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The dynamical theory of neutron diffraction has been formulated to include the reflected waves from

the boundaries of a crystal. This formulation allows a unified treatment of the neutron optical and

diffraction phenomena in crystals. It is shown that the neutron propagation in the crystal is determined

by two structure factors characterizing the lattice: the total structure factor and the structure factor of
the neutron-spin —neutron-orbit interaction. Diffraction by a parallel crystal plate has been studied in

considerable detail. It has been found that for a definite neutron-spin orientation, the diffracted and

transmitted beams are modulated by six terms periodic in the thickness of the crystal. The period of
the dominant term, in this Pendellosung fringe structure, has been calculated in several cases of
experimental importance. If the glancing angle of incidence substantially exceeds the critical angle for

total reflection, the results are identical with those obtained by a simple extension, to the neutron case,

of the x-ray dynamical theory. The diffraction by a magnetized crystal has been examined in some

detail and it is shown that measurement of the Pendellosung periods for the two neutron-spin

orientations may be used to determine both the nuclear and magnetic neutron scattering amplitude.

I. INTRODUCTION

The appearance of Pendell5sung fringe structure
within the Bragg reflection of neutrons from per-
fect crystals has been observed by Shull. ' These
experiments' demonstrated that the fringe pat-
terns permit a precise determination of the coher-
ent nuclear scattering amplitude. The quantitative
analysis of these, as well as earlier experiments4
has been performed using a simple generalization
of the x-ray dynamical theory. In the present work
we examine the dynamical theory of neutron diffrac-
tion with particular emphasis on the interference
phenomena observed in the diffraction of neutrons
by perfect crystals.

The theory of x-ray diffraction has been formu-
lated by Darwin, ' Ewald, and Laue. ' A more re-
cent review of the x-ray dynamical theory is given
by Batterman and Cole. The dynamical theory of
electron diffraction has been developed by Bethe.
More recently, after the original investigation of
Goldberger and Seitz, similar studies have been
undertaken in the diffraction of neutrons by perfect
crystals. '~

In the usual formulation of the dynamical theory
the reflected waves from the boundaries of the
crystal are neglected. This introduces an artificial
separation in the treatment of the optical and dif-
fraction phenomena. In addition one faces the ap-
parent paradox of having more equations, from
the boundary conditions, than are necessary for the
determination of the integration constants. This
formulation of the dynamical theory will be referred
to as the two-wave approximation.

In the present work we formulate the neutron

dynamical theory to include the reflected waves
from the boundaries of the crystal. This formula-
tion allows a unified treatment of the neutron opti-
cal phenomena and neutron diffraction by crystals.
In our treatment we follow the general lines of
Zachariasen's treatment of the x-ray dynamical
theory. In Sec. II we formulate the fundamental
equations of the dynamical. theory. In Sec. ID we

apply the theory to solve some simple problems of
neutron optics. In Sec. IV we examine the diffrac-
tion of neutrons by a crystal oriented so that the
Bragg condition is nearly satisfied by only one re-
ciprocal-lattice vector. In Sec. V we consider the
simple problem of diffraction by a parallel crystal
plate. In the same section we briefly consider the
diffraction of neutrons by a magnetized crystal. In
Sec. VI we summarize our results.

II. EQUATIONS OF THE DYNAMICAL THEORY

%'e consider the elastic scattering of slow neu-
trons by a perfect crystal in the presence of an ex-
ternal magnetic field. The incident-neutron wave
function ~t), , in the vacuum, is written

e $~8 t'
5 t

where k, is the incident-neutron wave vector. The
neutron wave of Eq. (1) is assumed to enter the
crystal through a plane boundary, whose orientation
will be described by a unit normal vector n pointing
into the crystal. . If the origin of the coordinate sys-
tem is chosen in the boundary plane, the equation
of this plane is simply n ~ r =0.

The neutron wave function p in the crystal satis-
fies the Schrodinger equation, which may be written
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1 z 2m V(r)~V 1t)+ 1 —
2 2 /=0,

e e
(2)

V(r) =PV,(r —r,),

where r, denotes the position vector of the nucleus
of the ath atom. Since the neutron-lattice interac-
tion potential is invariant under translation by any
lattice vector, it can be expanded in a Fourier
series

2„2 V(r) =pe ' 'V, , (4)
e

where the sum is over all vectors g of the recipro-
cal lattice. The Fourier coefficients V, in Eq. (4)
depend on the neutron momentum as a result of the
neutron-spin-neutron-orbit term in the interaction
potential. They may formally be written

h k
dr e"'V(r)

uni t &eel
(5)

where N, denotes the number of unit cells per unit
volume of the crystal.

A. Fourier coefficients of the
interaction Hamiltonian

The neutron-atom interaction may be written as
the sum of the nuclear and electromagnetic inter-
action terms

where m is the neutron mass, k, is the magnitude
of the incident-neutron wave vector, and V(r) is the
neutron-lattice interaction potential. The neutron-
lattice interaction potential may be written as a
sum of the individual neutron-atom interactionterms

where p =y„eh/2mc is the neutron magnetic mo-
ment (y„=—1.91), P is the neutron momentum, and

E and H are the electric and magnetic field of the
atom, respectively. In Eq. (10}the first term is
the well known magnetic dipole interaction, "the
second term is the neutron spin-neutron orbit in-
teraction, ' and the third is the Foldy interaction
term. ~

The Fourier coefficients V~ of the neutron-lattice
interaction potential, specified by Eqs. (3), (6),
(7), and (10), are easily obtained if one notices
that they are simply related, by Eq. (5), to the
neutron scattering amplitudes. It is easily seen
that as a result of the neutron spin-neutron orbit
term these coefficients are operators, linear in
the momentum of the neutron

V~ —= Vqg+ V3~ ———
~ I'q~+ I"

p

In Eq. (11), F« is the structure factor of the lat-
tice associated with the momentum-independent
terms of the interaction Hamiltonian and is given
by

F~ =pe «[b, +y, +(B,I,)h ~ o

+ P,.(g)qg ~ o —i b,']e*'ai . (i2)

In Eq. (12), e ~ is the Debye-Walter factor, R, are
the equilibrium positions of the nuclei in the unit
cell, and we defined

( )
(b, —b )(I+1)p,„,H

3(2I+ 1}KT
Va —VaN+ Va EM (6)

and

and

B= (b, b)/ (2I+I)- (8)

For slow neutrons the nuclear interaction term
may be written in the form of the Fermi pseudopo-
tential"

V,N
= (2vh' /m)(b —ib '+ BI ~ o}5(r—r,),

where

y = (y~~/2mc2) Z[1 —f,(g)]. (i4)

In these equations p.,„,is the magnetic moment of
the nucleus, H,„,is the magnetic field seen by the
nucleus, T is the absolute temperature, Z is the
atomic number of the atom, f,(g) is the atomic
charge form factor, and p(g) is the magnetic scat-
tering amplitude. The magnetic scattering vector
q~ is given by

b
' = a', /2& . (9) q, = e,(e, ~ h) —h,

with

(15)

In these equations, b is the coherent nuclear scat-
tering length, b is the imaginary part of the nu-
clear scattering amplitude, I is the spin of the
atomic nucleus, o is the Pauli matrix, b, and b

are the nuclear scattering lengths for the I+ & and
I- 2 neutron-nucleus states, respectively, 0, is
the total neutron-nucleus cross section and X is the
neutron wavelength. The electromagnetic interac-
tion term may be written

e, =g/lgl, (16)

and h is'a unit vector along the magnetization in
the crystal. The second term in Eq. (11}is the
structure factor operator associated with the spin-
orbit interaction term and is given by

2' g e
~

~ R~

5
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where g=(g(. Equations (12) and (17) together
with Eq. (11) determine the Fourier coefficients
of the interaction potential.

B. Crystal wave functions

in the plane n ~ r =0: the tangential components of
the various wavevectors must be the same. Con-
sequently, the allowed wave vectors ko in the crys-
tal may be written

ko=k. + an . (20)
If k, is an allowed neutron wavevector in the

crystal, the corresponding wave function will be
the Bloch function

e' 0 U, „(r)~s),

where s labels the neutron spin states and U, ,(r)
has the translational symmetry of the crystal lat-
tice. Since U, „(r) is periodic, it can be expanded
in a Fourier series

where the summation is over the vectors g of the
reciprocal lattice. Thus the neutron wave function
corresponding to an allowed wave vector kp may be
written

It follows that the tangential components of the
wave vectors of the secondary waves differ from
the tangential component of k, by the tangential
component of a reciprocal-lattice vector. It should
be pointed out that the continuity of the wave func-
tion at the entrance boundary of the crystal and Eq.
(20) assure the continuity of the tangential compo-
nent of the gradient of the wave function. Thus the
boundary conditions at the entrance surface of the
crystal are reduced to the continuity of the wave
function and its normal derivative.

Using Eq. (20), the secular equation that deter-
mines the allowed wave vectors ko in the crystal is
reduced to an algebraic equation in &. In fact it is
easily seen that

(18)

Q2

1 —ko/k, = —25— (21)

It is seen that for every allowed neutron wave vec-
tor kp the wave function in the crystal consists of a
primary plane wave propagating along kp and any
number of secondary plane waves whose wavevec-
tors differ from ko by a reciprocal lattice vector.
Substituting the wave function of Eq. (18) into the
Schrfldinger equation (2}, the coefficients u. .. ,
are found to be determined by the following set of
algebraic equations:

1 —
2 u„~. , -+V~(ko+g )u„o, ~,~.„=0.(

(k, +g )

e
(19)

The allowed neutron waves propagating in the crys-
tal are then determined by Eq. (19) and the bound-
ary conditions. The coefficients u~. . .are negli-
gibly small unless the corresponding resonance
factors [1 —(ko+g') /k, ] are small. That is, only
waves whose wave vectors nearly satisfy the Laue
vector equation have an appreciable magnitude.

The allowed neutron wave vectors ko in the crys-
tal are determined from the secular equation asso-
ciated with Eqs. (19}. The solution of the secular
equation is considerably simplified by taking into
account the additional restrictions imposed on the
allowed neutron wave vectors by the boundary con-
ditions at the entrance surface of the crystal. The
boundary conditions at the entrance plane n ~ r' = 0
require the continuity of the wave function and its
gradient. Since the neutron wave function in the
vacuum as well as in the crystal consists of plane
waves, the continuity of the wave function can be
assured only if the exponentials agree at every point

1 —(ko+ g) /ka = —(2/bt)b —bt/yt —u, (22)

where, using Zachariasen's notation, ' we defined

and

b = hy, /k, ,

1/b, = [n (k, + g)]/. k,y, ,

a = (g'+ 2k, ~ g)/k', ,

y, =k, ~ n/k, .

(28}

(24)

(25)

The potential coefficients in Eqs. (19) depend on
the vector koxg/g t, which may also be expressed
in terms of the dimensionless parameter D,

kox g/ga = [(k,xg)/g '] (1+yb), (27)

where

k, (nxg) ~ (k, xg)
I

»)2 ~ (28
'Y~ k xg

Using Eqs. (21}, (22), and (27} the coefficients of
Eqs. (19) may be expressed in terms of b. The
allowed values of 6, or what is equivalent, the al-
lowed wave vectors kp, are obtained from the sec-
ular equation associated with Eqs. (19). Once the
allowed wave vectors ka have been determined, the
amplitudes of the various plane waves propagating
in the crystal (and in the vacuum) are determined
from Eqs. (19) and the boundary conditions.

In the following sections of this paper we will
examine two simple problems of considerable ex-
perimental interest. In the first we will assume
that the direction of incidence is such that the Bragg
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III. NEUTRON OPTICS

If the direction of incidence is such that no re-
ciprocal lattice vector satisfies the Bragg condi-
tion, only the amplitude u„o, is of appreciable
magnitude and Eqs. (19) reduce to

(29}(1 —ko/k, —Vo,)u„,o„=0 .
ote that Vp = Vioey since the sPin-orbit amPli-

tude vanishes in the forward direction. Using Eq.
(21), the secular equation for a definite neutron
spin state may be written

condition is not satisfied by any reciprocal lattice
vector of the crystal. In this case, only primary
waves are of appreciable magnitude and the crystal
behaves like an isotropic medium. In the second
we will assume that the direction of incidence is
such that the Bragg condition is nearly satisfied by
only one reciprocal lattice vector G. In this case
for every allowedwave vector ~ko, only waves prop-
agating along ko and ko+G are of appreciable mag-
nitude.

1+ v r = Cz, 1 —v r = P Ca . (s6)

Thus, the ref lectivity and the amplitude of the re-
fracted wave are given by

~= I(1-p)/(1+p)I' (37)

I
c I' = I2/(1+p) I' (ss)

It is seen that total reflection of the neutrons oc-
curs for g = 0, or for a direction of incidence such
that

2=&e- Vto. (39)

For y, & V&o the refracted wave is exponentially at-
tenuated and the penetration depth E is given by

(40}

These results may be written in a familiar form
by introducing the index of refraction n and the
glancing angle of incidence 8=-,'m -arc cosy, . Since
by definition n= ko/k „ the secular equation gives

$3+ 2y2 g+y2 Vlo 0 (so) 2n =1 —V~o =1-—
m

where the subscript s is omitted for simplicity.
The roots of this equation are x Q N, [b, v p, (0) s (B; I„)—ib (], (41}

~, =-y~(1 +P),
where

P (1 P /~ 2)1/2

(31)

ko, = k, —k, y, (1 + P}n, (33)

Thus there are two allowed primary wave vectors

(37')

where ¹ is the number of atoms of the ith type
per unit volume. Using Eqs. (37) and (40) the re-
flectivity and penetration depth may be expressed
in terms of n and 8,

~

~ 2
(n —cos 8)' —sin8r=
( ' —cos'8)"'+ ' 8)

and the general solution for the neutron wave func-
tion in the crystal is E = X/2v(n —cos~8)'~2 . (4o')

P= C~e' o. '+ Cze'"o-', (34)

The critical glancing angle 8, for total reflection
of the neutrons is obtained from Eq. (39),

where C„C& are constants to be determined from
the boundary conditions.

A. Semi-infinite crystal

We examine first the case of a semi-infinite
crystal limited by the plane n ~ r =0. The neutron
wave function in the vacuum is written

ik r ~ f lr,
' ~ P

(35)

where r is the ref lectivity of the crystal and k,'
the wave vector of the reflected wave. Since the
tangentialcomponents of the incident and reflected
wave vectors are equal and I k,' I

=
I k, I, it follows

that k,' ~ n = -k, n. From the two possible neutron
waves of Eq. (34) only the second satisfies the
boundary condition at infinity (ko n&0).

The amplitudes of the reflected and refracted
waves are determined from the boundary condi-
tions at the plane n ~ r =0,

cos0, =n. (39')

e'"e + Re '"e' for n ~ r & 0

C3e'"e' for n ~ r &t. (42)

The neutron wave function in the crystal is given
by Eq. (34). The boundary conditions at n ~ r = 0

It is seen that the amplitude of the reflected wave is uni-
ty for 8 «8, and drops sharply for 8 ~8, . For an
incident wavelength of 1 A and a typical scattering
amplitude of 10 ' cm the Fourier coefficient Vgo is
of the order of 10 6. Thus the corresponding critical
glancing angle is of the order of a few minutes of arc.

B. Parallel crystal plate

We examine next the case of a parallel crystal
plate limited by the planes n ~ r = 0 and n ~ r = t. In
the vacuum the neutron wave function is written
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and n ~ r =/are

Cq+ Cz =1+R, -RCj+PC2 =1 —R,

iver

t r -ikr Bt ~eikr Bt

"e"ei = —Q C e i~ereB ISC e i"e"eB3ee ——
&

- + t

(43)

stricing 6 in the secular equation to values of the
order of the potential coefficients. The refelcted
intensity as well as the modulation of the trans-
mitted intensity may be neglected, since for 8» 8„
r is of the order of Vy0 10

where 9 is defined by Eq. (32). The reflected and

transmitted intensities are obtained from Eqs. (43)
by straightforward manipulations

a 4r sin (k, y,Pt)
(1-r)'+4r isn(k ye8st)

(1 r)'—
(1 —r) +4r sin (keyePt)

(45}

where r is defined by Eq. (37}.
Equations (44} and (45} are equivalent to the well-

known Airy's formulas in optics. '~ If we define the
order of interference n~ by

IV. NEUTRON DIFFRACTION

A. General solution

In examining the diffraction of neutrons by a
perfect crystal, we will assume that the incident
wave enters the crystal through the plane bound-

ary n ~ r = 0. In addition, we will assume that the
direction of incidence is such that the Bragg con-
dition is nearly satisfied for only one reciprocal
lattice vector G. In this case only the amplitudes

«&0, 0,, and &&O,G „are of appreciable magnitude and Eqs.
(19) are reduced to four siinultaneous equations

m = keys gt/v, (46)

A.

2y. (1 —Vio/y')'~
(46')

Finally, let us examine the propagation of the
neutron waves in the plate when the glancing angle
of incidence 8 substantially exceeds the critical
angle 8, for total reflection of the neutron. In
this case

P, = —2y, +-, V~0,Z 1

2VM

and the corresponding allowed crystal wave vec-
tors are

ko, = (k, s
—k,„)+ ( Vio/2 y, ) k,„

it may be seen that the transmitted intensity ex-
hibits maxima and minima for integral and half
integral values of ~» respectively. The reflected
intensity, on the other hand, exhibits maxima and

minima for half-integral and integral values of ~»,

respectively. Thus, both the reflected and trans-
mitted intensity exhibit an interference fringe struc
ture. The reflected (and transmitted) intensity is
modulated by a term periodic in the thickness of
the plate with a period T given by

—(Vice+ Vacs(ko)1«n ~ c, s =0,

(k, + G)'
1 —

Z
—Vg0s ~ a, G. s

e

(47)

5,+a5, + b(6, +@6,+d=0,

where

a =2y, (1+1/b),

(48)

1 ye ye

-v' v„.(k,} v, —,.(k.)),
c = 2y fo+ Vio + (1/bi) Vio

—V [Vcs(ke) Vac,(k, )+ Vc,(k,) Vacs(k)] j,

—( Vic. + Vac.(ko)1 «so. o, s =0k

where G stands for the vector -G. Note that V&0,

does not appear in Eqs. (47) as a result of the van-
ishing of the spin-orbit scattering amplitude in the
forward direction.

The secular equation associated with Eqs, (47)
determines the allowed primary wave vectors k0 in
the crystal. Using Eqs. (21), (22), and (27) the
secular equation reads

ko- = (kss +k en) ( Vio/2 ye) ksn ~

In the last two equations the subscripts t and n de-
note the tangential and normal component of a vec-
tor respectively. Thus, one of the waves in the
plate propagates close to the incident direction k,
and the other close to the reflected direction (k„
—k,„). Since Vio-10, the allowed values of 5

are of the order of —2y, and V&0, respectively.
Therefore, if 8» 8„ the reflected waves by the
boundaries of the plate could be neglected by re-

(f = ye(«ion+ Vio. —Vc.(".) Vc.(k.)1.
To each solution 5;, of Eq. (48) corresponds an

allowed wave vector E0~, and twc plane waves, the
primary propagating along k0&, and the secondary
propagating along ko;, +G. The ratio of the ampli-
tudes of these waves is obtained from Eq. (47),

0. G. sAft

R k0, 0, s
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25, ,+ 5, /y + U~o (k~)

V, G,(k,}+(1+ yb, ,}Voo, (k, )
(5o)

Thus, for a definite neutron spin orientation, the
general solution in the crystal is the superposition
of eight plane waves, four travelling along the
primary wave vectors kz, and four along ko;, +G.
Defining the phase parameter y;,(n ~ r) by

y&, (n ~ r) = (k, b, ,/y, ) n ~ r, (51)

the general solution in the crystal may be written

4 v wtk 'F' ~ "gs a ~ ke+
gS

4

x Q «„C„e'"~"'"'.
y=l

(52)

In Eq. (52), C;, (j = 1, 2, 3, 4} are constants to be
determined from the boundary conditions.

B. Discussion

The existence of eigh waves propagating in the
crystal may be easily understood. The energy
states of the neutron in the crystal are arranged
into allowed and forbidden energy bands, and the
values of the wave vector for which the bands of
forbidden energy occur are simply those satisfying
the Bragg reflection conditions. If the direction
of incidence is such that the Bragg condition is
nearly satisfied, the diffracted and transmitted
beams will each consist of two plane waves whose
wave vectors are slightly different from the wave
vectors k, +0 and k„respectively. Thus, an in-
cident neutron wave, whose wave vector nearly
satisfies the Bragg condition, generates four plane
waves in the crystal: two waves propagating close
to the direction of incidence and two along the direction
of the diffracted beam. With each of these waves is
associated a reflected wave from the lower limit-
ing boundary of the crystal. If the glancing angle
of incidence substantially exceeds the critical
angle for total reflection of the neutrons the am-
plitudes of the various reflected waves are negli-
gibly small. The characteristic fringe structure
of the diffracted and transmitted beam is due to
the interference of the waves propagating close to
the direction of the diffracted and transmitted beam,
respectively.

It is seen [Eqs. (48) and (49)] that the allowed
neutron wave vectors in the crystal are determined
by the geometry of the problem and two structure
factors: the total structure factor and the struc-
ture factor for the spin-orbit interaction. The
latter structure factor appears separately in the
secular equation as a result of the momentum de-
pendence of the spin-orbit interaction. These

(4/b) 5,+2[a+(1+1/b, ) V„,] 5,

+ (o Vrouw+ Vivos Uc~ Vo,) =0,

and Eqs. (50) and (52) read

«;, = —(26, ,+ Vrouw)/Vo»

2

eke~ ~ t +&&(n ~ r) t(k +6)~ r

/=1

(48')

(5o')

+ js(n ~ r)
is is (52')

Equations (48'), (50'} are identical in structure
with those of the dynamical x-ray theory. In this
approximation the neutron wave function in the
crystal consists of four plane waves, two traveling
close to the forward direction and two close to the
direction of incidence. We will refer to this ap-
proximation as the two-wave approximation to the
dynamical theory.

V. PARALLEL CRYSTAL PLATE

In this section we explicitly solve the diffraction
problem for a crystal plate bounded by the planes
n ~ r =0 and n ~ r =to, where to is the thickness of
the plate. The incident neutron wave enters the
crystal through the boundary n ~ r = 0 and the dif-
fracted wave may leave the crystal either from
the boundary n ~ r = to (I aue case) or from the face
n ~ r =0 (Bragg case).

A. Boundary conditions

The neutron wave function in the crystal is given
by Eq. (52), where C&, (j= 1, 2, 3, 4) are constants

specific spin-orbit effects depend strongly on the
geometry of the problem through the parameter y,
defined by Eq. (28). In particular, they are ab-
sent in the symmetric Bragg case (y=0). For
crystals possessing a center of inversion sym-
metry Vc, V2c, + Vc, Vac, =0 and the specific spin-
orbit effects are quadratic in the spin-orbit am-
plitude. If the glancing angle of incidence is not
of the order of a few minutes of arc, the specific
spin orbit effects may be neglected since for X-1 A,
Vi. cg VGs Vlos 10~, whereas V2ce is of the order
of 10 -10 ll

We have seen that if the glancing angle of inci-
dence substantially exceeds the critical angle for
total reflection of the neutrons, the specific spin-
orbit effects may be neglected and the amplitudes
of the reflected waves in the crystal are small in
comparison with those of the transmitted and dif-
fracted waves. The reflected waves, in this case,
may be eliminated from the problem by restricting
6 to values of the order of the potential coefficients
(5-10~). Under this assumption Eq. (48} reduces
to
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P, =~Pi ~'"e '

P e c(k t+G +I"n) 'r f ) t

(53)

where t and n denote the normal and tangential
components of the wave vectors, respectively. In
writing Eqs. (53}, the continuity of the tangentia. l
components of the wave vectors has been taken into
account. The normal components I' and I" must
be such that

determined from the boundary conditions. In writ-
ing the boundary conditions we take the z axis along

the inward normal n to the plane n ~ r = 0.
The neutron wave functions in the vacuum may be

written
ik Pe ( et k )'

t&x„.o,.ra )4 for x & 0

4

e ttj(to) 0

4

Q (k,„+G„+I'+ n, ) x, C,.e". ;"o' = 0,

Equations (56) determine the integration constants

Cj for both the Laue and Bragg case.

1. Laue case

2

z =
I e, I

' = g c, et (5V)

In this case the diffracted beam leaves the crys-
tal from the face n ~ r = to. Using Eqs. (55) the
transmitted I„diffracted I„, and reflected intensi-
ties I„, and I„2 may be expressed in terms of the
integration constants Cj,

Ik. +G~+ I'n
I

=
I
k.~+Gi+ ~ 'n

I

= k. ,

with

I & 0 and I"' = —.&0. (54)

2

I, =
I e, I

3 = x,. c,. e"~ oo' (56)

(59)

The constants C;, (j= 1, 2, 3, 4), P» Pz, g» p, are
determined by expressing the continuity of the
wavefunction and its normal derivative at the plane
boundaries n ~ r =0 and n ~ r =to,

en

4 2
f„,=Is, I'= x,. c, . (6o)

4 4

1+ P = Q C, , P2= Q ac, ,
j=l j=1

1
1 —Bq

——QC;+ Q b, C, ,
j 1 en j1

l 2
(57')

2. Bragg case

In this case the diffracted beam leaves the crystal
from the face n ~ r =0. The transmitted, diffracted,
and reflected intensities are

B2 xjCj+ +f XjCj

Q A~c~e' & 0 =0,
f~1

4

(k,„+G„+I') g x, C;e"&"o'

4

+ P x, c,~,.e'" "0' =o,

4

q, = Q C,.e'"~"0',

(55}
2rI& I'= g, *=, c,

1 2

Z
en f= 1

I„,= Ig, I'= x, C,.e'"~"" .

Two-wave approximation

(56')

(59')

(60')

t(k' +++I )to ~ C &4 j(to)en

j=1

It is easily seen that the constants C, (j =1, 2, 3, 4)
are determined from the following set of algebraic
equations:

4

g(2, ') c, -2,

(56)

In the two-wave approximation, the general solu-
tion [Eq. (52')] involves only two constants and the
boundary conditions provide more equations than
are necessary for their determination. This ap-
parent paradox is resolved if one recognizes that
in this approximation 5 is assumed to be of the or-
der of the potential coefficients (-10 ). This is
equivalent to assuming that 4 is small compared to
the normal component of the incident wave vector.
Thus the boundary conditions expressing the con-
tinuity of the normal component of the wave func-
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tion are approximately satisfied. The integration
constants are obtained by expressing the continuity
of the wave function at the plane boundaries of the
plate

y'„—ya, = (b,k,/4y, ) t 0 Re(D,' '),

y'„' —y2,
' = (b,k,/4y, ) t aim(D,'"),

y'„'+ y2' = —[(1+b, )/2y. ] &Ok. Im(Vgg, ),

(66)

(67)

(68)

and

2 2

Cps = 1~ ~)s Cps = 0

(I aue case)

2

(61)

where D, is the discriminant of Eq. (48'),

D, = 4[a+ (1 —1/b, ) V,o,] + (16/b ~) Vo, V5, . (69)

It is easily seen that [(1+b,)/2y, ] to is the average
neutron path in the crystal and —k, lm(V, O, ) is the
linear attenuation coefficient p. of the crystal

(Bragg case).

B. Explicit solutions

(61')
(70)

Using Eqs. (68) and (70) the diffracted intensity
may be written

In this approximation the diffracted intensity
[Eq. (58)] is given by

2

)~1

where [Eq. (50')]

(62)

x&, = —(2 5„+V,o,)/ Vo„j= 1, 2, (63)

and 5&, (j = 1, 2) are the roots of Eq. (48'). The con-
stants of integration obtained from the boundary
conditions [Eq. (61)] are

C|,=x2,/(xp —x|,) Ca, = —x„/(x„-x„). (64)

Substituting the integration constants into Eq. (62)
one obtains

2

4 +1s+2s e (y ~+lP ~)
X~ XQ

~~I I I 1 I
sinh + sin

where y~„trt)~", are the real and imaginary part of
(f0) respectively,

v'&. (f0) = (k.6&,/y. ) f o = (t», + I v&.'.
Using Eqs. (62) and (48') we obtain

(65)

Next, some diffraction problems of practical im-
portance will be explicitly solved. In each case an

expression fear the period of the Pendellosung fringes
wilf be derived. First, the general solution in the
two-wave approximation will be given for the Laue
case. Then, in two simple cases, the Pendellosung
period will be obtained without neglecting the re-
flected waves, and it will be compared with the re-
sult of the two-wave approximation. Finally, we
will briefly discuss the diffraction of neutrons by
a magnetized crystal.

1. General solution in the two-~ave approximation:
Laue case

2 1I II
4 1s 2s P 0 ~ h2 + 1s As

j. 2

a Wis Wa (71)

The second term in Eq. (71) exhibits the Pendel-
losung fringe structure that arises from the inter-
ference of the neutron waves propagating close to
the direction of diffraction. It is seen [Eq. (66)]
that this oscillatory term is periodic in the thicknes.
of the crystal, with a period given by

Smy, 4y, z
k b,R (De' ) b, Re(D' )' (72)

It is seen that the Pendellosung period depends on
the geometry and the potential coefficients. There-
fore, measurement of this period may be used to
obtain jnformation about the neutron lattice inter-
action. If one choses the direction of incidence so
that the Bragg condition is exactly satisfied (n= 0),
the expression for the period in the symmetric Laue
case (b, = 1) is reduced to a very simple form:

T = y, X/Re(Vo, Vo, )' (73)

If the imaginary part of the nuclear scattering
amplitude and the spin-orbit scattering amplitude
may be neglected, then Vp, = VL and the period is
given by

(73')

For a monatomic nonmagnetic crystal in the ab-
sence of an external magnetic field

I Vo. I
=

I Vol = (4v&./kl) e "ISo(b+ y) I
(74)

where e G is the Debye-Wailer factor and S~ is the
geometrical structure factor of the crystal. Since
the Foldy scattering term is small in comparison to
the nuclear scattering amplitude, the Pendellosung
period, in this case, is inversely proportional to
the nuclear scattering amplitude. Thus the experi-
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mental determination of the Pendellosung period
may be used to determine the nuclear scattering
amplitude. It is seen from Eq. (74) that the data
must be corrected for the Debye-Wailer factor and

the small Foldy scattering term. The precision of
the measurement is essentially limited by the pre-
cision of the measurement of the Debye-Wailer fac-
tor.

In some cases the spin-orbit scattering amplitude
is negligible in comparison with the imaginary part
of the nuclear scattering amplitude. If, in addition,
the crystal posesses a center of inversion symme-
try then

Vcs= Vcs

and the period is given by

7; = r.~l Re(Vg, )

(V5)

(73II)

For a monatomic nonmagnetic crystal in the ab-
sence of a magnetic field

Re(Vg, ) = (4',/k, )e g Re[Sg(b+ y-ib')]. (V6)

In the general case, the period is calculated from
Eq. (73). It should be pointed out that Eq. (V5) is
not valid for a crystal with inversion symmetry,
due to the fact that the spin-orbit amplitude changes
sign under the transformation G- G. As an exam-
ple let us take an fcc, monatomic, nonmagnetic
crystal in the absence of an external magneticfield.
Then for an allowed reflection defined by the re-
ciprocal-lattice vector G

Vcs = Vcs = pcs = V&os = V

and the secular equation reduces to

6 + 4y, 6 + y, [4+ (2/y, )V] 5 + 4y, V 5 = 0.

(79)

(8o)

The roots of this equation are

limited by the precision of the measurement of the
Debye- Wailer factor.

2. General case

The results obtained above are valid provided the
glancing angle of incidence substantially exceeds
the critical angle for total reflection of the neutrons.
If this condition is not satisfied, the diffracted in-
tensity will be given by Eq. (58) or (5&') with the
constants of integration determined from the bound-

ary conditions Eq. (56). The solution is straight-
forward but involves tedious algebraic manipula-
tions. We will consider two simple diffraction
problems by a nonmagnetic crystal in the absence
of an external magnetic field. In both problems we
will assume that the geometry of the problem is that
of the symmetric Lane case (b, = 1), with the Bragg
condition exactly satisfied (n= 0).

a. Let us first examine the diffraction of neu-
trons by a crystal possessing a center of inversion
symmetry. In addition we will assume, for sim-
plicity, that the imaginary part of the nuclear am-
plitude and the spin-orbit scattering are negligible.
Under these assumptions

and

16m%
Vg2= Vg= kz

' e g(b+y-ib'+ib„g)
e

16mN
Vg, = Vg= kz

'e (b+y-ib'-ib„g),
e

(V7)

52= —r, (1 —P&) =——V,
2

62= —y, (1+P,)=—2y, + V,

54—- —2y,2

where

Pg= (1 —2v/r.')",

(81)

(82)

where b„z denotes the spin-orbit amplitude. The
period will be given by Eq. (73) with

Re(Vg, Vg, )
' = (16xNc/k', ) e

X [(b y )2 b
2

b 2] 1/2
(V8)

Since the spin-orbit amplitudes are in most cases
smaller, by a factor of 10-10', than the nuclear
scattering amplitudes the spin-orbit correction to
the experimental data is small.

To summarize, if the conditions of the two-wave
approximation are fulfilled, the measurement of the
Pendellosung period may be used to determine the
nuclear scattering amplitude. The corrections due
to the imaginary part of the nuclear scattering am-
plitude, the spin-orbit and Foldy scattering ampli-
tude are small and can easily be taken into account.
The precision of the measurement is essentially

and the approximate expressions for 52, 53 are valid
if V«y, . Thus, the allowed neutron wave vectors
in the crystal are given by

kog —ko

k, —k,r, (1 —p, )n =-k, —(k,/y, ) Vn, 83
k, —k,y, (l + p &) n = (k„—k,„)+ (k, /y, ) V n,

ke~ —k,„.

kp2 =

kp3 ——

ko4=

Q (1 2 )C, = 1, Q (1 ~ ',)*~C, = D,

(84)
Q 5~ C, e ' "& = 0, Q bt xq Cq e' "s = 0.

Using Eqs. (81) it is easily seen [Eq. (50)] that

Note that in the present problem G„=0 and I"=—k,„
[Eq. (54)]. Using these relations the boundary con-
ditions [Eqs. (56)] are
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x~=x4= —1

xq=xs= 1. (85)

Making use of Eqs. (85) and (81) into Eqs. (84) one
obtains

Since the specific spin-orbit effects (discussed in

Sec. IV) are negligible in most cases, the secular
equation may be written

6'+4y,' 5'+ y,'[4+ (2/y, ') V„]5'

+4y, V,o 5+y, (Vq() —VGA) = 0. (93)

ry+ 1
1 &t 2 2(1 y2e g(wP IPg))

(86)

The solution of Eq. (93) is considerably simplified
if one notices that for glancing angles of incidence
exceeding the critical angle for total reflection of
the neutrons, two of the roots (5„52}are of the or-
der of the potential coefficients. The other two
roots may be written

C~=O, 6 = —2y, +6, 5 = —2y, +6, (94}

yz = —k, y, (1 —P~) to,

q 3
= —k, y, (l + p, ) to.

(88}

where we define

'ri= (I —Pi)/(I+ Pi)

and cp&, y3 expressed in terms of the parameter P,
and the thickness to of the crystal are given by

where 63, 54 are also of the order of the potential
coefficients. In addition it is easily seen that

5q+ 64 = —(5~+ bq).

The primary neutron waves corresponding to 5„6~
propagate close to the direction of incidence and

those corresponding to 63, 54 propagate close to the
direction of the reflected beam. Using Eqs. (93)-
(95) one finds that

Using Eqs. (58), (85), and (86) the intensity of the
diffracted beam may be written

5, ~ =—~ [ —V,o (1 + v) s (Ve Vo)'~~ (1 + v )],

where

(96)

Iz = ((I +rt) sin 2 ya +r&(r& + 1)sin z V3

—'Yg sin 2((02 —Q3}]

x [(1 —r, ) +4 r, sin 2(@2 ps)] (89)
and

v=(V,~+VIV~)/4y, V,o

v = v(V, ()+ Ver)/2VGV„-, .

(97)

(98)
It is seen that the diffracted intensity is modu-

lated by three terms periodic in the thickness of the

crystal. Since r, & 1 the dominant term in Eq. (89)
is the one involving sin (yz/2) which is periodic in
the thickness of the crystal with a period Re(5, —6,) Re[(V, V;)'"(1+v')] ' (99}

Thus the period of the dominant term in the dif-
fracted intensity is given by

A.

y, (1 —P, ) y, [1 —(1 —2V/yP)'~~]
(91)

If V/y, ' « I the period given by Eq. (91) reduces to

7 =~y, /V, (92)

which is identical with the result that one would ob-
ta. in using the two-wave approximation. Note that
the deviation of the period given by Eq. (91) from
the two-wave approximation result [Eq. (92)] de-
creases with decreasing scattering angle.

b. In the general case the calculation of the dif-
fracted intensity involves the solution of a fourth-
order secular equation. The calculation is straight-
forward but involves tedious algebraic manipula-
tions. The diffracted intensity fEq. (58)] is modu-
lated by six terms periodic in the thickness of the
crystal. If the glancing angle of incidence exceeds
the angle for total reflection of the neutrons, an ap-
proximate expression for the period of the dominant
term in the diffracted intensity may be derived.

If the imaginary part of the nuclear scattering am-
plitude and the spin-orbit scattering may be ne-
glected, Eq. (99) reduces to Eq. (91}. For v =0
the period is identical with the result of the two-
wave approximation [Eq. (73)].

3. Magnetic scattering

Let us finally discuss the neutron diffraction
problem by a magnetized perfect crystal plate. For
simplicity we will assume that the geometry of the
problem is that of the symmetric Laue case (b, =1)
and that the Bragg condition is exactly satisfied (&
= 0). The magnetization will be assumed to be per-
pendicular to the scattering plane, the usual experi-
mental arrangement. For simplicity, the problem
will be discussed in the two-wave approximation.

If the neutron beam is unpolarized the Pendel-
losung fringe structure will consist of the incoherent
superposition of two terms periodic in the thickness
of the crystal. The periods of these terms are given
by Eq. (73),
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T, = y, A/Re(Ve, Vg, } (100)

where + label the two neutron spin states (parallel
and antiparallel to the magnetization of the crystal).
If the beam is conpletely polarized (parallel or anti-
parallel to the magnetization of the crystal) the

Pendellosung fringe structure will consist of a sin-
gle term periodic in the thickness of the crystal.
The period of the fringe structure will be T, or T
depending on whether the polarization is parallel
or antiparallel to the magnetization of the crystal.
Since highly polarized beams are presently avail-
able, the periods corresponding to the two neutron

spin states may be separately determined. It is
easily seen that a measurement of these two periods
will determine both the nuclear and the magnetic
scattering amplitude. In fact for a monatomic fcc
crystal.

, 'e- c(b+p„+y ib +-ib, e),16m%,

e

16m%, gVb, = „z 'e &(be p~+y —ib —ib, e)
e

(101)

where p~ is the magnetic scattering amplitude for
the reflection specified by the reciprocal-lattice
vector G. The periods are obtained from Eq. (100),
where

Re(V~, V- )" =(16viV', /k ) e-~c

x[(b+y+P„}~+b, e —b'~]. (102)

It is seen that measurement of these periods de-
termines both b+p„and b —P~. If the nuclei pos-
sess a nonzero magnetic moment, a nuclear polar-
ization term must be included. If the measurements
are not performed at very low temperatures, this
term is, in most cases of practical interest, negli-
gibly small.

YI. SUMMARY

The dynamical theory of neutron diffraction has
been formulated to include the reflected waves from
the boundaries of the crystal. This formulation al-
lows a unified treatment of the neutron optical and
diffraction phenomena in crystals. Neutron propa-
gation in the crystal can be described in terms of
two structure factors characterizing the crystal:
the total structure factor and the structure factor
of the neutron spin-neutron orbit interaction. This
latter structure factor appears separately in the
problem as a result of the neutron momentum de-
pendence of the spin-orbit interaction.

The diffraction of neutrons by a parallel crystal
plate has been studied assuming that the direction
of incidence is such that the Bragg condition is
nearly satisfied by only one reciprocal lattice vec-
tor. For a definite spin orientation the diffracted
and transmitted intensity are modulated by six terms
periodic in the thickness of the. crystal. This Pen-
dellosung fringe structure of the diffracted and
transmitted beam arises from the interference of
neutron waves propagating close to the diffracted
and transmitted direction, respectively. The period
of the dominant term in the diffracted intensity has
been calculated in several cases of practical impor-
tance. If the glancing angle of incidence substan-
tially exceeds the critical angle for total reflection
of the neutrons the results of the theory are reduced
to those of the two-wave approximation. In the dif-
fraction by a magnetized crystal there are two per-
iods associated with the two spin states of the neu-
tron. Measurement of these periods could be used
to determine both the nuclear and magnetic scatter-
ing amplitude.
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