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A new method is developed to study the electronic density of states of infinite networks of atoms.
The method involves treating part of the system exactly as a cluster and simulating the effects of the
rest of the environment by connecting a Bethe lattice {Cayley tree) to the surface of the cluster.
Calculations show that the local ringlike topologies of each atom are of primary importance in

determining structure in the electronic density of states. The densities of states of the diamond, BC-8,
and ST-12 structures are studied in detail using this method. These calculations are in excellent

agreement with the exact results. Because of this, the method is used to obtain the density of states of
the Polk and Connell random-network models. These models give the same radial distribution functions
but exhibit striking differences in their densities of states which are interpreted in terms of topology.

I. INTRODUCTION

There are many theoretical problems in solid-
state physics which defy the use of simplifications
found in treating systems with complete periodi-
city. The fields of surfaces and amorphous solids
are certainly two very large areas involved with
problems of this type. This is particularly true
in the study of amorphous solids where Bloch's
theorem is no longer valid. One is thus presented
with a severe obstacle in trying to formulate any

type of realistic theory, a realistic theory being
one which can be readily compared with experiment.

Recently the study of amorphous semiconductors
(e. g. , Ge, Si, GaAs, etc. ) has been concerned to
a large extent with the structural nature of the
amorphous phase and with the effects of disorder
on the electronic density of states (DOS). The
DOS is a particularly useful tool in studying the
structural nature of amorphous systems because
it is a simple, well-defined function and is quite
sensitive to disorder and topology. Experimentally,
information about the DOS can be obtained from
ultraviolet (UPS)'3 and x-ray (XPS) ' photoemis-
sion spectroscopy as well as from x-ray emission
and absorption measurements. In the case of Ge
and Si these experiments reveal that the DOS in the
amorphous phase consists of a smoothed blue-
shifted peak relative to the crystal phase at the toII)

of the valence band ("p-like" states) and a seem-
ingly large broad peak at the bottom of the valence
band ("s-like" states). This is in contrast to the
two strong peaks found in the s-like region of the
DOS of the crystalline phase.

There have been many theoretical approaches in
the study of the amorphous problem. A very fruit-
ful approach has been to discern information about
the amorphous phase by studying various complex

crystalline metastable phases (e. g. , the BC-8 and
ST-12 structures) which contain many atoms in a
primitive cell. These calculations have revealed
the importance of short-range disorder in account-
ing for the behavior of the amorphous spectra.
Other approaches have been to study finite clusters
of atoms where long-range order has been elirni-
nated completely. One approach is to calculate
the DOS by using moments obtained by counting
paths determined by the type of Hamiltonian one is
using. This method is quite interesting but it is
of limited use because of the large number of mo-
ments needed before any structure in the DOS can
be believed. Another approach' is to calculate
the DOS for a finite cluster of atoms with some
type of boundary condition to take care of the sur-
face atoms. The problem here is that again one
needs to go to large clusters of atoms because of
the difficulty in applying reasonable boundary con-
ditions without getting spurious results. Yet an-
other approach has been to study simple models
without periodicity which (for some simple Hamil-
tonians) are exactly soluble, like the Bethe lattice
(Cayley tree) and the Husumi cacti. " The DOS of
these models, however, are relatively featureless,
so that taken alone they provide little new insight
into the problem.

In this paper, we present a new method to ob-
tain the DOS of an infinite connected network of
atoms in terms of the local density of states (LDOS)
of each atom at the center of a small cluster of
this system. The method essentially entails
treating part of the system exactly (i. e. , as a
cluster) and replacing the rest of the environment
by an appropriate Bethe lattice. The details are
discussed in Sec. II.

The Hamiltonian that we will be using is of the
form
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H=V i i'
i, is

where li& represents an "s-like" orbital on atom
i and V is the interaction between nearest-neigh-
bor orbitals. This Hamiltonian is used because
of its simplicity and because its eigenvalues are
related by an analytic transformation' to the
s-like states of a four-orbital Hamiltonian where
one places four sP -like orbitals on each atom and
takes two types of interactions into account. '
These interactions consist of V& between different
orbitals on the same atom and V& between orbitals
on different atoms but along the same bond. This
four-orbital Hamiltonian is very useful since it
gives a reasonably good description of the s-like
states of more realistic Hamiltonians. Moreover,
the one-orbital [Eq. (1)] and four-orbital Hamil-
tonians allow us to calculate the LDOS of an atom
in a "cluster-Bethe-lattice" system exactly.

The format of the paper is as follows. In Sec.
II we discuss the details of our method. This in-
cludes the way of choosing a cluster and the phys-
ical and mathematical reasons for using the Bethe
lattice to simulate the effects of an infinite system.
We then apply our method with some simple ex-
amples which reveal the importance of local topol-
ogies in determining the type of structure found in
the s-like region of the DOS. In particular, we are
able to show decisively that this structure is inti-
mately related to the numbers and types of rings
of bonds in the vicinity of and passing through each
atom. In Sec. III we test our method as a calcula-
tional tool by applying it to the BC-8 and ST-12
structures. We then examine two popular structur-
al models (the Polk" and Connell' models) which
give very similar radial distribution functions'
but differ in that the Polk model contains even-
and odd-rriembered rings of bonds whereas the
Connell model cc}ntains only even-membered rings
of bonds. Next, in Sec. IV we discuss the prop-
erties of finite clusters and the effects of the Bethe
lattice on the band edges. Finally, in Sec. V we
make some concluding remarks.

II. "CLUSTER-BETHE-LATTICE" METHOD

In this section we describe and discuss the meth-
od used in obtaining the DOS. The idea is the fol-
lowing. We consider any infinite connected net-
work of atoms with fourfold coordination and we
choose one atom as a reference point. We then
remove a small cluster surrounding and including
this atom from the system. The cluster is chosen
such that every atom in the cluster is part of at
least one ring passing through the central or ref-
erence atom. A Bethe lattice is now introduced
and connected to the surface atoms to simulate
the effects of the rest of the original system. The
Bethe lattice is an infinite connected network of

n(E) = —(I/w) Im[TrG(E)]

and we are interested in obtaining the diagonal ma-
trix elements of G(E).

We can write G(E) as a Dyson equation,

1 1 1
E —H E E

so that by taking matrix elements between a basis
set [li&) we obtain

E&ilG tf&=6u+~&flffln&&nlG lf&. (4)

The LDOS n, (E) of the ith atom is then given by

n;(E) = —(I/w) Im(i
l
G la& (5)

and

n(E) = Q n;(E), (6)

where n(E) is the total density of states.
As a simple example of how our method works,

let us consider a cluster of atoms in the diamond
structure shown in Fig. 1. The reference atom is
labeled 0 and from symmetry many atoms are
equivalent and are labeled with the same number.
Thus there are only four inequivalent atoms in
this cluster of 29 atoms. Furthermore, we notice
that there are 12 sixfold rings of bonds passing
through the central atom. We now construct a
diamond —Bethe-lattice system by connecting a
Bethe lattice to the dangling bonds of atoms 2 and
3. For simplicity, let us label all the atoms in
the Bethe lattices connected to atoms 2 and 3 by
only even and only odd numbers, respectively.
The LDOS of atom 0 can now be solved by using

atoms with fourfold coordination but with no rings
of bonds. If we now use the one-orbital or four-
orbital Hamiltonian (described in the Introduction)
we can solve for the LDOS of the central atom in
the cluster-Bethe-lattice system analytically.

The reasons for using the Bethe lattice as a
boundary condition are threefold. First, from a
mathematical point of view we can solve the system
exactly. Second, from a physical point of view we
preserve the connectivity of the system and we
maintain the fourfold coordination. Finally, the
DOS of the Bethe lattice is smooth and featureless.
Consequently, any structure found in the LDOS of
an atom in the cluster-Bethe-lattice system is very
closely associated with the local environment of
this atom.

The calculational procedure is as follows. The
DOS in a Green's-function formalism is given sim-
ply by
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T= [E —(E —12V ) ]/6V . (10)

The analytic solution to the above system gives

,(E)=-(1/ )an&olG Io&

= —(1/w) lm{E —4V [E —3V2(E —VT) 'Z '] 'j ',
(11)

where

Z= 1 —4V (E —2VT) (E —VT) (12)

FIG. 1. Cluster of atoms in the diamond structure.
The central or reference atom is labeled 0. All equiva-
lent atoms are labeled with the same number. The Bethe
lattice is connected to the one and two dangling bonds of
atoms 2 and 3, respectively.

The result (11) is plotted in Fig. 2(a) as a thick
solid line. In Fig. 2 (b) we plot the corresponding
results using the four-orbital Hamiltonian. First
of all we notice that even for this small cluster of
only 29 atoms we get structure in the LDOS which
is very different from that of the Bethe lattice
shown superimposed as a dashed line. Second, we
notice that the LDOS of the diamond-Bethe-lattice
system is rather similar to the LDOS of an atom
in the diamond structure (shown as a thin solid
line). This emphasizes the importance of short-

Eq. (4), with H being a one-orbital Hamiltonian
with only nearest-neighbor interactions V as in

(1). We then obtain the following infinite set of
linear equations:

E&0 IG I
0) = 1+4v (1 IG Io&,

o&= v&oIG Io&+3«2IG Io&,

o&= v&1IG lo&+2v&3IG Io)+ «4IG Io),

E&3IG Io&= 2v&2IG Io&+2v&5

E&4 fG lo)= v&2IG lo)+3v(8 fG lo&,

E&2hj'IG lo& = v&2N - 2 IG lo&+ 3v&2N+ 2

E&~+1IG lo&= v(zv —1IG Io&+3V&~+ 3IG lo&,

These equations can be solved using the transfer-
matrix technique. We define
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so that we can reduce the infinite set of equations
in (7) to the following four linear equations:

E&oIG lo}=1+4v&1IG lo&,

E &1 IG I 0& = v&o
I
G

I
o&+ 3v&2

I
G Io&

o) = v&1 IG I
o)+ 2v(3 IG I

o&+ vT&2 IG I o),
o& = 2v&2 IG I

o&+ 2vT &3

where, from (7) and (8)

FIG. 2. Density-of-states calculations for the diamond
and ring cluster structures. (a) One-orbital Hamiltonian
in the diamond structure (light full line), Bethe lattice
{dashed line), and our results (heavy full line). (b) Four-
orbital Hamiltonian in the diamond structure (light full
line), Bethe lattice (dashed line), and our results (heavy
full line). (c) Structure with 6 n-fold rings around the
central atom in the one-orbital Hamiltonian: 5 (dashed
line), n = 5; 6 (solid line), n = 6; 7 (dotted line), n = 7; 8
(broken line), n=8. (d) Structure with 6 n-foM rings in
the four-orbital Hamiltonian. Notation as in {c). (e) The
orbital energies for isolated fivefold rings (dashed lines),
sixfold rings (solid lines), sevenfold rings (dotted lines),
and eightfold rings (broken lines). The energy in parts
(a), (c), and (e) is in units of V [see Eq. (1)] and the ener-
gy in parts (b) and (d) is in eV.
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range configurations in determining structure in

the DOS. In particular, the two peaks and the dip
in the middle of the spectrum can be interpreted
in terms of the 12 sixfold rings passing through the
central atom. To show the association of structure
in the DOS with the ring statistics of a cluster we

have done the following. Five cluster-Bethe-lat-
tice systems were constructed such that each clus-
ter contained six rings of only one tyje (i. e. , 6

fivefold, .sixfold, sevenfold, and eightfold rings,
respectively). These clusters wexe made so that
there was one ring in each pair of bonds of the
central atom. The results are shown in Figs. 2

(c) and 2(d) using the one-orbital and four-orbital
Hamiltonians, respectively. The structure in these
DOS can be very easily identified with the eigen-
values of isolated rings as shown in Fig. 2 (e}.
The agreement is excellent and indicates that the
ringlike nature of the local environment is essen-
tial in determining the type of structure found in
the DOS. Moreover, a close examination of Fig.
2 (c) shows that the strengths of the peaks are much
larger the smaller the ring. This indicates the
importance of the smallest rings in a cluster. Fi-
nally, the bigger peak-to-dip ratio in the spectrum
of the diamond-Bethe-lattice system as compared
to the spectrum of the sixfold-ring-cluster-Bethe-
lattice system is caused by the larger number of
sixfold rings in the former system. This indicates
the importance of the number of rings of a given
type in determining the sharpness of the structure
in the DOS.

Before concluding this section, two specific com-
ments about the cluster- Bethe-lattice method
should be made. First, it is interesting to discuss
the relationship between our approach and the
Haydock-Heine-Kelley (HHK) method. In this
method, the local Green's function of an atom is
expanded as a continued fraction with the mathemat-
ical boundary condition that all the coefficients are
constant beyond a certain term. The Bethe lattice,
however, taken alone can also be expanded as a
continued fraction with constant coefficients. Nev-
ertheless, a close inspection shows that the local
Green's function of an atom in a cluste~-Bethe-
lpttice system can by no means be reduced to the
HHK form. Moreover, there is no physical simi-
larity between the two methods since HHK deal
with a finite cluster, whereas we deal with an in-
finite system. Second, it might be argued that the
effects of the Bethe lattice are nothing but a broad-
ening of the LDOS of a bare cluster. This, ho~ever,
is not the case as we shall see with several exam-
ples in Secs. III and IV.

III. STUDY OF DENSITIES OF STATES

Using the cluster-Bethe-lattice method we ex-
amine and analyze the DOS of the BC-8 and ST-12

structures and we calculate the DOS of the Polk'
and Connell models. The BC-8 and ST-12 struc-
tures have been shown to be very important in
studying the structural aspects of the amorphous
group-IV elements. They contain 8 and 12 atoms
in a primitive cell, respectively, and have very
different ringlike topologies. The BC-8 and ST-12
structures also provide us with two prototypes
which can be used to check our method as a calcu-
lational technique. We can construct various
BC-8- and ST-12-Bethe-lattice systems with
clusters of different sizes. By comparing the DOS
of these systems with the Bloch DOS of the BC-8
and ST-12 structures we can examine how our
method converges to the exact solution. This gives
us important information about the limits and va-
lidity of our method. With this knowledge at hand
we proceed to study two popular structural models
of the amorphous phase: the Polk and Connell mod-
els.

A. BC-8

In the BC-8 structure we have only even-num-
bered rings of bonds and only one type of atom.
Consequently, as in diamond, the LDOS and the
total DOS are equivalent. In Fig. 3 we have plot-
ted the LDOS of four BC-8-Bethe-lattice systems
using the one-orbital [(a), (c), (e), and (g)] and
four-orbital [(b), (d), (f), and (h)] Hamiltonians.
In Fig. 3(a) and Fig. 3(b) (dashed line} we show
the results corresponding to a BC-8 cluster with
only 26 atoms. This cluster contains 9 sixfold
rings passing through the central atom and is the
smallest cluster that can be made such that the
central atom is not directly connected to a Bethe
lattice. The solid line in Fig. 3(b) is the Bloch
DOS of the BC-8 crystal obtained with a band-
structure calculation. In Figs. 3 (c)-3(h) we have
plotted the LDOS of BC-8-Bethe-lattice systems
with clusters containing up to and including all
eightfold, tenfold, and 12-fold rings, respectively,
passing through the central atom.

Let us now examine the trends as we go down
the columns in Fig. 3. We notice first that the
general features of the Bloch DOS are already pres-
ent when dealing with the smallest cluster of atoms.
We see that the BC-8 crystal displays a spectrum
which can be essentially characterized in terms of
two strong peaks and one dip in the middle. In the
26-atom cluster these two peaks can be directly
identified with the 9 sixfold rings passing through
the central atom. This is easily seen by comparing
Figs. 3(a) and 3(b) with Figs. 2(c) and 2(d), re-
spectively. When we increase the number of atoms
in the clusters we get more structure in the DOS
but the general features of two peaks and a dip in
the middle still remain. In Figs. 3 (c) and 3 (d)
we notice that there is a small hump in the middle
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of the spectra. This is caused by the large number
(36) of eightfold rings passing through the central
atom. In the case of Figs. 3(e) and 3(f) we have
a cluster with 113 atoms and the results are very
similar to the exact result shown in. Fig. 3(b). It
is now fruitless to carry the ring interpretation
further to larger rings. However, the important
point is that the sixfold-ring character still per-
sists. For the cluster in Figs. 3(g) and 3(h) we
have 207 atoms and now our method can even re-

FIG. 3. Densities-of-states calculations for four BC-
8-Bethe-lattice systems using the one-orbital [(a), (c),
(e), and (g)j a.nd four-orbital t{b), (d), (f), and (h)) Hamil-
tonians. (a) and {b) {dashed line), the LDOS for a BC-
8-Bethe-lattice system with a cluster containing all rings
up to order six passing through the central atom. I'he
full line in {b) is the DOS for the BC-8 structure. (c) and

(d), the LDOS for a BC-8-Bethe-lattice system with a
cluster containing all rings up to order eight passing
through the central atom. (e) and (f), the LDOS for a BC-
8-Bethe-lattice system with a cluster containing all rings
up to order 10 passing through the central atom. (g) and

(h), the LDOS for a BC-8-Bethe-lattice system with a
cluster containing all rings up to order 12 passing through
the central atom. The energy is in units of V for (a), (c),
(e), and (g) and in units of eV for (b), (d), (f), and (h).

solve the wiggles in the middle of the spectrum.
The only discrepancies with the exact result are
the small peaks near the band edges. These will
be discussed at length in Sec. IV.

B. ST-lg

The ST-12 structure is very useful because it
provides us with a system with 12 atoms in a prim-
itive cell so that effects caused by periodicity should
be less important than for other structures. Fur-
thermore, the ST-12 structure is interesting be-
cause it contains fivefold, sixfold, sevenfold, and
eightfold rings of bonds. There are two types of
atoms in the primitive cell with 4 atoms of type I
and 8 atoms of type II. In order to compare the
DOS of ST-12-Bethe-lattice systems with the total
Bloch density of states of ST-12 we need to con-
struct clusters for each type of atom. In what
follows we show only a weighted average of the
LDOS of clusters centered on atoms of type I and

II. For a more detailed exposition see Yndurain
et al. ' In Fig. 4 we have plotted the DOS (aver-
aged over two atoms) of three ST-12-Bethe-lattice
systems using the one-orbital [(a), (c), and (e))
and four-orbital [(b), (d), and (f)] Hamiltonians.
In Fig. 4(a) and Fig. 4(b) (dashed line), we show

the results corresponding to an ST-12 system with
27 atoms in a type-I cluster and 31 atoms in a
type-II cluster. These clusters were chosen so
that all fivefold, sixfold, and sevenfold rings were
included. In the cluster with a type-I central atom
we have 4 fivefold, 2 sixfold, 4 sevenfold, and 3
eightfold rings of bonds passing through the cen-
tral atom. In the cluster with a type-II central
atom, we have 3 fivefold, 2 sixfold, 5 sevenfold,
and 8 eightfold rings of bonds. If we compare
Figs. 4(a) and 4(b) with Figs. 2(c) and 2(d), re-
spectively, we find that the peak near —2. 7V is
caused by a fivefold-ring peak and the overlap of
a sevenfold- and eightfold-ring peak. The little
bump near —1.6V is caused mostly by a sixfold-
ring peak while the hump around OV is caused pri-
marily by an eightfold-ring peak and the overlap
of a fivefold- and sevenfold-ring peak. Finally,
the peak around 2V includes the overlap of fivefold-,
sixfold-, sevenfold-, and eightfold-ring peaks.

We notice again, as in the BC-8 structure, the
general features of the Bloch DOS of the ST-12
structure fshov'n as a solid line in Fig. 4 (b)] are
already present when dealing with a very small
cluster of atoms. When we add more atoms to the
clusters, we are able to resolve the various peaks
more clearly. In Figs. 4(c)-4(f), we have plotted
the DOS of ST-12-Bethe-lattice systems with clus-
ters containing up to and including all eightfold and
tenfold rings, respectively, passing through the
central atom. This saturates the number of eight-
fold rings to a total of 22 and 25 for atoms of type
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FIG. 4. Densities of states averaged over two atoms
for three ST-12-Bethe-lattice systems using the one-
orbital [(a), (c), and {e)] and four-orbital [(b), (d), and

{f)] Hamiltonians. (a) and (b) (dashed l.ine), the LDOS
for an ST-12—Bethe-lattice system with a cluster con-
taining all rings up to order seven passing through the
central atom. The full line in (b) is the total DOS for
the ST-12 structure. (c) and (d), the DOS for an ST-12-
Bethe'-lattice system with a cluster containing all rings
up to order eight passing through the central atom. {e)
and (f), the DOS for an ST-12-Bethe-lattice system with
a cluster containing all rings up to order ten passing
through the central atom. The energy is in units of V for
(a), (c), and (e), and in units of eV for (b), (d), and (f).

I and type II, respectively. This saturation causes
a sharpening of the structure as is seen in Figs.
4(c) and 4(d). Finally, in Figs. 4(e) and 4(f), we

obtain DOS spectra for clusters with only 93 atoms
which are in excellent agreement with the Bloch
DOS of ST-12. Every peak is resolved and even

the shape of the structure is reproduced.
This agreement is very important in testing the

cluster- Bethe-lattice method as a calculational
technique. What we have found is that we can pro-
ceed with confidence and reliability to study any

amorphous system of atoms. As long as we choose
clusters containing up to tenfold rings of bonds, we
are assured to obtain a spectrum which will be in

very good agreement with the exact result. With

this in mind we proceed in Sec. III C to study

some structural models of an amorphous random

network.

C. Structural models

We will now use the cluster-Bethe-lattice meth-

od to study the Polk" and Connell' models. These
are structural models of an amorphous tetrahedral-
ly coordinated solid which have some very inter-
esting similarities and differences. They are both
models of an amorphous random network and both

give radial distribution functions which are in very
good agreement with experiment. However, they
have very different topological properties. The
Polk model represents a system with odd- and
even-numbered rings of bonds, whereas the
Connell model is constructed so that there are
only even-numbered rings of bonds. The atoms
in these models are all inequivalent, so that in

principle we would need to average over the LDOS
of every atom to obtain the total DOS. For the
Connell model, however, we found that the LDOS
of the atoms studied were very similar. This is
caused by the strong similarity in the ring statis-
tics of these atoms, as shown in Table I. There-
fore in Fig. 5 we show a DOS averaged over only
5 central atoms in the Connell random network.
Again we use the one- and four-orbital Hamilto-
nians. In Figs. 5 (a)-5(d), we have plotted the

DOS of two Connell cluster-Bethe-lattice systems
with clusters containing up to and including all
eightfold and tenfold rings, respectively. These
clusters contain a central atom which on the aver-
age (see Table I) has 16 sixfold rings and 21. 6
eightfold rings. This is a very large number of
sixfold rings and this is reflected clearly as a very
large dip at the middle of the spectrum with two
large peaks near the band edges. This, however,
is quite different from what happens in amorphous
Ge or Si, where we get a substantial filling up of
the dip. ' Although the Connell model does not seem
to be appropriate for amorphous Ge or Si, it may
still be valid for the amorphous III-V compounds
(as the authors intended).

Let us now examine the Polk model. For this
system we found that the LDOS of the atoms were
not very similar. This is also reflected in the
ring statistics as shown in Table II. In Fig. 6 we
have plotted the LDOS of two cluster-Bethe-lattice
systems for three different atoms in the Polk model
using the one-orbital [(a), (c), and (e)] and four-
orbital [(b), (d), and (f)] Hamiltonians. In Figs.
6 (a) and 6 (b) we show the LDOS of an atom (label
229) containing one fivefold, nine sixfold, four
fourfold, and 16 eightfold rings of bonds in a clus-
ter containing up to and including all eightfold rings
(dashed line) and all tenfold rings (solid line). In
Figs. 6(c) and 6(d) we show the LDOS of another
atom (label 223) in two similar clusters containing
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TABLE I. Ring statistics of five atoms near the center
of the Connell random-network model. A number in the
first column represents the label of an atom in the
model. The numbers in the second, third, fourth, and
fifth columns represent the number of fivefold, six-
fold, sevenfold, and eightfold rings of bonds, respec-
tively, passing through this atom. A ring is not recog-
nized if more than two atoms in this ring are connected
directly to the reference atom.

Label of
atom

1

2
3
9

10

Number of
fivefold

rings

Number of
sixfold

rings

18
15
18
15
14

Number of
sevenfold

rings

Number of
eightfold

rings

22
19
22
22
23

2 fivefold, 6 sixfold, 5 sevenfold, and 17 eightfold
rings of bonds. Finally, in Figs. 6(e) and 6(f)
we show the LDOS of an atom (label 231) with ring
statistics given by 3 fivefold, 4 sixfold, 7 seven-
fold, and 21 eightfold rings of bonds. Comparing
the spectra as we go down the columns we find

again a correlation between structure in the DOS

and ring statistics. For the DOS on the top we
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FIG. 5. Densities of states averaged over five atoms
near the center of the Connell model for two Connell cius-
ter-Bethe-lattice systems using the one-orbital [(a) and
(c)) and four-orbital f(b) and (d)] Hamiltonians. (a) and
(b), the DOS for a Connell cluster-Bethe-lattice system
with a cluster containing all rings up to order eight pass-
ing through the central atom. (d) and (d), the DOS for a
Connell cluster-Bethe-lattice system with a cluster con-
taining all rings up to order ten passing through the cen-
tral atom. The energy isin units of V for (a) and (c) and
in units of eV for (b) and (d).

TABLE II. Ring statistics of 17 atoms near the center
of the Polk random-network model. The convention is
the same as in Table I.

Label of
atom

229
223
231
224
233
232
228
225
236
227
243

8
239
124
234
235
252

Number of
fivefold

rings

Number of
sixfold
l 1ngs

Number of
sevenfold

rings

Number of
eightfold

rings

16
17
21
14
17
21
12
14
12
12
12
15
14
20
12
12
12

Until now we have been concerned with the posi-
tion and number of peaks and dips on the DOS.

notice a large characteristic dip in the rniddle of
the spectrum. This dip becomes gradually filled
in until we get to the DOS at the bottom, where we
now get a peak in the middle of the spectrum. This
behavior is easily correlated with the changes in

ring statistics as we go down the columns in Fig.
6. The ring statistics of the atom at the top of the
figure show a very small number of fivefold and

sevenfold rings but a relatively large number of
sixfold rings. Thus we get a characteristic two-
peak and dip structure. As we go down the col-
umns, there is an increasing number of fivefold,
sevenfold, and eightfold rings, while the number
of sixfold rings is decreasing. This is reflected
as an introduction of new structure near the mid-
dle of the spectrum.

In Fig. 7 we show a DOS averaged over 17 cen-
tral atoms in the Polk model, using the one-or-
bital and four-orbital Hamiltonians. In Figs. 7 (a)-
7 (d) we have plotted the DOS of two Polk c1uster-
Bethe-lattice systems with clusters containing up
to and including all eightfold and tenfold rings,
respectively. Comparing Fig. 7 with Fig. 5, we
notice the striking difference between the Polk and
Connell models when using the DOS as a discerning
factor. The Polk model seems to be a good model
for the amorphous phase of Ge and Si even though
we only have a partial filling up of the dip. It re-
rnains to be seen from future high-resolution spec-
troscopy whether the amorphous phase really has
a partial or complete filling up of the dip. This
should have important consequences regarding the
ring statistics of the amorphous phase.

IV. FINITE CLUSTERS AND BAND EDGES
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FIG. 6. Densities of states for three atoms in the Polk
model using the cluster-Bethe-lattice method with the
one-orbital [(a), (c), and (e)] and four-orbital [(b), (d),
and (f)] Hamiltonians. (a) and (b), the DOS for two clus-
ter-Bethe-lattice systems containing all rings up to or-
der eight (dashed line) and ten (full line), respectively,
passing through the central atom (label 229, see Table II).
(c) and (d), the DOS for two cluster-Bethe-lattice sys-
tems containing all rings up to order eight (dashed line)
and ten (full line), respectively, passing through the cen-
tral atom (label 223). (e) and (f), DOS for two cluster-
Bethe-l. attice systems containing all rings up to order eight
(dashed line) and ten (full line), respectively, passing
through. the central atom (label 231). The energy is in
units of V for (a), (c), and (e) and in units of eV for (b),
(d), and (f).

06

a) b)

04-

02-

the average probability that an electron is at the
site i when it has an energy E.

The total DOS of a cluster-Bethe-lattice system
is necessarily equal to that of the infinite Bethe
lattice. The DOS of the Bethe lattice, however, is
only defined in the interval [- (M12)V, (W12) V], where
V is the interaction parameter of the one-orbital
Hamiltonian. If we assume this parameter V has
the same value throughout the whole cluster-Bethe-
lattice system, the LDOS of the reference atom is
then different from zero only within [ —(W12) V,
(v 12)V]. Therefore we cannot for example obtain
the correct band edge for the diamond or BC-8
structures, which normally would lie in the inter-
val [—4V, 4V]. The effects of the Bethe lattice
may then be to produce spurious peaks near the
band edges. To remedy this situation we took
V- 4V/v 12 for the Bethe lattice and V= V in the
cluster. This gives us a spectrum that now gen-
erally lies in the interval [- 4V, 4V]. An example
of this is shown in Fig. 8. The dotted curve in
this figure corresponds to the BC-8-Bethe-lattice
spectrum shown in Fig. 3 (e). Superimposed in

Fig. 8, we have a solid curve which represents
the new BC-8-Bethe-lattice spectrum with two
interaction parameters. We notice that the curves

However, we have said nothing about the proper-
ties of finite clusters and band edges. This is
because these properties require a more careful
and detailed analysis.

Let us begin by examining what we really mean
by a LDOS. The LDOS as defined in Eq. (5) can
be written as

u Q0 o6

I—

O
Q4.

02.

n;(E) = P(E)n(E), (15)

where n(E) is the total DOS and is equal to
&,r5(E —Er). From Eq. (15) we notice that the
LDOS n;(E) is just equal to the total DOS multi-
plied by a weighting function P(E). P(E) is just

n;(E) = ~ l&a;14r& I'5(E -Er), (13)

where
l P;& is the orbital of the ith atom and

l
4'r&

is an eigenfunction of the total system with energy
Er Equation (13.) can also be written as

„(E) Zrl(fil@r&l'5(E Er)+5(E E ) -(14)
Zr 5(E —Er)

0
—4 4 —11 —9

ENERGY

—5

FIG. 7. Densities of states averaged over 17 atoms
near the center of the Polk model for two Polk cluster-
Bethe-lattice systems using the one-orbital [(a) and (c)]
and four-orbital [(b) and (d)] Hamiltonians. (a) and (b),
the DOS for a Polk cluster-Bethe-lattice system with a
cluster containing all rings up to order eight passing
through the central atom. (c) and {d), the DOS for a Polk
cluster —Bethe-lattice system with a cluster containing
all rings up to order ten passing through the central atom.
The energy is in units of V for (a) and (c) and in units of
eV for (b) and (d).
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FIG. 8. Densities o sf tates for a BC-8-Bethe-lattice
s stem with a cluster containing all rings up to order ten.system wi
The DOS was obtained using the one-orbita' al Hamiltonian

he-lattice system'th all interactions in the cluster-Bet. .e- '
yWl in

equal to V (dotted line), and with interactions in the cluster
equal to V and interactions in the Bethe lattice equal to
4V/@12 (solid line). The energy is in units of V.

Finally, we should say a few words about how the
cluster-Bethe-lattice method converges to the
exact result for systems with high symmetry.

exam le let us take the diamond structure.
The detailed shape of the diamond DO ss g
by Van Hove singularities. For instance, using
the one-orbital Hamiltonian, these sharp features

take larger and larger cluster-Bethe-lattice
systems we find that the basic two-peak and dip
structure remains essentially unchanged, with
add'tional wiggles appearing near the singulari-
ties. What is happening here is similar to the
Gibbs phenomenon. In addition, we are trying
to reproduce the crystalline DOS with an infinite
number of 5 functions, of which only a small num-
ber are directly related to the cluster. For ex-
ample, in the cluster without a Bethe lattice we
would get as many 5 functions as there are atoms.
However, in systems with high symmetry we find

are mosal st identical except near the band edges.
more likeIn fact, the new spectrum looks much more i e

the exact result [Fig. 3(b)], which does not have
the small peaks near + 3V. We obtain similar re-
sults for the small peaks near +3V in the Connell
model shown in zg.F' 5 (c). In the ST-12 structure,
however, ese per, these eaks remain essentially unchanged.
It is interesting that even for the BC-8 structure

e eaks do not vanish completely when we
change the strength of the Bethe lattice. e e-
lieve this is a real effect which is caused by an
intrinsic property of the finite cluster that we are
dealing with.

It would be appropriate at this time to examine
the Bethe lattice as a boundary condition by com-
paring eth LDOS of cluster-Bethe-lattice systems
with the LDOS of finite isolated cluster systems.
I F' . 9 we show the LDOS of three clusters usingIn Fig.
the one-orbital Hamiltonian with [(a), (c), and e)
and without [(b), (d), and (f)] the Bethe lattice as
a boundary condition. The clusters in (a), (c), an

( ) correspond to those shown in Figs. (a„c,
and 3(e). The spectra in Figs. 9(b), 9(d), an~ and
9 (f) have been Gaussian broadened by about 0. 2V.
The difference between the respective spectra
in the first and second columns is striking. As we
mentioned earlier, the effect of the Bethe lattice
cannot be viewed as just an averaging or broad-
ening of a finite-cluster spectrum. For instance,
the two strong peaks in the isolated cluster [Fig.
9 (f)] are not at the correct energies for the total
DOS, whereas the ones in the cluster-Bethe-lat-
tice model [Fig. 9(e)) are

04—

02—

0
06

V)
UJI— 04—
l
c/)

0

Vl 02—
z
O

0
06

02—

0
-4 4-4

ENERGY

FIG. 9. Densities of states using the one-orbital Ham-
iltonian for three BC-8 clusters with [ a c) and {e)]
and without [(b), (d), and (f)] the Bethe lattice connected
to the surface. (a) and (b), the DOS for a cluster con-
taining all rings up to order six. (c) and (d), the DOS or
a cluster containing all rings up to order eight. (e and
(f), the DOS for a cluster containing all rings up to order
ten. The energy is in units of V and the spectra in (b),
(d), and (f) have been Gaussian broadened by 0.2V.
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that many of these 5 functions are degenerate.
For instance, in Fig. 1, we have a cluster of 29
atoms in the diamond structure. But we only get
four 5 functions since we only have four distinct
atoms. Because of these effects the convergence
for the diamond structure is rather slow. How-

ever, for more complicated structures the con-

vergence is very good. This is clear as we have

already seen in the BC-8 and ST-12 structures.
Therefore, the cluster-Bethe-lattice system
should have the fastest convergence for amorphous
systems.

V, SUMMARY AND CONCLUSlONS

We have used a new method to study the DOS of
infinite systems of atoms by treating part of the
system exactly (as a cluster) and letting the
Bethe lattice simulate the effects of the rest of
the environment. Using this method we have
shown the importance of local ringlike topologies
in determining structure in the DOS. By taking
various BC-8 and ST-12 cluster-Bethe-lattice
systems we have interpreted the DOS of their
crystalline phases. As the size of the clusters
increase, more details appear in the DOS spectra,
but the basic features are already present in very
small clusters of atoms. Consequently, the inter-
pretation of structure in the DOS can be carried
out in terms of small-membered rings only. In
this way, we have also been able to test our meth-
od as a calculational tool by examining how it con-
verges to the exact result. In particular, we have
found that the convergence is faster the more
complicated the system. For the BC-8, ST-12,
and amorphous phases a cluster —Bethe-lattice
system with a cluster containing all rings up to
order ten should give an excellent estimate of the
actual DOS.

In this context we have studied two popular struc-
tural models of an amorphous random network.

Although both models fit the experimental radial
distribution functions quite well, their respective
DOS are quite different. This is a consequence of
their very different ring topologies. One model
has only even-numbered rings of bonds while the
other has in addition odd-numbered rings of bonds.
This shows the sensitivity of the DOS, and hence
the usefulness of characterizing amorphous samples,
to the local ring topologies of each atom.

Finally, we have found that possible spurious
results near the band edges can be eliminated by
taking two types of interactions into account when

studying a cluster-Bethe-lattice system using the
one-orbital Hamiltonian. By taking the Bethe lat-
tice to have a stronger interaction parameter than
the cluster, the width of the DOS spectrum in-
creases and approaches that of the original system.

There are many extensions and areas where we
could apply our method. For example, we are cur-
rently extending this method to be used with more
realistic Hamiltonians. In particular, we are
studying a three-parameter molecular- orbital
tight-binding Hamiltonian and a five- parameter
four-orbital Hamiltonian. These Hamiltonians can
give valence-band DOS which are in excellent agree-
ment with experiment.

Our method can be used to study amorphous bi-
nary compounds or surfaces on amorphous or
crystalline solids. We can also study the effects
of impurities. In addition, with straightforward
extensions to include Bethe lattices of other coor-
dination numbers, we can have a very interesting
method of studying amorphous alloys.
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