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X-ray excitation of surface plasmons in metallic spheres*
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The cross section for excitation of surface plasmons by x rays is calculated for a free-electron gas
confined to a small spherical region and surrounded by a medium having constant dielectric
permittivity &0. The free-electron gas is described in the hydrodynamical approximation, and first-order
perturbation theory is used to calculate the transition probability for inelastic scatter. The analogous
cross section for volume-plasmon excitation by x rays is also calculated using the hydrodynamical
model, and it is compared with a result obtained by Ohmura and Matsudaira using the random-phase
approximation. The ratio of cross sections for surface-plasmon and volume-plasmon excitation is also
determined.

I. INTRODUCTION

A fast charged particle interacting with a
bounded metallic medium will excite both volume
plasmons and surface plasmons, as is well known
from characteristic energy-loss experiments. '
Such energy-absorbing processes (i.e. , plasmon
excitation) are also important when photons inter-
act with this type of system. The purpose of this
paper is to assess the importance of surface-plas-
mon and volume-plasmon excitation in the inelas-
tic scattering of x rays.

The impetus for the present work was provided
by the experiment of Miliotis on volume-plasmon
dispersion in beryllium targets, and by the ex-
periments of Koumelis et al. ' on the inelastic scat-
tering of x rays from colloidal graphite particles,
where the energy loss of the photon was attributed
to surf ace-p1,asmon excitation.

We calculate first the cross section for volume-
plasmon excitation in the inelastic scattering of a
photon in a free-electron gas described in the hy-
drodynamical approximation, and compare this re-
sult with the result calculated by treating the free-
electron gas in the random-phase approximation.
We next calculate the cross section for surface-
plasmon excitation in inelastic photon scattering
for a dilute collection of small spheres imbedded
in a dielectric medium with the spheres modeled
as a free-electron gas. The results are used to
compare the relative magnitudes expected for vol-
ume-plasmon and surface-plasmon effects in x ray
scattering experiments.

II„ is the Hamiltonian for the electromagnetic field,
and V describes the interaction between the elec-
tron gas and the electromagnetic field. Following
the hydrodynamic approach of Bitchie and Wilems,
the interaction term may be written

(~) —A( ) -0( )) i(R2HlC, C

where the integration is over the volume of the
system. The constants e and»~ are the electron
charge and mass, respectively; c is the speed of
light; A(r) is the vector potential of the electro-
magnetic field; p(r) is the hydrodynamic momen-
tum; and n(r) is the hydrodynamic density. For
the case of photon inelastic scattering, the inter-
action term reduces to'

V' = 2 d'rn(r) A(r) ' A(r)
2'H2C

As long as the frequency of the incoming photon is
much greater than the plasma frequency, the term
linear in A in Eq. (2) may be neglected. '

The equations describing the system are now

written in the second quantization formalism. The
expression for n(r) is given by

n, ak' "'

where ~ is the volume of the system, ~ is the
equilibrium electron density in the electron gas,
br(bf ) is the plasmon annihilation (creation) opera-
tor, and ~„ is related to the plasma frequency co&

=(4vn, e (m)'~' by

II. CROSS SECTION FOR VOLUME-PLASMON EXCITATION
2 2 p2$2(d y

—(dp+ (5)

For a large volume containing a free-electron
gas and an electromagnetic radiation field, the
Hamiltonian may be written

H=H, +H„+ V

where H, is the Hamiltonian for the electron gas,

For Eq. (5) to correspond to the Bohn-Pines dis-
persion relation for the volume plasmon, we take
(i=(r~) v~, where vF is the Fermi speed of the
electron gas of density ~."

The vector potential can be written in terms of
annihilation and creation operators, cI ~ and c ~ ), ,
for photons of wave vector s and polarization X.

10



10 X-RAY EXCITATION OF SURF ACE P LASMONS IN ME TA LLIC. . . 555

The unit vectors e~ &, for X =1 and 2, define the
two polarization directions for the field and, with
s, define a mutually orthogona, l set of vectors.
With the photon frequency given by &, = sc, the
vector potential is given by

S/2
A(r) =Q e; &„e' (cN, 1+ cw, 1) (6)

s, )„(ds&

With Eqs. (4) and (6), the matrix element of V'

between an initial state with one photon of wave
vector s, polarization X, and a final state with one
plasmon of wave vector k and one photon of wave
vector s', polarization X', is given by

(0
l

c~. , 1.bf V'c~1 0)
2 27]2@3 4' g/2

The transition rate for the process, y&;, for the
given initial (subscript i) and final (subscript f)
states is obtained by using the standard golden rule
formula from perturbation theory, z&; = (2w/5)
x i Vf,. l 5(E& —E;) where E;(8;)isthefinal-(initial-)
state energy. The transition rate is thus

m'e hk (u',
'Yy = 2 (ew', 1' ' 4, 1)

'&&'& (d~(dpi (d@3

x ~s, N .1 5(~& —&~ —&A)

If we now sum the transition rate over final states
and divide by the incident photon flux through a,

given area for an unpolarized incident photon beam,
we arrive at a differential probability for scatter-
ing a photon into solid angle dA (at an angle 8 from
the incident photon direction) due to volume-plas-
mon excitation. This differential probability is
given by

(12)

to the lowest order in k .
The results found in the analysis here may be

compa, red with the work of Ohmura and Matsudai-
ra, ' who treated the electron gas in the ran-
dom-phase approximation. From their Eqs. (2. 5),
(2. 5'), and (5. 2), the differential scattering cross
section for volume-plasmon excitation is (with
A=1)

2
do'~~ e V(d), , „,2 k

2 2 4(e 'e)
dA 4m sic

d& z

where U is the sample volume. The vectors e and
e' are the polarization vectors of the photon in the
initial and final states. The simple integration in
Eq. (13) may readily be performed to yield

2

G~ 8'F NPc (14)

If this expression is summed over final-state po-
lariza, tions, averaged over initial-state pola. riza, -
tions, reduced to a differential probability by mul-
tiplication by a/ V, and then denoted dP „,/dA]o„,
we have

2
&d~ —(dy

1 P +(d ~(d 1
(d (dy (dy 2

Thus the forward scattering intensity (i.e. , around
8= 0) is nonzero, and the scattering probability
increases quadratically with 9 for small 8. If k is
also small so that &u&= &u~ and ~,» &u~ (as for pho-
tons in the x-ray region), Eq. (11) reduces to

dPv g & @&y ~(d (ds
5 2

CN 32Ã (R (dp (d&
dQ OM ( p dQ E~ (9)

(15)

x —— e~ )„' eg)t 9

where (R= e /2ao, ao —= ff /me, a =- e /fic, a is the
thickness of the target along the incident photon
direction, and (kc/&~) is given from energy and
momentum conservation by

2 2

+ [4&d~((d~ —Cthe)/(dp] s111 p 8 . (10)

For the unpolarized incident photon beam we find

For small-angle scattering of the photons
(8«1), the differential probability may be written

n S(d~ a(d~ ~a
5 2

dQ 32Ã (R c (dp

To the lowest order in k, exact agreement is pre-
dicted by Eq. (15) for these two differentapproach-
es. Further discussion of x-ray inelastic scatter-
ing within the context of the linear-response theory
may be found in a recent paper by Kliewer and
Raether 8

III. CROSS SECTION FOR SURFACE-PLASMON
EXCITATION ON A SPHERE

The calculation of surface-plasmon excitation on
a sphere in photon inelastic scattering is carried
out in basically the same manner as the volume-
plasmon excitation described in Sec. II. The same
interaction term V' [Eq. (2)] is applicable, and the
vector potential is given by Eq. (6), but a different
n(r) is required.

The density operator is obtained by quantiz-
ing the scalar potential on a sphere and
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where j((pro) is the sPherical Bessel function of
order l, k=

I s —s' I, and (8» 0„}specify the direc-
tion of k.

The differential cross section da(/dQ for exciting
a surface plasmon in an angular momentum state
l, energy %or, by scattering of a photon into solid
angle dA about the incident photon direction is ob-
tained from the sum over final states of the transi-
tion rate divided by c/z. We find

O'r „3w &oCO& ~u Vs-= 2'rr Q tip
dQ c && +s

f j((~ro) Z Y( o(8»(((&(() (19)
(2f+ 1}'

ep l+ j. +l &aP

where s& is defined by S, -=g„.(e N, „. ~ e[( ~)o.

From the addition theorem for the spherical
harmonics (see Appendix) we have

Q Y, o(8o, ([o[() =(2l+ 1)/4(( (20)

Equation (19) thus reduces to

cl & 3p +pve ~co (ds Rr
(dp (d

(2l+ 1), (f 1),f
A'(& o) (21)

connecting this quantized scalar potential to n(r)
through Poisson's equation. The use of Poisson's
equation is appropriate for the case of small
spheres where the effects of retardation are ex-
pected to be negligible. This procedure, shown in
detail in the Appendix, leads to the density-fluctu-
ation operator for a sphere of radius x„

6(r —ro) ~ 2((boo(

(we, ~ [c,(l ~ () ~ (]',)
x(2l+1) Y, o(8, p)(b, ([+f(, &), (16)

where Ep is the dielectric constant of the medium
surrounding the sphere. The spherical harmonics
Fr„~'s are defined in the Appendix and

2
2

eo(l+ 1)+ l

The 6 function in Eq. (16) indicates that the po-
larization charge resides only on the surface of
the sphere. The quantity b( o(b( o) is the annihila. -
tion (creation) operator for surface-plasmon mo-
mentum states on the sphere.

The calculation of V&& for an initial state with
one photon of wave vector s, and a final state with
one photon of wave vector s' and one surface plas-
mon in an (f, m, P) momentum state, yields

2vhei( 2((Sro(o((2E+ 1)
mu (u,(o, [ao(l+1)+ f]

x (e~, ; ~ eq „)j(()'oro) Y(~o(8» P,), (16)

(2l+ 1)'
(f 1) f

j((& o) (22)

for excitation of a surface plasmon in the angular
momentum state l. For an unpolarized incident
photon beam, & J,S, = —,

' (1+coso8).

IV. COMPARISON OF SURFACE-PLASMON AND
VOLUME-PLASMON EXCITATION PROBABILITIES

Consider two targets of the sa,me material with
plasma frequency ~~. One target is assumed to be
solid, with a thickness a along the direction of the
incident photon beam, while the second is made up
of spheres of radius r, and density X, with the
same target thickness. The ratio of the surface-
plasmon excitation probability for the target com-
posed of spheres [Eq. (22)] to the volume-plasmon
excitation probability for the solid target [Eq. (9)]
is given for an unpolarized photon beam by

QPr QPyp
dn dn

(2l+ 1} j( (pro)
(o, —(u, oo(f+1)+f ()'oro)' (23)

For (o, » ((o„(oo), (([o= (([~, and pro«1, we find that
for the f = 1 surface-plasmon mode (dipole term),

p(=9(+((roN)/(2t'o+1) =9F/(2&o+1) ~, (24)

where the small argument expansion for j ((Pro) has
been used. The constant F is approximately the
fraction of the target volume that is occupied by
the spheres. For a typical value" F= 10, which
is consistent with the incoherency assumption,
p( = 0. 02 for &o = 1 (vacuum).

There seems to be no experimental data avail-
able in the literature from which cross sections
comparable to those displayed in Eq. (22) may be
inferred. It is hoped that future experimenta. l
work might be done using colloidal suspensions of
metallic particles, or using techniques developed
by Kreibig" for forming sma. ll metallic spheres in
glass media, , so that x-ray inelastic scatter on
surface plasmons may be studied in detail.

One of us (R.H. R. ) would like to acknowledge
the kind hospitality of K. Alexopoulos, D. M.
Miliotis, C. Koumelis, and D. Leventouri, during
which helpful conversations about the experimental
work described in Refs. 2 and 3 were held.

Consider now a target composed of spheres of
radius xp distributed at random in a dielectric
medium with an average number density ¹

As-
sume N is small enough so that the scattered fields
add incoherently. If the target thickness in the
direction of photon incidence is a, the differential
scattering probability is given by

&&r 1 3& a &o~r &s= ~ n %au, ()
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APPENDIX: SURFACE-PLASMON OPERATORS FOR
SPHERKAL SYSTEMS

J r&a
gr( ) R2r»r/per (A2)

With gr(R) = R', 4 is continuous across the surface
~= R. The real spherical harmonics are defined
in terms of the Legendre polynomials P, by

& (&1 ~ ()(l — )!)"'
4)r(f + rrr) |

xp, (&&»)x
I I I, (A&)

where

Pr(x)-=(1 —x') i' ~ P, (x)m 2 m/2 (A4)

and E is defined by &0=1 and e =2, m)1. This
form for the spherical harmonics may be found in
Ref. 12.

These spherical harmonics satisfy the orthogo-
nality relation

J dQ Yr&(&r (8& C') Yr'!»'r&'(8& &) = 5r, r' 5m, »&' 5( ~
r' & (A 5)

where dQ is the solid angle. They also form a,

complete set as indicated by the equation

~l p ~, & ~imp ~', &'
l =0 m=0 p=~l

= 5(((r —(rr') 5(cos 8 —cosH' )

The addition theorem

(A6)

P, (cosy} =
f Q Q Y; ~(8, (rr) Y, ~(8', &P'), (A7)

+ m=0 P=~1

where cosy-=cosHcosH'+ sinH sinH' cos(&P —(H'),

provides the useful sum rule
l

(8 ))r
2f+ 1

(A6)

The potential, Eq. (Al), is a solution of La-
place's equation at all points in space except on the
surface of the sphere. From Poisson's equation,

For a. sphere of radius R, the electrostatic po-
tential due to a superficial-charge-density distri-
bution may be written in terms of the real spheri-
cal harmonics Y, r,(8, (H) as

()o

C(r, f) =Q Q Q Ar p(t)gr(r) Y, r,(8, (H), (Al)
l=0 m=0 p=kl

where

This charge density is composed of two parts.
With the contribution to the charge density due to
the material inside the sphere denoted by p', and
that due to the material outside the sphere by p",
we ma,y write

P=P +P (All)

This charge density will be different from that for
a sphere in vacuum due to the depolarizing effect
of the surrounding medium. From simple electro-
statics considerations the contribution p" due to
the surrounding medium of dielectric constant c0
is given by

p' =—P Ar ~ [eo(l+ 1)+ l] Y, ~(8, (p) R' ' 5(r —R)
lmP

(A13)
The energy in the fields inside the sphere,
may be calculated from

Wr; = 2 J dVp'(f (A14)

where the integration extends over the volume of
the sphere. We find

Wr; =—Q [eo(l+1)+ f] R "A, q
imp

(A15)

The energy due to particle motion in the sphere
will be calculated from an examination of the mi-
croscopic equations of motion. We assume that
electrons are bound isotropically to randomly lo-
cated positions in the sphere with a single force
constant m(d0. This model may be generalized to
a many-oscillator system. If ( is the displace-
ment of an oscillator of frequency (d0, charge e,
and mass ~22 from its equilibrium position, we
ha,ve

~0

&+(d, $ = —(e/m)E; =(e/m) V(f&. (A16)

where the subscript i indicates that 4 and K are
the potential and the electric field inside the
sphere. The charge density p' is related to the
displacement vector through

p' = —errov. Ã8(R- &)], (A17)

where ~ is the density of the oscillators. If fT' is
the surface-charge density, then o'5(r —R) = p', and

we have

(r' = —erroe„~ $]„rr (A16)

p" = — P Ar ~ Y, ~(8& (I)) (l+ 1) R' 5(r —R)
7r imp

(A12}

and thus

@ = —4'2lP

it can be shown tha, t

(AQ) where e„ is a unit vector in the direction of in-
creasing r. Equation (A16) thus leads to

p =—Q Ar ~ Yr ~(8, (P) (2f+ 1) R' ' 5(r —R) . (A10)
m imp

0' + (000'
e' 84.

82 '9J r=R
(A19)
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If we introduce the definitions 4& -=g, p4, p and
c' =K& p&r'r~, we find

Z 8',
p Id 0', y+ 4 pF, q/R") =0 (A20)

re m

Using Eq. (A12) we can relate o',~ to A, p by

A, pF(„p=4vcr', p/[co(1+1)+ l] R' ' (A21)

and find from Eq. (A20)

~ ~ 2 lQ
2

+re+ &0+ ) 1 ) ~i' = 0 (A22)

~ e e-1
2 u@tmp

)~p m (dp
(A25)

No solution to the homogeneous equation is in-
cluded since it will add only a constant term to the
energy. With the equations derived above we may
calculate the total kinetic plus displacement ener-
gy for the oscillators in the sphere, 8'p, as

where &u~p=4vnoe'/m. Equation (A22) may also be
written in the form

2~re+ &r ~rmp

with

(di = GPO+ [l&dp/eo(l+ 1)+ l] (A24)

Note that this equation may be written" e+ [(l+ 1)/l)
x to = 0, where e = 1 + uPp/(&uo —&u, ) is the dielectric
permittivity of the system of bound electrons which
we consider.

A particular solution to Eq. (A16) is given by

The total energy for the particles plus the fields,
Wp+ W~= W, is given by

W= 2 g (1 —e) [co(l+ 1) + l] R '
8~+p re

x (~&mp+ &iAi~p) (A27)

For &uo =0, Eq. (A27) gives the energy density
for the free-electron gas, and new coefficients,
b, p and bf p, defined through the equations

Ag p=(n, /2(u, )(b, p+ b~ p)

+imp p & ol (bump bimp)

give

(A 26)

W=, P(1 ~)[~,(1+1)+l]ft"'
»&p re

+t & (blrapb1mp+ bJmpblmp)
2 &

(A29)

If the 5's are now interpreted as boson operators,
i.e. , b,~p- b, mp (an operator) and himp- b, mp (an
operator), and write, assuming &o, -0,

n, = {6mb'(u', /[e (l + 1) + l] R "}'~ (A30)

Eq. (A29) becomes

W=Q Ku, (b', pb, ,+ —,')
rfnp

(Asi)

From Eq. (A10), the number density n = —p/e may
be written as an operator in the form

1 ~ 2v@u,
4ve ~ fl'[~, (1+1)+I]

, Q [eo(1+ I)+I]ft"'(I —e) (A~ p+(u20A', „p) .
8'ttp re

(A26)

x(21+ I) 5(r R) F, —p(8, &P)(b, p+ 5] p)

(A32)
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