film
of lattice constant ¢ and N, odd, we denote the
positions of the ions by ¥(1, 2,) = (I +x(1,), x,(1,)) q,
where T=(l,, 1,) and the I, are integers with ||
<n,. The planar origin is chosen at an ion in the
median plane so that %(Z,) =(0, 0) for I, even (“A
planes”) and X(1,) =(3, 3) for I, odd (“B planes”).
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The z coordinate of an ion is given by x,(l,)
=3[1,+s(1,)], where s(l,) is the cumulative frac-
tional displacement due to relaxation.

In Fig. 1 we display the two-dimensional surface
unit cell (SUC) of the diperiodic lattice F(I) =Ia
and the associated SBZ; the diperiodic reciprocal
lattice vectors we denote by Gz =(m, ,m,)21/aq,
m’s =integers. For the T variation we may expand
the pseudo wave function of wave vector k in the
SBZ in a set of 2DPW’s of the form

(F|k+G) = (NG, ~V/2eik+O" T | (2.1)

where we invoke periodic boundary conditions in

T with a total of N SUC’s included and where @, is
the area of a SUC (here @,=a?). Whenk lies on a
point or line of high symmetry, we construct sym-
metrized-2DPW’s (S2DPW) transforming accord-
ing to the required irreducible representations
(irrep) of the group of k; the Appendix summarizes
the group theoretical notations and results we re-
quire here.

We deal with the remaining z variation of the
wave functions in a plane-wave manner also. But
now we have to treat both the approximately bulk-
like behavior in the pseudopotential in the deep
interior of the film and the strong deviations from
bulk behavior in the selvage'® region. We define a
length L sufficiently large that for our purposesthe
electronic charge density is negligible at z=+L.
The three-dimensional film unit cell, defined by
the right parallelepiped whose cross section is the
SUC and whose z extent is in principle + «, is thus
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FIG. 1. Surface unit cell (SUC) and surface Brillouin
zone (SBZ) for bee (001). For the SUC, dashed lines
depict projected edges of the conventional three-dimen-
sional primitive unit cell; the origin is chosen with
atoms of A planes (solid circles) in the center of the SUC
and atoms of B planes (open circles) at the corners.
(The x axis corresponds to a bulk [100] direction and
y to [010].) For the SBZ, the points T, X, M, and lines
A, T, Y of high symmetry are labeled according to the
scheme in Ref. 2a. The sampling points in the irreduc-
ible %th part used in the present calculation are shown,
with the boundaries of their proximity cells shown by
dashed lines.

assumed to be truncated at z =+ L, and we assume
that the z variation of the wave functions can be
adequately expanded in the following truncated set
of even and odd functions which vanish at z=+L:

(z|kS)=L"?cosklz, k}=(2n-1)1/2L
2z z

s ) (2.2)
=L"Y%gink7z, k;=(2n)n/2L ,

where n=1,2,3,...,n,. The number n; of these
functions required will depend, of course, on the
size of L, which in turn depends on the number of
ionic planes N, in the film and on the size of the
assumed length of the outer selvage; as reported
in AK, we found for the 13-layer Li (001) film that
it was sufficient to take an outer-selvage of the ex-
tent of three unoccupied atomic planes at each sur-
face (2L =424), and n, = 30.

The full basis functions are products of an even
or odd function of z from Eq. (2.2) and an appro-
priate S2DPW:

(7,217 +G, k) =(T|j (k +G)x(z|k7), (2.3)

where the label j is a compound label standing for
the full specification of the S2DPW. (See the Ap-
pendix.) Expansion of a crystal wave function of
a given symmetry j° at a given k in terms of the
appropriate basis functions

(86, 5°) = 2 17°(6+G, k2)e(G, k35K, 5) - (2.4)

leads to a matrix eigenvalue equation of the usual
kind

D (Hoqr = Eboqr)cla’;k, j9)=0 (2.5)
al

[where a =(G, k2)] of dimension n;Xng, where ng
is the number of S2DPW’s kept in the truncated
basis set (nz as large as 7 along the A, ¥, and &
lines in the present work, corresponding to |G|
<4rn/a). Equation (2.5) may be solved by standard
methods.’® The Hamiltonian is of the usual form
(Ry a.u., 7=2m =3e%=1)

H==-V%+V,, (2.6a)
where
Vos=Viee * Viep s (2.6b)

so that the kinetic energy matrix elements in Eq.
(2.5) are diagonal:

(=Y =[[K+G [+ (BS)?] b0q’ -

The repulsive potential V., was chosen for our
Li calculation as follows. We took a bulk-crystal
pseudopotential to be a superposition of nonlocal,
but energy-independent atomic pseudopotentials of
the form
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Ups(—f, F/) = U(-f‘)ﬁ(-f - —fl) + Erep(pu(-f)(pls(?’) ’
(2.7

where the atomic potential v(¥) and the 1s core
wave functions ¢,(f) were calculated with the
Herman-Skillman program.!” The parameter E.,
was adjusted so as to bring the bulk gap at the N
point (3, 3, 0) into approximate agreement with the
first-principles results of Callaway'® and Ham'®;
for the lattice constant a =3.449 A =6.518 bohr
which we adopted,'® we chose E.,=4.4884 to give
AyE=E(N,)- E(N,’)=0.209 Ry. In all our subse-
quent calculations, the film repulsive potential
was

Vo, £ =0 4.4884¢,(F - F(T, 1)

T.i,

Xpyo(F/=F(1, 1)) . (2.8)

The initial thin-film potential was also chosen
as a superposition of atomic pseudopotentials of
the form (2.7). The local potential v(»), however,
required further adjustment to deal with the prob-
lem of 2s exchange. The 2s electrons in the p'/3
exchange potential add a very long tail to the atom-
ic potential; this appears, for example, as a pro-
nounced shoulder on a graph of —rv(r)vslog,,”» ex-
tending from about » =1.0 to 2.3 A before rv(r) re-
sumes its regular decay. The result of the 2s-
exchange tail is to yield a narrow but large nega-
tive peak in the Fourier transform

v(f(’)=9;‘fdarv(ﬂe“i' ?, Q,=3a3, (2.9)

which does not effect the bulk band structure ex-
cept for an over-all shift [ given by v(K =0)=-5.2
Ry.] because the bulk reciprocal-lattice vectors
lie beyond the peak. For thin films, however, the
smaller k,’s of Eq. (2.2) will sample this peak and
bias the initial film eigenvalues toward unphysical-
ly large negative energies relative to the vacuum
level. With the exchange peak in v(K), the Fermi
level below the vacuum level yields a work func-
tion an order of magnitude too large, an error
which the relatively small surface dipole layer
cannot correct. Since the error lies in superpos-
ing atomic p'/® potentials, which are not additive
because of the overlap of 2s contributions from
near-neighbor atoms, and since the self-consistent
calculation for the film will treat the extended
valence charge distribution properly, we obtained
a starting potential by adjusting the amount of
atomic 2s-exchange contribution to »(r) as follows.
First, we calculated an atomic potential v;(r)
from the Herman-Skillman charge density, using
both the ¢, and ¢,, wave functions to calculate
the Coulomb contribution but only the ¢, functions

to calculate the p'/? exchange contribution; this
gave v;(K=0)=-0.7334 Ry. Second, we calculated
v (r) by deleting 2s contributions to the p'/? ex-
change potential entirely from the Herman-Skill-
man program; this gave v;;(K =0)=-1.0941 Ry.
For the calculation reported in AK, we estimated
that a weighted average ¥ of v; and v;; such that
V(K =0)=-0.877 Ry would yield a fairly good ap-
proximation to the experimental value 0.183 Ry
reported for the work function.?° The actual value
found in the AK film potential was —E;=0.257 Ry.
Although there is considerable uncertainty in the
experimental situation regarding the work function
of lithium,®¢ we began our series leading to self-
consistency with a new weighted average adjusted
upward such that V(K =0)=-0.800 Ry. (Interesting-
ly enough, it developed that our self-consistent
potential has an interior average very close to the
initial potential in AK.)

With a given local part of the film potential V
and the repulsive potential V., of Eq. (2.8), we
calculate the crystal states having energies near
or below the vacuum level at a set of sample k
points in the SBZ; the 12 independent sample
points we used are shown in Fig. 1, with each sur-
rounded by a proximity cell whose boundaries are
shown by dashed lines and whose relative area is
proportional to the weight given the contained sam-
ple point. The valence charge density?! is then ob-
tained, in units of -, as

o, 2)=23 wl©)
3

*§ 10

[u(F, 23k, 7%, 8) |7,
(2.10a)

where the occupied levels are determined by a cal-
culation of the Fermi level E such that

D 0l Ep- E(, j8)],
k joB

L p—
Ny Zya = 2“; w(k) Z

(2.10b)

and for our 13-layer Li (001) film N, Z,, =13. In
Eqgs. (2.10) the first sum is over the independent
sample k points in the }th irreducible element (IE)
of the SBZ, with w(k) the weight of the sample
point equal to the relative area of its proximity
cell in Fig. 1. The second sum is over the star of
k and serves to symmetrize the result so that

p(F, z) has the full two-dimensional symmetry of
the film (here T, of C,,). The last sum is over the
occupied levels of symmetry j°, with 3 the band
index if more than one (k j°) level is occupied.
(Several levels were close enough to each other
and to the Fermi level that they were entered in
the last sum with a fractional, rather than unit,
occupation number.) The charge density, as well
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as the local part of the film potential, may be re-
solved into Fourier components as

p(F,2)=) prla)et® T

=2 _p5l2)Fg, (T) (2.11)
and K
pzle) = D pa, cosqz (2.12)
where q
Fg,(F)=) €T (2.13)

*ap

and g=nn/2L, n=0,1,2,...,2n,;.** In Eq. (2.11)
G, is a prototype G vector in a particular star of
two-dimensional reciprocal wave vectors; the
functions Fg(T) are thus (un-normalized) basis
functions transforming as the T, irrep. (the first
12 such functions are tabulated in the Appendix,
since they arise in multiplying out the S2DPW’s
used in this calculation). We calculated pz (z) by
writing a computer program that accumulates the
various contributions to each G component obtained
by multiplying out the 2DPW’s from each product
of S2DPW’s occurring in

2

[0 (K, 7% 8)y = 2 |5°(K+G, k)c(T, &, i K, 50 B)
G,k$

this was done on a uniform mesh along z, which in
this work was 20 intervals between adjacent ionic
planes.

With the charge density in hand, we may then
calculate the local part of the crystal potential
Ve resulting from an input local potential Vine
as a sum of three parts

Vout = peore | VCoul. + VXC

loc

2.14)

Here the individual components are, respectively,
the fixed potential of the neutral ls-ion core, the
Coulomb potential arising from the Hartree poten-
tial of the valence electrons and the array of com-
pensating protons, and the valence exchange-
correlation potential. V' is the superposition of
neutral ion-core potentials calculated with the ¢,
wave functions from the Herman-Skillman program
and the compensating pair of protons in each core;
if we define the bulk spatial average of a local po-
tential as being the spatial average over two in-
terplanar intervals in the center of the film,

(V>bulk5% j:dz Vs (2), (2.15)

then we have (V&) =v°*(K =0)=-0.270 Ry.

(Although we keep V' fixed in the present cal-
culation, we consider it to be a part of the “output”
potential to facilitate comparison with the input
potential.) The Fourier coefficients of the Cou-
lomb potential are given by

VE" =81(G*+¢%) [ pg, -8 (G, 7)/@,L], (2.16)
where pg, is obtained by numerically inverting
(2.12), the symmetrized film structure factor is
given by

2mgqa
2

"34
8(G,q)=1 +22 cos

m=1

+2cos(aG,)cos aG,)

"3B

x 3 cos[s @m-1)(ga)],

m=1

2.17)

2n, 4 is the number of A planes (excluding the cen-
tral plane) and 2n,, is the number of B planes in
the film. The (0, 0) component V§%" is found by
taking one-half ** of the ¢— 0 limit of Eq. (2.16).23

The final contribution to Vi is the exchange-
correlation potential V*. As intimated in Sec. I,
we treat this in a local approximation, as did AH.
We differ on the particular local approximation
used. AH chose the Xa potential in the form
V*@)=F[p()]"’?, although they did not report
their choice for the factor F. We chose to use the
Wigner interpolation form as used by Lang and
Kohn?®

xe _ 9 (Pey)
V= o (2.18)
where
€x. ==0.916/r(p) - 0.88/[r (p) +7.79], (2.19)
so that
4pAl/3 1 2/3
v =_gapis - 3B0 , 3BCP (2.20)

1+Cp1/3 + 1 +Cp”3 23

where A =0.916(4r)'/3, B=0.88(7)"/3, and
C=1.19(n)"/3. The G =0 component of p(F, z) is
the dominant contribution in a NFE metal. We
write

p(T,z)=p5(2)[1+D(TF,z2)], 2.21)
where B(T,2)=37p5(2) e'®"" , Pz (2) =p5/P3,

and the prime on the sum indicates that the G=0
term is omitted. The function (T, z) is a small
quantity, and we evaluated the G components of
V* by expanding the various terms of Eq. (2.20)
in Taylor series in (¥, z) to third order and col-
lecting terms. For example,
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(z)eiG'-'r_

s o1
pr) 2= p5(2)5[1+3

“M

- pamm(u B35 ()] + 3 [$Pg (2)

where
Ps —Z Pg(z

and the prime on this sum means neither G’ nor

G -G’ may be zero. These expansions yield V¥(z)
in an adequate approximation since the maximum
Pz (z) is 0.04, and a numerical Fourier inversion
of Eq. (2.12) with V¥(z) replacing pz(z) gives us
the film Fourier transform V¥ required in con-
struction of the Hamiltonian matrix.

With Ve determined, we compare it with the
Vk,c which generated it, in order to assess the de-
gree of self-consistency of the input potential and
to seek guidance on how to improve the input po-
tential so as to more closely approach self-con-
sistency. The improvement of the input potential
from the information contained in its output poten-
tial is not a trivial matter, and we devote the re-
mainder of this section to this subject. In bulk-
band-structure calculations that go beyond use of
linear response and a dielectric function to achieve
self-consistency, the standard procedure is itera-
tion or some simple modification of iteration—
usually a linear mixture of input and output poten-
tials of one stage (‘old”) to give the input potential
for the next (‘new”)

55‘_(;'(2)

Vo mew) = (1 - @)V (old) +aV™(old), 0<a<l.

(2.23)

We found, as did Lang and Kohn® and AH, that
iteration in surface calculations is a highly un-
stable procedure as far as the G =0 components of
potential are concerned; as experienced by AH,

we found that the G #0 components converge rapid-
ly with iteration. AH did find a modified iteration
of the form (2.23) for G =0 would converge in their
method, if @ were taken as large as 0.9 in the
first iterations and going down to as low as 0.6 in
the last few. We believe that their success in us-
ing this kind of iteration depends in large part on
forcing the inner selvage region to terminate ab-
solutely at the matching plane between the second
and third or the third and fourth atomic planes.

It may be possible that some of the success of

iteration is due to the complete neglect of evanes-
cent waves on the bulk side of the matching plane,
justified in AH on the grounds that the bulk poten-
tial obtains immediately on the bulk side of the
matching plane and, implicitly, on the grounds
that no occupied surface states should appear in
monovalent NFE metals such as sodium.

As did Lang and Kohn® we did not find iteration
in any simple form to be a usable procedure, and
we had to discover more artful means of approach-
ing the self-consistent G =0 component of the po-
tential. Before taking up a discussion of our pro-
cedure we should point out two interrelated
sources of the instability under iteration. First,
very small changes in the selvage charge density
give rise to large changes in the (extended) sur-
face dipole layer, causing large changes in the in-
terior bulk potential relative to the vacuum. In
the outer selvage where p is very small, the
Coulomb potential is negligible whereas the ex-
change potential is still quite large (the cube root
is a great enhancer). The second source of insta-
bility is the “antiscreening” effect of the exchange
potential; the increase of charge density in the
outer selvage lowers V% there, tending to draw in
more charge rather than expelling charge as the
Hartree term does.

In light of our experience with the calculation
reported here, we would divide the approach to
self-consistency into two stages. The initial stage
is concerned with getting the potential roughly cor-
rect in all three regions—bulk, inner selvage, and
and outer selvage. The procedure we actually used
in this initial calculation was a rather ad hoc com-
bination of averaging V3 (z) functions and splicing
together pieces of such functions obtained from
different domains of z; we do not especially rec-
ommend it and we shall not describe it further. A
procedure we do recommend is that adopted in
Ref. 11 whereby the bulk potential (already as self-
consistent as possible) is continued up to the nom-
inal surface plane; this bulk potential is modulated
in the inner selvage by multiplying by the factor
[Vess (+0) = Vetr (2)] /[ Vetr (+20) = vegr (=)] drawn from
the calculation of Lang and Kohn,® and the poten-
tial in the outer selvage is obtained by matching
the jellium potential smoothly with the modulated
bulk potential in the inner selvage. (This, of
course, means that exchange and correlation
should be treated in the same way as Lang and
Kohn.) This procedure has the advantage over the
initial potential in AH that the Friedel oscillations
are to some extent synthesized into the initial po-
tential, and if necessary the jellium edge of the
Lang-Kohn potential can be shifted relative to the
nominal surface plane so as to include the best
initial estimate of the dipole layer, as was done in
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AH. The second stage of our procedure bears a
slight resemblance to the procedure of Lang and
Kohn, except that we focus on the potential rather
than the charge density. Starting with a reasonably
approximate potential V4" and its output potential
VO, we form a new input potential V42’

=(1- V9" +a, V4" and calculate its output V¥%;
a, is chosen according to the degre of agreement
between V81 and V¥' with a typical value of
0.85 near the end of the series. Next, another in-
put V¥ =1 - a,V0? +a,Vi? is formed with a,
chosen so as to give an error [V43)(z =0)

- V€3 (z =0)] approximately equal and opposite to
[v42)(0) - v¥2(0)]; a typical value corresponding

to the above a, is @,=0.97. Finally, the improved
approximate potential is calculated as V%‘“

=(1 - V4% +a, V8 with @, chosen so as to make
V44 (2) as level as possible in the bulk region;

for example by choosing a, such that

ayi2) oy U3
1l1-a )< Ve > +a <—Y9—-—>
bulk 9z /vuk

where (> °), . is defined by Eq. (2.15). In Sec.
III we present and discuss the results of our cal-
culation for the unrelaxed 13-layer Li (001) film.

2

III. RESULTS AND DISCUSSION

We begin the presentation of results with the
potential, since the agreement between input and
output potential provides the criterion for judging
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self-consistency. Figure 2 displays the first six
Fourier coefficients Vz(z) of the final total local
input 2 potential which is self-consistent to within
0.001 Ry over all values of z. The maximum
error of +0.00105 Ry (output higher than input)
between input and output values of V3 (z) for this
potential occurs at the nominal jellium edge
z/3a=6.5, and the error has fallen to +0.0006 at
z/3a="17.0. A region of about +0.0008-Ry error
extends from z/3a~6.0 (outer plane) to 5.0 (first
subsurface plane). Over the rest of the film the
error is less than 0.0005 Ry in magnitude, and in
the region |z/3a|< 1.5, the error oscillates in
sign with amplitude about 0.0001 Ry; the bulk
averages of the input and output are (VEV), .
=-0.872005 Ry and (VS'"™), , = =0.872055 Ry.

The rapid achievement of self-consistency in
the G #0 components is illustrated by the fact that
on the scale of Fig. 2 these components of the
self-consistent potential could not be distinguished
from those of either of the two initial superposi-
tions of atomic potentials mentioned in Sec. II;
consequently, we need no further discussion of the
G #0 components of potential. In contrast, al-
though the G =0 components of the self-consistent
potential [labeled (00)F] and the superposition of
atomic potentials used in AK [labeled (00)I] agree
closely in the bulk region, they differ substantially
in the selvage region. Their bulk averages in the
middle of the film are (V5;), , ==0-8770 Ry and
(V5 Poui = —0.8720 Ry. On the other hand, over
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most of the outer selvage region the self-consis-
tent V5 (z) is seen to agree closely with the
jellium result LK (for which (V )., ==0.609 Ry)
obtained by linear interpolation for »,=3.209 from
the Lang-Kohn tables.®® The slight disagreement
near z/3a=9.5 is to be expected because our
choice of basis functions forces the charge density,
hence VU + V** | to vanish there. Near the
jellium edge, the lattice aspect of the crystalline
potential causes it to deviate noticeably from LK.
In the innerselvage region, the self-consistent
potential V3 (z) show effects of Friedel oscilla-
tion to a degree greater than the jellium result.
The LK curve at z/3a =5.7 dips to 0.006 Ry below
its bulk value. On the other hand, relative to the
corresponding points in the center of the film [for
which V3 (z)=Vg(z £3a) to within +0.0015 Ry for
-2.5<z/3a<2.5], Vzp(z)is displaced downward
by about 0.029 Ry at the first ionic plane
(2/3a=6.0), downward about 0.020 Ry midway be-
tween the first and second plane, upward about
0.004 Ry at the second plane, and upward about
0.006 Ry between the second and third planes. At
the third plane and midway between the third and
fourth planes the potential is well within the
£0.0015 Ry variation but then drops downward
about 0.003 Ry at the fourth plane (z/3a =3).

The three local contributions to the self-con-
sistent potential V3 (z) have the following bulk
averages: (V%) . ==0.2700 Ry, (V)
=-0.1340 Ry, and (V3°),, =-0.4681 Ry. (V§™), .
is to be compared with the dipole-layer potential
found in jellium, which is -A¢ =-0.143 Ry based
on linear interpolation for »,=3.209 from the im-
proved values in Ref. 8c. The nonlocal repulsive
potential is not easily represented in a figure
such as Fig. 2. Its effect can be seen by the fact
that the lowest energy level in the self-consistent
13-layer film is E, (T}) = -0.5004 Ry; the plane-
wave diagonal matrix elements of the repulsive
atomic potential of Eq. 2.7), (K|vip|K), vary
slowly from +0.3749 Ry at K =0 to +0.3034 Ry at
Kp=(0.6)2r/a. Compare E (T}) with (V3" Vyui
+ (V™Y ke + VE Ypui +(0Vrep|0) = =0.4972 Ry. The
Fermi level relative to the vacuum level is
-0.2726 Ry for a work function of 3.71 eV. This
value is to be compared with the first-order
pseudopotential corrected value 3.30 eV by Lang
and Kohn® and the two “standard” experimental
values for polycrystalline samples, 2.32 and 3.1
eV, cited by them. At least part of the larger val-
ue of our result probably arises from our choice
of the E,, parameter; we will return to a discus-
sion of this point toward the end of this section.

We next take up the charge density. In the self-
consistent potential for the 13-layer Li (001) film,
the 12 independent sample points of Fig. 1 yield

78 independent occupied levels (seven of which are
within ~0.005 to +0.002 of E, and are treated with
fractional occupation numbers). Figure 3 displays
the resulting charge density p(F, z) from the mid-
dle of the film outward to z = L for six typical val-
ues of the planar coordinate T. Comparison of
this p(T, z) with that in AK reveals marked differ-
ences. The sharply rising barrier presented by
the non-self -consistent potential V3, severely
distorts the charge density in AK, raising the
charge density to values significantly greater than
the proper bulk values over most of the volume of
the film, mainly as a result of forcing charge den-
sity from both inner and outer selvage regions in-
to the bulk region. In contrast, the self-consistent
potential produces a charge density which displays
a large Friedel peak between the first and second
surface plane over much of the SUC; the Friedel
peak reaches its maximum value of about 2.55
electrons per a® immediately behind the surface
atom.

In Fig. 4 we display the G =0 component of
p(T, z), which is the planar average, and for com-
parison the jellium result interpolated from the
Lang-Kohn tables.®® In the bulk region, ps(z) os-
cillates about the bulk average of 2.0 electrons
per a® with an amplitude of about 0.09 electrons
per a®. The major Friedel peak appearing between
the first and second ionic planes rises to a value
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FIG. 3. Pseudocharge density p(T,z), in units of —e
per a3, for selected values of F. Locations of A planes
are denoted by vertical solid lines, B planes by dashed
lines.
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FIG. 4. Planar-average (G =0 component) pseudo-

charge density p,(z), in units of —e per a®. The Lang-
Kohn result for 7,=3.209 is shown as a dotted line.

of 2.300, which is to be compared with 2.108 for
jellium. Thus we find an excess in the Friedel
peak of 0.192 above the jellium peak, so that in
contrast with the result for sodium in AH the
crystal Friedel peak is not simply the superposi-
tion of the jellium peak of 0.108 on the bulk-
crystal interplanar value of 2.09. It is seen that
the wavelength of the Friedel oscillations is not

commensurate with the interplanar spacing. This
lack of registry appears to give rise to significant
structure in pz(z) at least as deep as the fourth
atomic plane, which is marked by a pronounced
minimum where a jellium minimum closely coin-
cides with a bulk-crystal minimum.

The redistribution of charge in the neighborhood
of the surface may be better appreciated by refer-
ence to Fig. 5 which shows charge-density con-
tours over the first quadrant of the SUC from the
jellium edge at z/a =3.25 to z/a =2.40 just inside
the second ionic plane. The upper left octant con-
tains the charge-density contours at the indicated
value of z/a, while the lower right octant gives
the contours for a corresponding bulk-like plane
between z/a =+0.5. The dashed diagonal line
separating the two octants is a reflection plane
[(1T10)] of symmetry of the film, and the heavy
diagonal line marks the intersection of a {111}
face of the bulk Wigner-Seitz cell with the contour
plane. We see that the surface “smoothing” re-
distribution of charge, invoked in 1941 by
Smoluchowski ?° to help explain the dependence of
the work function on the density of packing of the
exposed face, causes the charge density to differ
from that of the bulk not only in magnitude but by
pattern as well.

Figure 6 displays the two-dimensional band

T éézfsézg\%;\\é
X2 N

FIG. 5. Contour plots of pseudocharge density p(T, z) from the jellium edge at z/a =3.25 to z/a =2.40, just inside the
first subsurface plane. The contour lines are at equal intervals of —e/10 per a3. Each frame represents the first quad-
rant of the SUC (Fig. 1), with the upper octant (above the diagonal dashed line) showing the contours at the displayed
value of z/a and, for reference, the lower octant showing the “bulk” contours drawn from the center of the film (jz/a|
=0.25). The heavy diagonal line passing from upper-left to lower-right side marks the intersection of the {111} faces

of the Wigner-Seitz cells with the various contour planes.
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FIG. 6. Band structure of the self-consistent thirteen-layer Li (001) film. For the horizontal axis, the wave vector
is in units of 27/a. The z symmetry of the states is labeled by the + signs around the border. The planar symmetry
along the lines A, ¥, and T is coded by the number of dots in the breaks in the lines (e.g., along ¥ two dots denote ¥,),
except for the uppermost region around M where the density of bands prevents labeling. All the T states are T';. The
X states can be determined by the compatibility relations X;—~A,, ¥, and X;—~A,, ¥,. The lowest six M levels are
doubly degenerate M! or M;, and above these are Mj, My, M}, M{, My, My, My, Mj, M;, M, Mj, and M;.

structure (up to vacuum level) which follows from
the self-consistent potential. As in AK, the two
lowest X levels, X and X;, correspond approxi-
mately to the lowest bulk levels at (43, 0, 0) in the
infinite crystal. The levels in the densely popu-
lated region above these correspond roughly to
increasing k, in the infinite crystal. In the bulk,
this quasicontinuum at X would extend up a level
degenerate with the lowest M level, which in
turn corresponds to the bulk N point (3, 3, 0).
However, in the present case there is some ques-
tion whether the X ; and X states at the very top
of this quasicontinuum are bulk or surface states;
we will return to this question below. Above this
band there is a gap of 0.212 Ry to an X level
corresponding to the (3, 0, ) gap of 0.209 Ry for
the bulk crystal. Within the gap are two surface
states X which are nearly degenerate. (We will
return to the discussion of the surface states be-
low after completing our discussion of the bulk-
like aspects of Fig. 6.) The lowest £, branch
leaving the lowest M, level corresponds to the
lowest-bulk-energy band running directly from
(-3, 3,0) to (-1,0,0); at M, it becomes exactly
degenerate with the lowest T, branch which cor-
responds to the lowest-bulk-energy band running
directly from (0, 0, 0) to (3, 3, 0). The branches
above these also correspond roughly to increasing

k, in the bulk crystal, up to the dense accumula-
tion at and near M at about -0.05 Ry which cor-
responds to the onset of both bulk N, states and
the doubly degenerate bulk P, states.'®

A comparison of Fig. 6 with the 2D band struc-
ture reported in AK reveals two principal differ-
ences in the bulklike bands. First, as mentioned
above in connection with the charge density, the
sharply rising surface barrier of the initial po-
tential unduly confines the electrons in the 2z di-
rection, Thus, although the lower edge of the
band structure in Fig. 6 and in AK agree quite
well (i.e., effective k,~0), for given k the higher
bulklike bands (effective k,>0) lie significantly
higher in AK than in Fig. 6. The result is that in
AK E lies significantly higher (relative to the
bulk-band structure as given by the lowest T,
and M) than does E in Fig. 6. For both band
structures the band width of the lowest T, is
E,(M;)-E,(T';)=0.249 Ry, but whereas Fig. 6
has 92% of this bandwidth occupied (in fairly close
agreement with Ham!?and Callaway'®) AK has 99% of
the bandwidth occupied. The second principal dif-
ference between Fig. 6 and AK is that the self-
consistent potential gives rise to substantially
greater splitting between X 7 and X J bulklike levels
of the same parity o. This is essentially a size
effect, inasmuch as in the infinite crystal the X}



and X J levels coalesce into degenerate pairs;
these irreps differ simply by a translation from
cube center (origin of SUC) to cube corner (corner
of SUC), but in the infinite bcc crystal, cube cen-
ters and corners are indistinguishable.

Returning now to the surface states, we note
that in the passage to self-consistency from the
initial potential in AK the X, surface states of AK
have been depressed to the lower edge of the X
gap, and X, surface states have descended out of
the bulk band above and down into the X gap to a
level of about -0.117 Ry [actually, -0.1176 for
(X ), and -0.1166 Ry for (X;),]. To illustrate
the development of this result, we have calculated
the states at X in a linear mixture of the potential
of AK and the self-consistent potential such that

Voo (2)=(1 = a) V5 (2) + a V5 p(2) . 3.1)

Figure 7 displays the evolution of the X states as
a varies from 0 to 1. (It is interesting to note
that the size-effect splitting of the bulklike X
levels in the lower bulk band appears to be larger
around ¢ =0.8, rather than for the self-consistent
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FIG. 7. X energy levels for a 13-layer Li (001) film
as a function of the mixing parameter o, where V(a)
= a V(self-consistent) +(1 —a)V (initial). X, levels are
given by dashed lines, X, levels by solid lines, with the
even z symmetry labeled by +.
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potential.) Here the (X;),, (X;), pair of surface
states descends more or less steadily with the
increase of @. On the other hand, the (X{), pair
of surface states develops rather slowly for the
first-half of @, and then it begins to descend
rather rapidly for the second-half of @. Note that
there is a domain of a for which both X, and X,
surface states are well defined in the gap.

In Fig. 8 we show the spatial behavior of the X
surface state and for comparison that of the near-
est bulklike X[ state below it in energy. The
normalized surface state (X;), reaches its maxi-
mum magnitude of 1.55 at ¥/a=(0, 0) and z/3a
~6.4, i.e., just outside the surface ion; for this
T, the magnitudes of the wave function’s peaks
are in the proportions 1.55:0.68:0.31:0.15. By
contrast, the bulklike state (X 1" ); reaches its max-
imum magnitude 0.95 at ¥/a= (3, 3) and z/3a=3.0,
and the peaks show no marked pattern of surface
localization. Note that since we have fixed the
planar origin ¥=(0, 0) to coincide with an atom in
the central plane, the surface state labeled by the
irrep X, here for the 13-layer film would also be
labeled X, for films of N, layers thickness for
which n,=3(N, - 1) is even and the surface plane
therefore an A plane. For films with a B surface
plane (n, odd) the same surface state will be
labeled X,. In both cases the irreps correspond
to wavefunctions with nodal planes normal to k
and bisecting the line connecting nearest-neighbor
atoms in the surface plane.

The status of the states (X;),, (X;), is at pres-
ent equivocal. Recall that the lower-X bulk band
extends up to the level of the lowest M, for in-

z/}a

FIG. 8. Plot of the surface state (Xj), and bulk state
(X}); wave functions in a 13-layer Li (001) film for
selected values of T (in units of a). (To save space, the
curves are overlapped so that the ¥ =+0.5 line for one
curve coincides with the ¥ =0 line for the next one
above.) The location of A planes is marked by solid
vertical lines, that of B planes by dashed lines. The
wave function is normalized to unity in a volume 2L x a2,
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finitely thick films. On this basis, the fact that

in the self-consistent potential both these X,
states in the 13-layer film lie below the lowest-
M, level suggests that they lie in a bulk continuum
of the same symmetry and could therefore be no
more than surface resonances. On the other hand,
in such thin films the bulk bands are not really
continua, and there may be size effects which will
allow such X, states to rise above the lowest-

M level in a thicker film. In the self-consistent
13-layer film these X, states do appear to show
some slight degree of surface localization. In
Fig. 9 we show these wave functions for ¥/a

=(3, 3) and from z=-L to L. The even function
has peak magnitudes in the proportions 0.78:0.71:
0.62, which suggests some possible degree of
surface localization. The forced node at the me-
dian plane in the odd function enhances the ap-
pearance of surface localization; its peak magni-
tudes have the proportions 0.97:0.76:0.42. For
infinitely thick films, the surface-state pair of a
given planar symmetry could be resolved into even
and odd combinations of two surface states local-
ized separately on each of the two surfaces. Fol-
lowing that line of thought, we also plot in Fig. 9

z/ta

FIG. 9. Plot of the even (X3), and odd (X3); wave
functions from the bottom of the X gap and their normal-
ized sum for ¥/a =(},3). A planes are denoted by full
circles, B planes by open circles. The wave functions
are normalized to unity in a volume 2L xa?.

the normalized sum of the two X, states in ques-
tion. The sum function shows a striking localiza-
tion on the right-hand face of the film; the peak
magnitudes have the proportions 1.23:1.05:0.74:
0.46:0.20:0.12. This resultis very suggestive of the
fact that these X, states retain their surface
character in the self-consistent potential; how-
ever, one should remember that a sum of an even
and odd function having peaks at about the same
places will show some reinforcement on one side
and cancellation on the other. Further work will
be required to settle the question of these X,
“surface” states.

To conclude, we return to the problem of the
work function. Our result of 3.70 eV is 0.4 eV
greater than the first-order lattice-corrected val-
ue of Lang and Kohn for the (001) face and 0.6 to
1.4 eV greater than the two polycrystalline ex-
perimental values cited by Lang and Kohn. Al-
though the wide discrepancy between the two ex-
perimental values suggests that the experimental
situation is less than satisfactory, in retrospect
part of our large value for the work function is
probably due to not making an optimal choice for
Ep in the atomic repulsive part of the pseudo-
potential. As stated in Sec. II, our calculation
used a value E,, =4.4884 Ry, which for the adop-
ted lattice constant a=3.449 A gave A, E =0.209
Ry for the N,.-to-N, band gap in the bulk. For a
plane-wave diagonal matrix element at the Fermi
wavevector, we have (K, |vip|K; ) = Ewep| (K plty) 2
=Erp 0.0676 =0.3034 Ry, at our adopted value of
E.p. However, if we had chosen E., so as to
match Ham’s band gap AyE =0.219 Ry (interpo-
lated to a=3.449 A),'° the value would be Ep
=4.633. We would then have (K, |vrep [K,) =0.3132
Ry, which represents an upward shift of 0.14 eV.
If we had chosen Er;, so as to match Callaway’s
gap AyE=0.232 Ry,'® E,;,=4.832 and (K ;| vwep|K )
=0.3266 Ry, which represents a shift upward of
0.32 eV. Thus a fit of our pseudopotential to
Callaway’s band gap would move our work func-
tion to within 0.1 eV of the preferred Lang-Kohn
value and to within 0.3 eV of the larger of the two
experimental values. The remainder of the dis-
crepancy may be accounted for by the fact that
our band width (both in the bulk and thin film) is
0.025 Ry less than Ham’s'® or Callaway’s.'® This
appears to be caused by the fact that our core po-
tential, taken from atomic structure calculations,
is stronger than the Seitz potential® which is con-
structed to fit atomic term values.
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APPENDIX: SUMMARY OF GROUP THEORY NOTATIONS FOR PLANAR SYMMETRY OF Li (001)

The character tables for the bee (001) irreducible representations (irreps) are as follows:

C,4,(4mm)
T'M E 2{c,[001]} c3001] 2{m(100)} 2{m(110)}  compatibility
T,M, 1 1 1 1 1 A, 5, Y,
5, M, 1 1 1 -1 -1 A, 5 ¥,
T,M, 1 -1 1 1 -1 3,5, Y,
r,M, 1 -1 1 -1 1 2,2, Y,
T, M, 2 0 -2 0 0 A +4, T, +2, Y, +Y,
C,,(2mm)
X(3,0) E C3[001] m(010) m(100) compatibility
X, 1 1 1 1 A, Y,
X, 1 1 -1 -1 A, Y,
%, 1 -1 1 -1 A, Y,
, 1 -1 -1 1 i, Y,
Cy4(m)
05 & maoo)
m(110)
3, %,% 1 1
3, Y, 5, 1 -1

The summary of the unnormalized fully sym-
metric (T, irrep of C,[4mm])planar basis func-
tions for the bcec (001) surface are shown below:

*Gp
FCP(T)E Z eiler s
c
where (m, n)=G,a/2n, and C(x) =cos2nx/a. (In
order of increasing magnitude of G.)
FOQ(T): 1)
F],o(F)ZZ[C(X)‘*'C(y)J 3
F,(F)=4Cc(x)C(y),
Foo(F)=2[C(2x) + C(2y)] ,

Foy(F)=4[C(2x)C(y) + C(x)C(2y)] ,
F,(T)=4C(2x)C(2y) ,
Fyo(F)=2[C(3x) +C(3y)] ,

Fy,(F)=4[CBx)C(2y) + C(2x)CB3y)] ,

Fyo(F)=2[Cdx)+C4y)] ,

Fq,(F)=4[C4x)C(p) + C(x)C(4y)] ,
(F)=4Cc(Bx)C3y) .

The symmetrized two-dimensional plane-wave

basis functions (S2DPW’s) are shown by T:k
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=(0, 0)2n/a. Only the T, irrep has levels below the
vacuum level for the Li (001) film. The basis
functions are the normalized F (T) above: e.g.,

T, (00)) = [00) = @, V2Fq
[T, (10)) = (4@,)"V2F,, etc .

M:k=(3, 3)2n/a. In the present application, the
lowest levels belong to the two-dimensional irrep
M,; basis functions for the first partner are
given as follows, where B,=1,h=3+n,h’'=3+n’,
7n’'s integers:

|M,(kR),,) = L[(|hh) = [RR)) + B;(|k ) = |RH))] ,
M (hR'),y) = 5[([hR") = [RED)) + B(|R k) = [RR))] ,
|M,(hR), = L[(|k'R) = |R'R ) + Bs(|R'R) = [R'R))] .

If required, the second partner can be obtained by
changing the row-column indices on the left as
11-21 and 12 - 22 and by changing on the right-
hand side gy~ -1 h—~h’, and 2’ ~h. Partner one
has nodes along the lines x=0 and y =+3q; part-
ner two, y=0 and x=+3a.

Levels belonging to the M, and M, irreps exist
above the Fermi level and below the vacuum.
Their basis functions are given by the following,
where i=1,4 and 8, =1, g,=-1:

[M, (RR)) = 3[(|hk) + [RR))+ B (|hR) + [RW)] ,
M, (kh') =8Y2[(|kh') + |RR") + |R'h) + |R'R))
+B;(|rR") + |[RRYy +|h'R) +|R'R))] .

M, has nodal lines x=%3a and y =+3a; M,, x=0 and
y=0.

A:k=(£,0)2n/a, 0<£ <. For h=£ +integer, n
=integer #0; |A,(k0) = |k0) ; |A,(hn) =2"V2
x[|hn) +|h7)]; |B,(hn) =27V3[|hn) - |h7)]. &, has
no nodal lines; A, y=t3a.

X:k=(3,0)27/a. Only X, and X, levels lie below
the vacuum level in Li (001); for % =} +integer,
n=integer #0, and i=1, 3 with g, =1, B;=-1,

IR, (RO) =22[|n0) + B;|R0)], and |X,(kn)) =3[(|hn)
+|r7m))+B;(|h7 ) + |h7))]. X, has nodal line x
=+3a; X,, x=0.

Yk=(¢)2n/a,0<E <. Forh=%+nh'=3%
+n’'(n, n' integers which may be equal) and 3,
=1, By=-1, [T, h') =2"Y2[|Rh") +B;|hR)]. ¥,
has nodal line x=x3a; Y, x=0.

T:k=(,£)21/a,0<E< 5. For h=§£+n,h'=¢
+n'(n, n’ integers and n#n’), |Z,(kh) = |hh),

[, (kR =27V2[|hh") + [R'B)]; S, (hh') =272
x[|nh") - |h'R)]. T, has no nodal lines; £, x=y.
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