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The influence of the surface on the photoassisted field emission from a metal is studied theoretically
for two simple models of the solid. First, we consider the model of a half-space square well for the

metal, and solve exactly for the current density after ignoring the Schottky effect. Next, we take into
account the effect of the image charge, and calculate the current density in the %KB approximation.
Numerical results based on the calculations are compared with the recent experimental data on
photoassisted field emission from tungsten. Areas of agreement and discrepancy between the theory and

experiment are pointed out and discussed.

I. INTRODUCTION
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FIG. 1. Schematic representation of the process of
photoassisted field emission. The incident photon has an
energy Sco& which is less than the target work function tII).

&~ denotes the Fermi energy and F is the applied electric
field. (a) Image-charge effect has been ignored. (b)
Image-charge effect is included, and this leads to the
rounding of the barrier at s = 0.

Field emission and photoemission have
proved extremely useful in recent times for ex-
ploring the electronic density of states near the
surface of a metal with and without adsorbates.
The two methods are combined in photoassisted
field emission (also called photofield emission),
in which a metal is irradiated with photons of en-
ergy S~ & Q, the target work function, and the ex-
cited or "hot" electrons are extracted by applying
an external electric field E. The process is shown
schematically in Fig. 1. Interest in photofield
emission stems from the fact that it may be used
to explore the electronic band structure of the tar-
get material in a region not normally accessible to
photoelectrons. Also, the extreme surface sensi-
tivity of field emission should make the process a
powerful tool in chemisorption studies. Several
experiments on photofield emission from tungsten
samples have been reported recently. ' We wish
to explore, in this paper, the role of the surface
in photoassisted field emission to see if surface
makes an important contribution to the emission
process. An electron can absorb a photon only in
the presence of a potential center to take up mo-
mentum. The large potential variation near the

surface uf a metal can lead to the absorption of
photons by electrons. By "surface effect, " we de-
note the process where the potential variation near
the surface is responsible for photon absorption.
Such surface effect has been studied previously in
connection with ordinary (h&u & g) photoemission.
Here we investigate the influence of the surface on
the current density and the electronic energy dis-
tribution in photoassisted field emission.

Our study is primarily motivated by the experi-
ment of I.ee, ' who irradiated tungsten close to
the (310) plane with photons of two different ener-
gies, and measured the total energy distribution
(TED) of excited electrons tunneling in the applied
field. Certain features of his experimental data
are hard to understand in terms of the usual the-
ory of photoassisted field emission. " Neumann's
theory" regards photofield emission as a two-
step process whereby an electron is first excited
by a photon and subsequently tunnels out in the ap-
plied electric field. But the excitation of an elec-
tron to a real intermediate state, for a given pho-
ton energy, is possible only for electrons of very
special initial energies. For photons of energy
less than the work function of the target material,
the excited electrons have relatively large mean
free paths in the solid. Consequently, the crys-
tal momentum 0, i.e. , electron momentum re-
duced to the first Brillouin zone, should be con-
served for electronic excitation in the bulk. But
an examination of the energy band structure of
tungsten' shows that a direct interband transition,
for a given excitation energy z 3.5 eV, can occur
only for very specific electron momenta k. The
experimental data, ' on the other hand, indicate a
fairly smooth TED for the excited electrons. To
a fir st order, the TED of the excited electrons
looks like the TED of the unexcited electrons shift-
ed through the photon energy. The one difference
isthat, inthe TED of the excitedelectrons, the lead-
ing or high-energy edge appears to be much less sharp
than in ordinary field emission. It would seem, from
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the experiment, that electronic transitions not al-
lowed by the k-conservation rule can possible occur
in the photoassisted-field-emission process.

This suggests that surface may play an impor-
tant role in photoassisted field emission, because
its presence breaks the translational symmetry of
the problem and permits nondirect transitions to
take place. The possibility of having non-k-con-
serving or nondirect transitions in ordinary pho-
toemission has been suggested previously, ' but
such transitions are presumably not needed to ex-
plain the experimental data. '4 Photoemission with
photons of energy large compared to the work
function of the target metal is dominated by the so-
called "volume effect " as defined by Mahan. "
Such processes conserve the electron momentum
and give rise to direct transitions. But an addi-
tional contribution to the photoemitted current
density comes from the surface effect, ' where a
photon is absorbed in the vicinity of the surface
because of the large potential variation there. The
surface effect in photoemission was calculated by
Adawi. 6 It becomes increasingly important near
ihe threshold for photoemission, and recent experi-
ments have confirmed the existence of the pro-
cess. The present work is concerned with the cal-
culation of a similar effect in photoassisted field
emission. We should point out that a qualitative
interpretation of his experimental data in terms of
the surface photoelectric effect was proposed inde-
pendently by Lee. "

The interesting point about the surface effect is
that the momentum normal to the surface is no
longer a good quantum number, and it need not be
conserved in a transition. There is thus the pos-
sibility of certain nondirect transitions occurring
through the mediation of the surface. If we as-
sume the surface effect to be the dominant pro-
cess in photofield emission, we can readily obtain
a qualitative understanding of the recent experi-
mental data, ' which shows no dramatic difference
between the TED curves of excited and unexcited
electrons. Such an assumption, as we argued be-
fore, may not be physically unreasonable in view
of the fact that few direct transitions are allowed
at low photon energies. Furthermore, simple
model calculations are possible for the surface ef-
fect in photoassisted field emission to determine
its influence on the energy distribution of emitted
electrons. A comparison of the theoretical line
shapes with the experimental TED curves should
indicate how important the role of the surface is
in the photofield-emission process. This is the
point of view we adopt in this payer.

Following Mahan, ' we regard photoassisted
field emission as a scattering process rather than
a two-step process. The theory given in Sec. II
can be looked upon formally as a two-step process,

In order to study the surface effect in photo-
assisted field emission, we choose a simple model
which does not allow for photon absorption in the
bulk of the target. We consider a free-electron
metal which occupies the half-space —I ~z ~ 0,
where I is the normalization length and the z axis
is the direction normal to the surface. The metal
potential with an applied electric field is assumed
to depend only on z, and is written

V(r) = —V, e(- z)+ V,(z)e(z), (2. l)

where 6(z) is the step function and V,(z) will be
specified later. Electrons are assumed to be non-
interacting, and they fill up all states of the metal
up to the Fermi energy e~. Measuring energy
with respect to the field-free vacuum level, we have

&z=k qz/2m —Vo&o (2. 2)

where q~ is the Fermi momentum.
Let us assume that light of frequency (d~ and

wave vector P = ~~/c is incident on the solid. We
assume hu~& Q= —c~, the work function, so that
direct photoemission is impossible. Our treatment
of the electron excitationproblem closely parallels
that of Adawi. '6 Letus denote the initial unexcited
state of an electron of energy 8 in the metal by

, z(rs) = e'"'y (z)/zf, "', (2. 3)

where p is the radial vector in the xy plane, and
E = h —5 K /2m. The momentum K parallel to
the surface is a good quantum number in this mod-
el. The state of (2. 3) is allowed for a given K if
E &- Vo. The unperturbed Hamiltonian Xo of the
system can be written as the sum of an electronic
part and a radiation part,

Ro = K, + K„=—O' V /2 m + V(r ) +P 8m~a &~a~,
'

(2. 4)

but the intermediate state of the electron must
then be regarded as virtual. To simplify the prob-
lem, we assume that the potential of the solid
varies only in the direction normal to the surface,
which we take to be the z direction. The general
theory of surface-induced photofield emission in
this situation is worked out in Sec. II. In Sec. III,
we consider the problem of a half-space square-
well model for a metal with an applied electric
field, and we ignore image-charge effects. We
present an exact solution for the transition proba-
bility of photoassisted field emission in that case.
In Sec. IV we take image charge into considera-
tion, and we solve the problem in the WEB ap-
proximation. The current densities for the two
models are worked out in Sec. V and compared
with the experimental data. A discussion of our
conclusions is contained in Sec. VI.

II. GENERAL THEORY
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where ah (ah~) denotes the annihilation (creation)
operator for a photon of momentum P. The per-
turbation provided by the photon field is (e &0)

'iC'= (e/mc) A ~ p= (-fed/mc)Q(2zhe/P)' 'fl ' '

x (ahe" "+H. c)(eh V ), (2. 5)

where 0 is the volume of normalization, and e~
stands for the polarization vector. Since the po-
tential, by definition, varies only with z, we have
to consider only the z component of the gradient
operator. Accordingly,

X'=
y~ a~e"'+H.c—

P

with

(2. 6)

yh= (-ieh/m)(2zh/(vh)' '0 ' '(eh z), (2. 7)

and z denotes the unit vector in the z direction.
Suppose that, in the initial state, there are n~

photons each of energy S~~, and an electron in
the state gg z(r). Since the radiation momentum
is much smaller than the electron momentum, we
may set p=0 in the phase factor of (2. 6). The
parallel momentum of the electron state is then
unaffected by the incident radiation. As a result
of one-photon absorption, the electronic wave
function, to first order intheperturbation, changes
to

ing to the potential of (2. 1). The Green's function
satisfies the inhomogeneous Schrodinger equation

c
h dE+ 2

—V(z) Gz(z, z')=5(z —z'),
2 pH, dz

(2. 12)

where E =E+ fv~h and V(z)-=V(r) .The boundary
condition on Gz(z, z') is that it must give rise to
outgoing waves for z - + ~. The Green's function
clearly obeys the homogeneous Schrodinger equa-
tion for z 1hz'. Let u(z) and v(z) denote two linear-
ly independent solutions of the homogeneous equa-
tion satisfying the boundary condition of outward
propagating waves for large positive and negative
z directions, respectively. Then,

Gz(z, z') =A(z')u(z), z &z'

=B(z')v(z), z &z' .
(2. 13a)

(2. 13b)

Gz(z, z') = Cu(z&) v(z(), (2. 14)

where z& (z() refers to the greater (lesser) of the
pair z, z . The coefficient C is determined from
the boundary condition on the slope implied by the
5 function of (2. 12):

C = (- 2m/52)[ W(u, v)j

where W(u, v) is the Wronskian

(2. 15a)

The symmetry of the Green's function with respect
to an interchange of its arguments means that we
can write

tr)'g R(r) = gg R(r)+(1),(r),
where

(2. 8)
BA

W(u, v)=u ——v —,
88 Bz

(2. 15b)

Here ()g, h (r, r') is the Green's function for the
Hamiltonian K, at energy $+ 5~~. It obeys the usu-
al scattering- theory boundary condition of outgoing
waves far from the source of scattering. %'e may
decompose it in the Fourier series

and it is easily seen to be independent of z.
The use of Eqs. (2. 14) and (2. 15) in Eqs. (2. 11)

shows that the correction to the electronic wave
function due to one-photon absorption is given in
the limit z-~ by

-2m „, e"'u(z)
41( ) 8.2 4 P L 3/2W( )

Uz
q QEz (2. 16)

(2. 10)
where Gz, „„(z,z') refers to the Green's function
of the one-dimensional problem with the potential
of (2. 1). Using (2. 3) and (2. 10) in (2. 9), we ob-
tain

q, (r) = e™P~y,(z)/J. "',
where

(2. 1 la)

$1 yhnh dz Gz+hs& (z~z ) ( z(z )
(2. 11b)

For this simple model, then, the theoretical
problem reduces essentially to a determination of
the one-dimensional Green's function correspond-

Since v(z) and (t z(z) obey the homogeneous Schrb-
dinger equation in the potential V(z) with energies
E+ h~& and E, respectively, elementary calcula-
tion' *' gives

rdz'v(z'), Pz(z')= —(h~h) '
E

x dz'v(z'), (t)z(z').
BV z')

(2. 17)
The particle current density due to the excited
electrons can be obtained from the relation
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x 5(e —h~~~- 8'K'/2m E) .-
Here, f ($) is the Fermi occupation function

f(&)= I/(e'" "'+1)

(2. 19)

(2. 20)

p= (kzT) ', ko is Boitzmann's constant, and we have
assumed that e —c~»k~T so that no electron is
initially present in a state of energy r. The factor
of 2 comes from spin. We now turn to the calcu-
lation of the matrix elements and the current den-
sity for specific models of the surface.

lll. HALF-SPACE SQUARE WELL WITHOUT IMAGE
C~~RGE: EXACT SOLUTION

We assume the model of an electric field I ap-
plied to a metal which is described by a half-
space square well of depth Vp, and we ignore the
image-charge effect. The problem of photo-
assisted field emission can then be solved analyti-
cally. The potential of (2. 1) in this case is given
by

V(r) = —V, e(- z) —eFze(z), (3. 1)

and it is shown in Fig. 1(a). In Eqs. (2. 16) and

(2. 17), we need the functions u(z) and v(z). Since
we wish to compute the current for large and posi-
tive z, we need u(z) for z &0, where it satisfies
the Schrodinger equation in an applied electric
field. The solutions of the latter are well known '
to be the Airy functions Ai and Bi of appropriate
arguments. The linear combination representing
an expanding wave is

To calculate the total particle current density at
an energy c &a~, we note that the excited electrons
must come from states of initial energy g= z —h(d&,

and we must sum over all such states after multi-
plying the contribution of each by the probability
that an electron is present in the state prior to
photon absorption. The resultant current density
is readily seen to be given by

f(e) = 2 p f (e —h~~)Z, (E,K)
{E,K)

x exp[i ', (2m—eF/h')'~'(z+E/eF)'~']. (3. 3)

For the other, linearly independent, solution v(z),
we choose

v(z)=e '", z &0 (3. 4a)

= o.'Ai (t ) + P Bi($ ), z & 0, (3. 4b)

with q = 2m(E+ h&u~+ Vo)/8 . The continuity of the
wave function and its derivative at z = 0 determines
the coefficients n and P as

and

+=~[Bi (&o) t}Bi(t'o)l (3. 5a)

P = —z [At'($ o) —q Ai($ o)], (3. 5b)

where )o= —(2meF/h )' E/eF, t}=iq/(2meF/I )'
and the prime indicates differentiation with respect
to the argument. In deriving this result, we have
made use of the relation

»(&o)»'($o) —»(&o) At'($o) = o (3. 6)

Note that E p &0 in the geometry of photofield emis-
sion. The Wronskian is now easy to evaluate,
and is given by

W(u, v)=- (2meF/5 )'~o(P+in)/v . (3. 7)

It is now straightforward to calculate the cur-
rent in photofield emission in the asymptotic re-
gion z - ~. For the potential of (3. 1), we have

BV

8g
= Vo5(z) —eFe(z) . (3 8)

Combining Eqs. (3.2)-(3.8) with Eqs. (2. 16) and
(2. 17), we obtain

g, (r) = I'e'"'u(z)/L (3. 9)
z large

where $ = —(2meF/h ) (z+E/eF ) and E=E+ h~~.
This function is proportional to the Hankel function
of the first kind of order —,', and has the asymptotic

21expansion

u(z) - v '~oe ' '~' (2meF/h ) (z+E/eF) '~

u(z)= Ai(g) —i Bi($), z &0, (3. 2) where

I'= (2m/h )(-iek/m)(2vk/u~)' (n~/II)' (e~. z)(h~~) '

(3. 10)

Note that I is expressed entirely in terms of known
functions. The current density arising from elec-
trons initially in the state pe x(r) and excited by
the absorption of photons is given by (2. 18). The
use of (3. 9) in this formula gives

J,(E, K) = ~I'~ L h(2meF/h )' /mv,

(3. 11)
where the asymptotic form (3. 3) of u(z) has been
utilized. The total current of excited particles in
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photoassisted field emission at T = 0 can be ob-
tained by multiplying (3. 11) by the electronic
charge (-e) and integrating over the initial dis-
tribution of electron states. Letting q3= [2m. (E
+ Vo)/h'] '/'&0, the result is

I =21.' '
2 2 (-e)Z, (E, K) . (3. 12)

The factor of 2 comes from sum over spin. The
upper limit on q0 is the Fermi momentum q„and
the lower limit is determined by the minimum en-
ergy E for which an unoccupied final state exists
for electron excitation.

It is instructive to consider limiting cases where
our results can be compared directly with the re-
sults of other theories. First consider surface ef-
fect in ordinary photoemission when h~ & {II) and
I'-0. In this case, E=E+ S{d~&0 for photoemis-
sion to occur, and

(o= —(2meF/h')' "E/eF, (3. 13)

is very large and negative as I' -0. The use of
the asymptotic formulas for the Airy functions '
shows that

Ai(to) —i Bi(go)-zz ' e ' '/' (2rneF/h )
'/'

x (E/eF) exp[i —', (2mE/h ) E/eF ] (3. 14a)

and

Ai l(r4 ) iBir(] ) zzz 1/2e zvr/ 12(2 &neF/h2)z/ 12

x(E/eF)'/ exp[i —', (2mE/h )'/ E/eF] . (3. 14b)

It follows from Eqs. (3. 5) that

xexp[i-', (2nzE/h )' (E/eF )](2&»eF/h )
'

x(E/eF) "'(-z)(k+q), (3. 16)

x(e, e)'(h~, ) '~(2nzeF/h')"'(E/eF)"'

x(k ~q) Ir 3lz/(0)
l l

pe(0)
l

. (3. 17)

It is shown in the appendix that this formula, in

conjunction with Eqs. (3. 11) and (3. 12), leads ex-
actly to Adawi's result. '

Let us consider next the case of photoassisted
field emission in a relatively weak external field

It is possible, then, to compare our result
with that obtained from the %KB theory of barrier
penetration. Since E=E+ 5~~&0 in this case, we

may write $0= &, where

I = —(2meF/h )' E/eF = (2&neF/h )' lE /eF
(3. 18)

and g» 1 if I is weak. The use of asymptotic
formulas ' shows that when g» 1, Bi(g), Bi'(g)
» Ai(g), Ai'(g), and

Bl(g ) ~ (I,
-

1/4/zz 1/2) e22 /3

g&1

Bzr(g ) ~ (g 1/4/zzz/2) e22 /33/2
(3. 19b)

From (3. 5) and (3. 7) we obtain, in this situation,

W(u, U) =- —i(2&rz eF/ri')"' [Bt'(g) —z) Bt(I)]

where k =2mE/h, 'and we made use of the defini-
tion of &I. Substituting this in (3. 10) and taking the
square of the modulus, we obtain

I'l - (2m/h ) (e h /m )(2&zh/o& )(&z&, /A)
P-0

p + i /2 = —zr ( [A i'($ 3) —i Bi'(( 1&)]

r)[»(& o-) z»(&o)—]],
so that

(2meF/h )'/ (p+i/2)/(- z&)
- zz

'/2e ' '/'
p» 0

(3. 15)
1/2 2$ /3

x [(2»zeF/h2)z/3r z/4 —iqI "'] .

Accordingly,

[I/W(u, z/)] ~zze 2 /3[(2meF/h )
/ (2&neF/'h )1/3

q»].

x(IE I/eF)z/2+q2(2&«F/h2) "'(IE I/eF) "'] '

=zze (2meF/h )
' (2nz lE l/h )"/ /(2m V /h 3) . (3.21)

r ' [I/W(u, u)]' y, (O) l', (3. 22)

and the use of (3.21) and (3.22) in (3. 11) gives

Zg(E& K)oo

Ignoring constant terms, we obtain from (3. 10)
xexp ——, @~ 0) ' .

(3. 23)

In deriving this result, we have assumed that the
largest contribution to the matrix element of (2.17)
or (3. 10) comes from the large potential discon-
tinuity at z = 0, and that the additional contribution
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—E —h(k)
Z, (E, K) «(E+ Vp)

0

4 2m '"(-E h~-, )"'
3 h eE

The above equation can be given a simple physi-
cal interpretation. Recalling the Fowler-Nord-
heim expression for the barrier-penetration prob-
ability at the energy E+ h(d~ (& 0) in the configura-
tion of Fig. 1(a),

4[(E + Ip)p+ V,)(-E —h(pp)]
'~ '

D=
Vp

4 2m '~'(-E —h(dp)'~z
p 3 ~2 (3. 26)

we may rewrite (3.25) as

Jd(E, K) Pk (E+ V()) [(E+ Vp)/(E+ h(k)(, + Vp)] D .
(3. 27)

The current density in photoassisted field emis-
sion is therefore the product of an incident elec-
tron flux [ c& (E+ Vp)'~ ] and the Fowler-Nordheim
factor D, multiplied by a kinematical factor [(E
+ Vp)/(E + Vp+ h'(k)(e)]

'~ . The last factor owes its
origin to the conservation of tangential momentum
in our model. For a given total energy $ of an

electron, this factor is the largest for motion in

the forward direction when E —g and R- 0. This
should make the distribution of excited electrons
appear peaked in the forward or tunneling direc-
tion, and some experimental evidence exists' in
support of such an effect. We shall return to Eq.
(3. 25) when we calculate the current densities for
TED curves in Sec. V.

IV. MODEL CALCULATION WITH IMAGE CHARGE:
WKB APPROXIMATION

from the weak external field can be neglected.
Then I Qz(0) I' can be replaced to first order by its
value in the absence of the field, which is given in
the appendix as [cf. Eqs. (A4) and (A5)]

Iez(0) I'=-2(E+ Vp)/Vp. (3. 24)

We therefore obtain

8 z
~ („,,~, e p —'

k(*)d*), * *, (4. 2e)
k z)] z 1

1 z

p k( )d*), *kz] z
(4. 2b)

1 z

( )=(k i p —'
k( )d*),kz] g

1

F g„„ep
'

k(*)d*)
k(z)] Za

(4. 3a)

6 z
~ „„,exp —' k( )dx),[k(z) (4. 3b)

where

and

k(z) = (2m [E —V(z)]/h'] "' (4. 4)

E=E+h~~ . (4. 5)

With the help of the connecting formulas across the
classical turning points, we obtain~~

model was studied in connection with field emis-
sion by Murphy and Good, ' who found that their
results were insensitive to details of the potential
shape close to z = 0.

The problem of photoassisted field emission can
no longer be solved analytically, but WKB approxi-
mation is easy to carry out. Let us consider
first an electron having an energy E for motion in
the z direction such that E+h(up& V ~= —(epE)'~p.
The electron can escape from the metal after pho-
ton absorption by tunneling through the potential
barrier. Let z, and z~ denote the classical turning
points in the surface potential barrier at the ener-
gy E+ h(d~ with z1& z2 The independent solutions
of the one-dimensional Schrodinger equation at
this energy, u(z) and v(z), can be expressed in the
following form:

A z

( )=(
( )(„-,exp i k(*)d*)

1

In this section, we include the effect of the image
charge in our model and study how the current
density in photoassisted field emission is modified
as a result of that. The potential of (2. 1) is now

assumed to be

A= G= (e+ 1/4e),
8 = E = —i ', e —1/4e),

with

(4. 6a)

(4. 6b)

V(z) = —e /4z —eEz, z &0

z &0.

(4. la)

(4. lb)

6=exp —i kz dz =exp Kz dz
z 1 Z 1

(4. i)

In the region near z = 0, it is assumed that the po-
tential is regular and connects smoothly between
the limiting forms of Eq. (4. la) and (4. lb). The
shape of the potential is shown in Fig. 1(b); it has
a maximum value of V ~= —(e E)' The same.

Z(z) = (2m [V(z) —E]/n-'] "' .
The Wronskian is now easily evaluated, e. g. , in
the region z &z2, as

W(u, v) = [6/k(z)] [- 2ik(z )] = —2i(e+ 1/4e). (4. 9)
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Note that the Wronskian is independent of z.
The correction to the electronic wave function

due to photon absorption is given by Eq. (2. 16).
In the current density d, (E, K) of (2. 18), the most
significant energy dependence comes from the bar-
rier penetration factor which is contained in

W(u, ()). The energy dependence of the integral in
(2. 16) is weak, and for the purpose of the numeri-
cal calculation of TED of photofield-emitted elec-
trons, we shall omit this energy dependence. We
then find

&.«, K)" Iy. l'/[w(u, ~)]'=-

(llew.

l')(&'+ l) '

(4. 10)
Since lyoI is proportional to (e~ z) [cf. Eq.
(2. 7)], the current density depends on the polariza-
tion vector of the incident photon through the fac-
tor (e~ ~ z) . This is characteristic of surface
photoelectric effect. Thus, a study of the polar-
ization dependence of the current in photoassisted
field emission will be a good test to see the im-
portance of the surface effect in the emission pro-
cess.

For the model that we are considering here,
the factor 6 has been evaluated by Murphy and
Good. With the definitions (4. 1) and (4. 8), we
have

g2 2 - 8 1/2
2 K(z)dz = 2 —E ———eFz dz .

g
1 1

4z

(4. 11)

We define

y = (e F) '/ IE I= —(e'F)"'/E . (4. 12)

If we let p = 2z/(IE
I /eF), we obtain

I)' g2 4 2m '/' tE ('/2
2

~
Zz dr= —, v y, 4. 13a

1

I.0

05—

0
0 0 I 0 2 0.3 0.4 0.5 0,6 0.7 0,8 0.9 I.O

)t

FIG. 2. Plot of the function v{y} vs y in the region
0 —y —l. See Eqs. {4.12} and (4. 134}for definition.

When the energy E of an electron for motion
normal to the surface is such that E+ ha~ & V ~,
the electron will go over the top of the barrier
after photon absorption, and y will be greater than
unity. The WKB approximation in that case gives
unit transmission and W(u, U)= 1. This is cer-
tainly an error of the approximation scheme, and
improved approximations have been discussed by
Miller and Good. For the present purpose, how-
ever, we believe the WKB approximation to be
adequate, and we assume the transmission coeffi-
cient to be unity for electrons with energy above
the hump of the potential. We turn to the numeri-
cal calculation of the current density in Sec. V.

k()= 2m(e —Ro)(, + Vo)/@ (5. 1)

V. EVALUATION OF THE CURRENT DENSITY

The particle current density in photoassisted
field emission for electrons of energy e in the fi-
nal state is given by Eq. (2. 19). We introduce the
variables kp and qp through the relations

where

1+ (1 2)1/2

~(y)= (2- p-y'p ')"'dp .
4V 2 ) () ))o))iz

qo= 2)n(E+ Vo)/h

We note that 0 «qp «kp because e —h&p= S =E
~ 5 K /2m. Thus, (2. 19) may be rewritten

(5 2)

(4. 12b)
This integral can be expressed in terms of com-
plete elliptic integrals. ' It has been tabulated by
Burgess, Kroemer, and Houston for the range28

0 &y & 1. A plot of v(y) for y in this range is
shown in Fig. 2. We finally obtain

6 =exp 2 Kz dz
1

~(e) = 2 f (e —h(d, )Z ZZ, (q o, K)
qp K

$2 g 2) 7P (5 2)

I et us consider first the model shown in Fig.
1(b). Note that Z, (E, K) of (4. 10) depends only on

qp through 6 . Hence,

4 2 "'(-&-+,)"' ( ') )"')= exp 23 eJ E+ kp

(4. 14)

for y «1. Note that it depends only on E and is in-
dependent of K.

We define

so that

~~()~r o i 5(&o-& —qo) ~

2))2/h

,, K ~(qo)+o
(5. 4)

(5. 5)



10 THEORY OF SURFACE EFFECT IN PHOTOASSISTED FIELD. . . 549

~E
~

= —E —I~, = 0 —h'q p/2m .
From Eq. (4. 14), we obtain

(5. 6) v =qo/ko,

Er = ee+ Vo= k q„/2m,

(5. Ioa)

(5. 10b)

4 2m '~ (fl- If qp/2m)'~
e'(qo) = exp —

o

0 —hq() 2m „ (5. 7)

Changing the sums over momenta in Eq. (5. 4) to
integrals, we readily find

&= @&do/Ee .

Then (5. 1) shows that

kp—- (2 mEr /k )(X—n),

where

(5. 10c)

(5. 11)

j(e)~ f(e —I~o)I(e),
where

(5. 8) X= (e+ Vp)/Er .
It is clear from (2. 20) that

(5. 12)

"qo[ e (qo)+ ]

after carrying out the integration over K.
troduce the definitions

(5. Qb)

%'e in-

I(e)= J' dq, f dK[e'(qp)+ ] 5(ko K qp )

(5. 9a)
f(e —R~~) = 1/(eo" " &' o r'+ 1)

I/(cosy(x I)

Equations (5. 10)-(5.12), when substituted in
(5. 9b), yields

(5. 13)

rnE
I(&)=ok, dv[e'(k, v)+ —,'] '=v, v (X- a)'"

4 2m ' [0—Ez(X —o. )v ] ~ (e F) ~ 1

eF 0 —Ez.(X n)v 2- (5. 14)

The integral was numerically evaluated on a com-
puter with the help of Simpson's rule. 3 For com-
parison with Lee's experiment, we chose the ex-
ternal electric field F=0.23 V/A. Then )V
= (e'F)' '= 1.82 eV. We also chose the following
parameters as being approximately characteristic
of tungsten': Vp= 10.7 eV, F.„=6.2 eV, and Q
= work function= Vp- E~= 4.5 eV. %hen the argu-
ment of the function v in the integrand exceeded
unity, we replaced the integrand by 1, following
the prescription of the %KB approximation as ex-
plained in Sec. IV. The temperature was taken to
be T = 300 'K. A plot of j(e) against the electron
energy relative to the Fermi level is shown in

Fig. 3(a) for km~ = 2.6 eV. Figure 3(b) shows a
smooth line drawn through the experimental points'
for the current density in photoassisted field emis-
sion with photons of this energy. Figure 4 shows
a similar comparison between the theory and ex-
periment for Sf~~ = 3.53 eV. The photon energies
were chosen for a comparison with the experi-
mental data. '

An inspection of the curves of Figs. 3 and 4
shows that, although the theoretical line shapes
qualitatively reproduce the experimental curves,
quantitative agreement is far from striking. There
are three major disagreements between theory
and experiment. The theoretical peaks are nar-

rower than the experimental ones; the leading or
high-energy edges of the curves are steeper in the
theory; and the theoretical peaks lie at somewhat
higher energies than in the experiment. The
widths of the theoretical curves will presumably
increase when factors like instrumental resolution
are taken into account. But the disagreement in
peak location —of the order of 0.25 eV when h(d~
= 2.6 eV, and 0.4 eV when h(d~= 3.53 eV—appears
to be far more serious. This probably shows that
the simple model considered here is an inadequate
representation of a realistic situation with tung-
sten. Possible reasons for the discrepancy are
discussed in Sec. VI.

The numerical calculations reported so far were
carried out within the &KB approximation when we
ignored the energy dependence of the transition ma-
trix element for photon absorption. Although that
energy dependence is definitely weak, it is of in-
terest to see what role it plays in modifying the
curves for the current density. To study this, we
considered the model of Sec. III where the effect
of the image charge is ignored, and the essentially
exact value of J,(E, K) is written in Eq. (3.25).
The total energy distribution of photofield electrons
in this case is jp(e), where

jo(e)"f(e —~~&)~+~.(qo)5(»- &'- q'. )
qp K
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peaks look much sharper than, and are located at
about the same energies as, those in Figs. 3(a)
and 4(a). The leading edge seems to be even
steeper in this model. In sum, the energy depen-
dence of matrix elements does not seem to affect
the theoretical curves in any material way.

VI. DISCUSSION

l.4

l.2

In this paper, we have worked out the theory of
surface effect in photoassisted field emission for
the simple model of a metal represented by a half-
space square well filled up to the Fermi energy
with noninteracting electrons. %e first ignore the
image-charge effect and solve the problem exact-
ly. Next we include the image charge and compute
the current density in the %KB approximation.
The results of a numerical calculation based on the
theory are compared with the available experimen-
tal data on the photoassisted field emission from a
tungsten target. '

Such a comparison is really meaningful if it is
assumed that the surface effect makes the domi-
nant contribution to the current density in photo-
assisted field emission. Based on our knowledge
of the band structure of tungsten, '~ we feel that the
assumption is probably justified. The peak in the
experimental current density of photofield elec-
trons' must then be interpreted as arising basical-
ly from the Fermi distribution. An alternative ex-
planation might be that this is a bulk effect, with
the peak originating in some definite interband
transition which conserves the crystal momentum.
Such an interpretation, however, will be incon-
sistent with Fig. 6, where we show the band struc-
ture of tungsten in the [310]direction by interpo-
lating through three points given by Mattheiss's
calculation. ' The dotted curve and the dash-dotted
curve represent electron energies for direct transi-
tion from band 4 with photons of energy 2.6 eV
(= 0.1913 Ry) and 3.53 eV (= 0.3596 Ry), respec-
tively. A direct transition is allowed when these
curves intersect the upper bands 5 and 6. An in-
spection of Fig. 6 fails to identify any direct transi-
tion that can explain the experimental peak; the
peak arises from electrons which lie very close to
the Fermi level in initial energy. The argument
is not conclusive without the examination of the
band structure in other directions as well, even
though the external electric field preferentially
selects out electrons moving normal to the sur-
face. But a study of the tungsten band structure
in other directions shows that, for photons of en-
ergy lower than the work function, a peak coming
from interband transition close to the Fermi en-
ergy is unlikely.

This point can certainly be clarified with further
measurements using photons of different energies,
and by employing a tungsten target oriented along

I.O

K

P 0.8
0)

LLI

0.6—

0.4

O.2
{ooo) {s~o) {620)

4 (a/m) k

FIG. 6. Band structure in the [310]direction of tung-
sten, obtained by interpolating through three points given
in Mattheiss's calculation (Ref. 12}. The dotted curve
and the dash-dotted curve are obtained by adding to band
4, for each k, 2.6 eV (=—0.19 Ry} and 3.53 eV (=—0.26 Ry},
respectively. The Fermi level is indciated by the dashed
line.

various crystal planes other than (310). Also,
the polarization dependence of the surface effect,
viz. , (e~ 8), is specific, and an experimental in-
vestigation of the polarization dependence should con-
clusively determine the importance of surface ef-
fect in photoassisted field emission.

Our comparison of the model theoretical calcula-
tion with experiment indicates that the theoretical
curves resemble the experimental curves to first
order, but the former are shifted to somewhat
higher energies with respect to the latter. Since
there are electrons present in the metal above &&

due to thermal distribution at a finite 7, it is dif-
ficult to understand why the current density in
photoassisted field emission should cut off exactly
at ez+ S(d~. There may be some question here re-
garding the location of the Fermi level. A closer
experimental investigation of this point seems to
us to be worthwhile.

The theoretical curves will certainly be broad-
ened by instrumental resolution in a measurement.
But the steep high-energy edge found in our calcu-
lation is probably a failure of the model. There
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are two important sources of possible error in the
theoretical computation. Tungsten is not a free-
electron metal, and the exact electron states in

tungsten must have a bearing on the energy depen-
dence of the transition matrix element. The effect
is hard to estimate, but our calculation in Sec. V
with the simple model of Fig. 1(a) suggests that
matrix elements may not have a profound influ-
ence on the calculated current density. The second
problem with our model is that the metal potential
is assumed to have a sharp edge at z = 0. A more
realistic, smoother potential at the surface may
have a large influence on the theoretical line shape.
This point is currently under investigation.

In conclusion, then, we feel that the experimen-
tal determination of the importance of surface ef-
fect in photoassisted field emission is of great in-
terest. Such a determination can be based on the
polarization dependence of the current density, and

also on the study of emission from various crys-
tal faces with photons of different energies, to see
if an identifiable Fermi-energy peak appears in all
cases. The question of the exact location of the
Fermi level in the experimental data should also
be clarified.

continuity of the logarithmic derivative at z =0
gives

cotqo~ =po/qo .
This implies that, to within a phase factor,

pz(0) = a = —H2 sinqp5 = —v 2qp/(pp+ qo)'

and the definition of Po and qo shows that

Po+qpz= 2mvo/k' .

(A3)

(A4)

(A5)

I= —e 3 dqoz qg —qo 2 I

3 2 Q16e p np 2 2
o @2 3 Q

(ep z) dqo(qF qo)4m~k (dp ~ o

2m(E+ 8'(u~) '~
Vzp 2qo

L k g (k+ q)' pp+ qp
(A6)

Let us introduce a dimensionless variable e =qp/
qr'. We also define Q= I~~/Ez and p = Vo/EF,
where E„=8 qzz/2m. Then

Using the above results in (3. 12), we obtain the
total current density at absolute zero as
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and

[2m(E+ h~~}/8'] '~'= qz(z —p. + Q)'~',

(qz qo) = qz(1 z)2 2 2

qo dqo= qz
2 3 1/2

—k +q = 2m Vp/8

(A7)

(A8)

(A9)

(A10)

APPENDIX

(A 1)

%e wish to calculate the total current due to
surface effect in ordinary photoemission as a
limiting case of our theory when h(d~ & ft), E = E
+R~~&0, and F-0. Using (3. 17) in (3. 11), the
particle current density for electrons initially in

the state Pz „"(r) is found to be

Z, (E, K) = (I/mo)J. '(2mer/k')"'I r I'

~ (2m/k ) (e k /m )(2zK/a~)(n~/Q)
p~ o

&& (e~ z)'(8'~~) '(k/mz)L 'o(2mE/k')'"

[vl/(k. q)']
I (o) I'Iq. (0) I',

Substituting all this in (A6), we obtain

V, 8' q'- k'
(k+q) 2m (q+k)'

(e+ Q) —(z+ Q —p, )

(z + Q) + (e + Q —p )
(A12)

The total current density can therefore be written

3 1

f= z o (ep'z) qp de(1 —z)
4e n

7tvnh ru& Q

x(z+ Q —p )' z'
o . (All)Vo h

(k+q)' 2m Vp

But

Pz(z)=&2 sinqp(z —6), z &0

=ae 'o' z&0,
(A2a)

(A2b)

where pp= —2mE/k and qp=2m(E+ Vo}/5 . The

and this is independent of F, as it ought to be.
Note that Z,(E, K) is independent of K and depends
only on E. From (3. 4) we find v(0)= 1. To find

@z(0), we note that the properly normalized solu-
tion of the appropriate one-dimensional Schrodinger
equation for the energy E can be written

I= - I'J1,
where

1

dz (1—e)(z+ Q —p, )' z'

(z+ Q)' —(e+ Q —p)'i'
(z + Q) + (e + Q —jl )

z ff'(amp' Q
' ' z 4m'

(A13)

(A14)
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= a~as'q~z(6~Nec)(n~/Q)(c/&u~) (e~ ~ z)',
(A15)

with a =e2/hc, as = I /me2, ques= 3x2N, and N is the
number density of electrons in the target. The
lower limit of integration in(All) is determined by
the condition e+ 0 —y, & 0. Equations (A13)-(A15)
exactly reproduce Adawi' s result'~ for the current
density in one -photon surface photoelectric effect.

Note added in Proof Aft. er the completion of this
work, we came across a paper by Caroli et al. ,

where they study photoassisted field emission by
employing the Keldysh nonequilibrium Green's-
function formalism. They apply their microscopic
theory to a model calculation involving a semi-in-
finite, free electron metal and normally incident
light. The simple "surface effect" considered in
this paper then disappears, and the photoemission
they obtain comes from a phenomenological damp-
ing of the electromagnetic wave inside the metal,
which can lead to nonmomentum conserving excita-
tion of electrons.
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