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Thermoluminescence and continuous distributions of traps
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A recent proposal of Simmons and co-workers for the analysis of high-field thermally stimulated

currents is extended to the case of thermoluminescence, with significant advantages for the study of
continuous distributions of traps in bulk samples. The effect of the temperature smearing of the

occupation function is also evaluated, and a short discussion of the method is given, especially in view

of its application to the study of localized states distributions in disordered semiconductors.

The use of thermally stimulated phenomena for
studying the localized levels in disordered semi-
conductors is hampered by the fact that one actually
deals with continuous distribution of states, whereas
the various methods to analyze these phenomena
have been set up on discrete trap models. Recently
Simmons and co-workers have presented a series
of papers with some interesting suggestions for the
study of continuous distributions of traps, by means
of high-field isothermal and thermally stimulated
currents; in their approach, however, one has to
reach conditions in which there is neither retrap-
ping, nor recombination Of the free carriers. Ex-
perimentally this is achieved by applying to the
samples high electric fields, which sweep the car-
riers away, before they can recombine or be re-
trapped. Consequently, the method they suggest is
limited to p-n junctions, metal-oxide-semiconduc-
tor interfaces, and insulating or semiconducting
thin films. This limitation is unfortunate, since,
in view of the present interest in the properties of
disordered semiconductors, a knowledge of the
distribution of the localized states within the gap
of bulk samples would be very interesting. Ne have
been recently working on the thermoluminescence
of disordered crystals, and think that the work of
Simmons et p$. can be profitably discussed in re-
lation to some of our results (a full account of which
will be published soon ). In particular, in this
comment, we will show that the use of thermolumi-
nescence can effectively remove the limitation dis-
cussed above, and we will shortly discuss the pos-
sibility of getting, in this way, an approximate
evaluation of the localized states distribution.

From the viewpoint of our discussion, the rel-
evant difference between thermally stimulated cur-
rents (TSC), and thermally stimulated lumines-
cence, or thermoluminescenee (TL), is the follow-
ing: In TSC the "channels" open to the free car-
riers, once released from the traps, are (a) collec-

tion at the electrodes, (b) recombination, and (c)
retrapping. The analysis of a TSC experiment is
straightforwa, rd only if channels (b) and (c) can be
neglected, since in this case the current is pro-
portional to the rate of release of the carriers;
Simmons et zl. ' ' obtain this condition by means of
a high electric field. In TL, on the other hand,
channel (a) does not exist, channel (b) is just the
one exploited in the experiment, and channel (c),
which determines the kinetics of the process, can
be accounted for. It can also be shown that the
"two-carriers" kinetics effects, which must be
considered to account more correctly for the
amphoteric character of the trap levels, can, in
the analysis of TL, be included directly in the tra-
ditional "one-carrier" models by readjusting some
of the parameters of the models themselves.

In what follows, we will consider only electron
trapping centers, but the arguments can easily be
adapted to the dual case of hole trapping. The life-
time of the released electrons is in general so
small, that one usually assumes, in the traditional
models of TL, V

dn dm
dt d~

where yg and m are the electron concentrations in
the conduction band and in the traps, respectively.
Assumption (1) has recently been criticized by Kelly
et al. , but the work itself of these authors shows
that, at least in the ease of TL, the use of (1) gives
rise to appreciable discrepancies only for low val-
ues of m (m &10" cm '). As a consequence of (1),
the intensity I» of the TL emission, as a function
of the temperature T, is given by

&TL(&) = -n(&) dm(r)

where q(T) is the temperature-dependent efficiency
for radiative recombination. If the temperature is
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raised as a linear function of the time,

T= Tp+ pt,

where To is the initial temperature and p ('K/sec)
is the heating rate, relation (2) becomes

ITr, (T) = —tl(T)P
dm(T)

is included in the temperature dependence of a*;
as T increases, a also increases, i.e. , the "fill-
ing" level moves away from the bottom of the con-
duction band. Taking the properties of the e func-
tion into account, one has from (8) and (9)

(10}

In our generalization of the traditional discrete
trap models to the continuous case, one has a trap
distribution M(E), whose occupancy m(E} is de-
scribed by a distribution f unction f(E):

m (E) = M(E)f(E) . (5)

Consequently, the total number of trapped electrons
at any instant is given by

(())tftf(=E)f(E, t)dE,
0

(6)

where E is the energy gap.
The function f (E, f}, unless the cross section o

of the traps is strongly dependent on E, can be as-
sumed to have the following general features: it
goes to zero for very low values of E (when thermal
ionization empties all the traps), and to a maximum
value P for very high energies (when thermal ion-
ization is ineffective). [Note that P includes the
two-carriers kinetics effects; see, e.g. , Ref. 2,
formula (20)]. In the transition region, which is
usually some kT wide (k is the Boltzmann constant),
we can characterize the distribution by the "effec-
tive level" c, at which the derivative has its max-
imum value. [This derivative is a generalization
of the function P(E, T), shown in Ref. 5, Fig. 1].

In the continuous case, in analogy with (2), IT„
is again proportional to the rate of effective re-
lease of trapped electrons from the trap system,
independently of the kinetics~; that is

1,„(T)= q(T)Z, q(T-) .

On taking (3) into account one has

dI (T) = —q(T)p M(E) f(E, T) dE,
0

(8)

f(E, T) = Pe(E —e*(T)),

where e is the step function (which is equal to 1 for
E»e~, and is zero for E&cE). The only tempera-
ture dependence of f(E, T), in this approximation,

where f(E, T) is the distribution function of the sys-
tem at the temperature T. The peaked shape of
df (E, T)/dT is related to the fact that the traps
positioned around g are those which, at a given
instant, contribute most of the emission at the cor-
responding T.

Let us now first assume that

The meaning of (10}is very clear: The TL curve

Ir~(T) reflects the trap distribution, being pro-
portional at any temperature T, to the value of
M(E) at the corresponding g". This result is in-
dependent of the kinetics of the recombination pro-
cess, and is analogous to that obtained by Simmons

eg gg. for the high-field TSC in first-order kinet-
ics. A relevant limit of this result lies in the fact
that the actual width of df/dE, and its temperature
dependence, are completely neglected. Anyway,

its "validity" improves the larger the intrinsic
"width" of the trap distribution, since the TL peak
has a finite width (of the order of some kT) even

for a discrete trap level.
In order to take the temperature-dependent width

of df/dE into account, let us now assume that f(E, T)
is given by a Fermi function

I+exp/~'(T) -E]/I Tj
'f(E)T =

Rigorously, f(E, T) is never a Fermi function during
the thermal evolution of the system, but it is actual
ly assumed to be so in quasiequilibrium conditions
in many real cases. Anyway, for our purpose,
the Fermi function includes the temperature effects
in a realistic way. Substitution of (11) into (8)
gives now

I (P)=tt(P)PPf td(E)) ) dE, tt))

which, using well-known properties of the Fermi
function, ' becomes

f,„(T)= q(T)pP M(-e') + n'T—
(~

)Pdt* 8 M (13)
6 dT sE

This result shows clearly the "distortion" caused
by the temperature dependence of f(E, T) on the
simple result (10). The first term on the right-
hand side (r.h. s. ) is the sa,me as in (10). The
second term is always small in comparison with the
third one, which increases quadratically with T.
If the trap distribution M(E) is sufficiently smooth,
as it tends to be in disordered systems, its deriv-
atives are small. In this case the third term is
also small (a few percent) in comparison with the
first one at realistic values of T. However, when
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the distribution of traps is exponential

M(E) = Ma e™M, (14)

the ratio between the third and the first term in the
r. h. s. is given by 1.22x10 5 T, and, for a
"slope" of 150 meV/decade, corresponding to 5
= 15.35 eV ' (a typical value for the amorphous
semiconductors), this ratio ranges from 1.76x10~
at 80 K, to 6. 18&&10 at 150'K, to 24. 73~10 at
300 K. The temperature corrections must there-
fore be taken into account when studying the trap
distributions near the energy-band edges, where
exponential distributions are likely to occur.

So far we have considered the distribution of
localized states versus a temperature scale. If
one wants to get m(E) vs E, it is necessary to know

the relationship between e~ and T. This presents
some difficulties, since the exact dependence of g~

on T varies with the details of the model, and in-
volves parameters which are not known g priori,
and which are not easily obtained experimentally.
The problem is somewhat simplified by assuming
that c* depends linearly on kT over a limited tem-
perature range, with the coefficient of proportion-
ality logarithmically (i.e. , not strongly) dependent
on the escape frequency s of the electrons from the
traps. (s is related to 0 by s = o N, v, where N, is
the effective density of states in the conduction band
and g is the thermal velocity of the free carriers. )
This problem has recently been considered by Sim-
mons et al- ' and independently, but on similar
lines, also by us. ' Moreover, in a previous
work, ' we have also tried to obtain information on
this relationship, at least at the beginning of the
heating process, using the method of the initial
rise. " This approach, of course, holds rigorously
only for discrete trap levels. However, when ap-
plied to the continuous case, it gives an error
which, in physically meaningful situations, is al-
ways less than 30/0. An alternative way is to use
the experimental procedures discussed by Bube
et +E. ' under the hypothesis of quasiequilibrium.

In order to show the usefulness and the limita-
tions of the procedure described above, we report
in Table I the results of a numerical analysis, per-
formed for an exponential distribution of states
(14), in first- and second-order kinetics for a
meaningful set of values of 5 and s, where s has
been assumed to be independent on E. Starting
from a given distribution, the TL curves have been
calculated numerically, and then treated according
to (10). (Details of the procedure are given in Ref.

TABLE I. Values of the "slopes, " in meV/decade, ob-
tained by analyzing according to (10), the TL emission
curves calculated numerically for the values of 6 and s
shown in the entries. The upper and lower values, for
any set of entries, refer to first- and second-order kinet-
ics, respectively.

6

(me V/decade) 10
s (sec ')

10 10 10 10 10

100

150

200

159 158
164 166

106 106
117 109

158 158 158 158
164 164 i 63 163

209 209
216 217

300
319 319 314 314 317 317
338 329 321 319 324 325

6. ) As one can see, the use of (10) systematically
enhances the value of the slope found with respect
to the starting one, in agreement with the predic-
tions of (13). The discrepancy, however, is always
less than 15%.

The idea of using thermally stimulated phenomena
in the study of some controversial problems about
disordered systems, in particular in the study of
the localized states in the gap, seems very tempt-
ing. One must be careful, however, since at very
high densities of states, as one is likely to find
near the band edges, other processes (donor-ac-
ceptor transitions, ' tunnel recombination, ' etc. )
which do not involve the thermal escape from the
traps to the conduction band, might become very
important. These processes of course, are not
taken into account in the classical models of the
thermally stimulated phenomena.

In conclusion, we have shown that the approach
of Simmons et +E. can be advantageously applied
also to the analysis of the TL due to continuous dis-
tribution of traps, extending significantly the range
of the physical systems which can be, investigated.
We have also taken into account in a realistic way
the temperature smearing of the distribution func-
tion, allowing one to correct the simple results ob-
tained by a straightforward application of (10). A
limitation of the approach lies in a possible strong
dependence of g on E, which could invalidate the
above analysis. A method which seems to be rather
insensitive to this dependence, and which is in prin-
ciple more correct, though experimentally more
complicated, is discussed elsewhere.
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