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Optical mixing by mobile carriers in semiconductors in the presence of a dc
homogeneous magnetic field*
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The effect of a magnetic field on the optical mixing by mobile carriers in semiconductors is discussed
for each of the two mechanisms of nonparabolic band and energy-dependent collision time. It is sho~n
that for both these mechanisms an external magnetic field enhances the mixed output; however, the
results for the two cases are sufficiently different that a magnetic field may be used to distinguish
between the two effects.

I. INTRODUCTION

The phenomenon of optical mixing of two laser
beams in semiconductors such as InSb and InAs,
etc. has been investigated in a recent series of ex-
periments. ' In this process, two monochromatic
laser beams of frequencies &, and 2 interact in a
semiconductor to produce a mixed output at the
difference frequencies , = 2+, —+2 and 4= ~~ —cu, .
Measurements' indicated that the generated mixed
output had a relatively large magnitude, and it was
found to be dependent on the mobile-carrier con-
centration. This showed that the mobile carriers
were responsible for the optical mixing, instead
of the nonlinearity arising because of the polariza-
tion of the background lattice.

Two mechanisms have been put forward to ex-
plain the optical mixing using the mobile carriers
in the semiconductors. Wolff and Pearson3 pro-
pose that the observed nonlinearity is due to non-
parabolicity of the conduction band, an effect which
is known to be relatively large in crystals such
as InSb and InAs. Here the crucial point is that an
electron's velocity is a nonlinear function of its
momentum, which oscillates at the frequency of
the applied electromagnetic fields. The nonlinear
velocity-momentum relationship results in an in-
duced current containing mixed frequency com-
ponents.

The other mechanism, proposed by Kaw, makes
use of certain nonlinearities associated with col-
lision processes. These nonlinear effects are due
to the energy dependence of the momentum relaxa-
tion time for the conduction electrons in semicon-
ductors, and will exist even for crystals with para-
bolic bands.

In this paper we discuss the effect of a constant
magnetic field on the optical mixing by mobile
carriers in semiconductors. The influence of the
magnetic field on both of the above-mentioned
mechanisms is considered. The magnetic field
causes an increase in the nonlinear properties' of
the semiconductor for both mechanisms. Hence

II. NONLINEARITY DUE TO NONPARABOLICITY

For a nonparabolic semiconductor placed in a
magnetic field, the equation of motion for an elec-
tron in the conduction band is given by~

d m*v
[I ( / g)R]1/2

where m~ is the electron's effective mass near the
bottom of the conduction band and c~ = (E /2m~)' 2,
where E is the energy gap. E and B represent
the electric and magnetic fields, respectively, and
are given in terms of vector potential Ao as

1 eA,E= —— , B=V'x .c et

If the external uniform magnetic field Bo is along
the z direction and the sample is irradiated with
circularly polarized optical beams of frequencies
&, and &2, the vector potential can be written

Aa= —,Boxr+A, (2)

the mixed optical output is also increased. The
main limitation on the output is the collision time

Hence we are limited to the case when w„~~,
~„~&—co„co&—~, and ~3 —~, are much larger
than 7 ', where &, is the cyclotron frequency. We
find that the enhancement of the output by the mag-
netic field is quite different for the two mechanisms.
By proper choice of „w2, and &, it is shown
that the magnetic field enhancement for the non-
parabolic-band case is almost six orders of mag-
nitude, while for the energy-dependent collision-
time case, for the same parameters, the enhance-
ment is only four orders of magnitude.

In Sec. II we derive an expression for the
mixed output in a semiconductor in a magnetic
field using the nonparabolic mechanism. In Sec.
GI the same effect is considered using the energy-
dependent collision-time approach, and in Sec. IV
a comparison and discussion of the two results are
presented.
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where
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Writing U2 as

10

122

A= —V'[Ale-' 21' "1"+ (complex conjugate)],

(3a)

1,2,3,4
U ~ U i A)t~r~fsj} t )2- ~ 2}t~ (iia)

As =g„(II+ iy) (sb) where

in Eqs. (2) and (3) A represents the vector poten-
tial due to the optical beams and k„ is the wave
vector. In calculating the electron dynamics we
have neglected the Lorentz force of the ac mag-
netic field and the (v ~ V)v term. This is justified
by the fact that c~/c «1 (see Ref. 6).

Using a dimensionless velocity u= v/c" and sub-
stituting Eqs. (2) and (3) into Eq. (1), the equation
of motion can be rewritten

u dA
(1 2)1/2 f di C (4)

1,2
U =1~ (U -'cs'e~s" +c.c ) («)

and

UIS = fels(2'+ IV)" (ab)

Therefore

~g
Z, I)2= U(1 + 2 ll ~ U+ )1-u )

(il Ul+ fl U2+ fL Us+ ~ )

X [1+ 2 (P, Ul + P, Us + ~ ~ ~ )

' (fl Ul + fl Us + ...) + ~ ..] .
Substituting Eqs. (5}and (V} into Eq. (4) and com-
paring coefficients of p. gives

dA—U1=—-i(d U1,dt dt c (3)

from which, using Eqs. (3) and (6), we get

UII = &IAI/(&I —~,)
Uls = (OSAS/(u)2 —a),}

Comparing coefficients of p, gives

(9a)

(Ob)

where il = e/m~c~c, &u, = eBs/m*c is the cyclotron
frequency, and the velocity u is a circularly polar-
ized vector.

We employ a series solution method for Eq. (4).
Let

u= p, U1+ P. U2+ p U3+ ~ ~ ~

where

A ~

Us„——Us„(x+ iy), (1lb)

and substituting into Eq. (10) we can get various
U2), 's. However, we are only interested in U23 with
frequency (d3 and obtain it as

A
2 (1 —(g,/ws)(1 —10,/(gl) (1 —(g,/(os)

The third-order velocity component of frequency
~3 is written

u~Q) 1 ~s(U e I (22 @~sf)+c (is}
The amplitude of the third-order current J' ' of
frequency component ~3 is hence given by

J(3) @ ~(3)

2m*'c'c ' (1 —(o,/(os)(1 —s),/(gl)'(1 —(d,/(os)
4eN El E2212

m "E, ((os —~,)((ol -(o,)'((os - (o,)
'

where N is the carrier concentration, E, = ~,A,/
C, and Es = (02AS/C ~

To estimate the intensity of the +3 beam gener-
ated by the nonlinear mixing, one must solve the
driven wave equation

SE 1 8 Ds 4s 8J"'
et' ~ et

(14)

where

Ds = e42)ES ~

2ve fi/EjE2212
( 6)

C m Esks(Q)2 21 )(~1 —27) (Qs —10 )

As long as E is smaller than the photon mean free
path or the dephasing length, Es will represent
electric field of the generated radiation at ~3.

III. NONLINEARITY DUE TO ENERGY-
DEPENDENT COLLISION TIME

Substituting Eq. (14) into Eq, (15), one finds that
the amplitude of E3 grows linearly with interaction
distance E, and if the absorption is neglected one
gets for the magnitude of E3

—[Us+ SU1. (Ul' Ul)]= —i(u, US. (10)

Equation (10) clearly shows the presence of mixed
frequency components due to the term Ul ~ (Ul ~ U, ),
which contains the frequencies ~3= 2'& - z2 and
~4= 2~2 -~1 in addition to ~1 and ~2.

Consider a semiconductor with a parabolic can-
duetion band placed in a uniform magnetic field
Bo. The equation of motion for an electron of ef-
fective mass ~~ in the conduction band can be
written
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av V g V—+ —= ——E+—x Eo
&t 7' m C

where a finite momentum relaxation time v is con-
sidered and E represents the electric field due to
the optical beams incident on the crystal. The ac
magnetic field has been neglected. As before,
the electric field can be expressed

1,2
E = —P[E„e '4"' ~i& '+ (complex conjugate)] .

(16)
The momentum relaxation time ~ is a function

of the energy. Now in the presence of the strong
electric field, the carrier temperature T., becomes
different from the lattice temperature T and one
can express the energy dependence of the relaxa-
tion time 7. as

dr, 2
(J E) T, —T

3Nk

where J is the current density (S„denotes its real
part), N is the carrier concentration, k is the
Boltzmann constant, and 7, is the energy relaxa-
tion time for carriers. Equations (17)-(20) give
a complete solution of the problem. The first-
order steady-state solution of Eq. (17) is directly
given as

(20)

-i (kl~r~lt)
m "[1+i (id i —io,)~]

(ala}

.-'-. [1--,'(r./T-l)]. (19)

For the carrier temperature, one can write the
energy balance equation

7 = ~,(r,/r)"", eE27 -i h2~r~2t )
m [I+i4oa -io,)7]

(2lb)

where ~0 is the relaxation time corresponding to
the lattice temperature and pg is an integer. At

the temperatures at which the experiment is usu-
ally performed (e.g. , liquid Na), the dominant
scattering is by ionized impurity, for which p= 3.
Under these conditions, we also have

(T, —T)/T«I,
so that

~ 2
-f +t2~r&gl t )

6m kioi(id& —(d~P T
(22a)

and

Assuming ~» ~2, (dl —(d2, ~„(dl —~„and
(d2 —(d, »7, , one can use the above equations in
Eq. (20) to obtain the a~o, and &oi —id2 frequency
components of 7, as

. 2

Z
&& 1 2 (~1 ~r' + K&2 &cj -j [(Ll-4)'r-+1~2&t 7

2m*k~((o, —(o2} (~o, —io, )'(boa —&o,)' (aab)

(22)

We are interested only in the frequency component A&3= 2» —2 and obtain the corresponding current-
density component as

yg& n ice E&Ea
~

2[(io, —~o ) +(ada —&o ) ] 1~ 1 1
4m kr(ds (((oi —&o~)(io2 —&d~)(ioi —(o2) (oi~ (da —ioo ((oi —(o~) +a

(24)

Using Eqs. (22a), (22b), and (19) in Eq. (17) one obtains various mixed frequency components at fre-
quencies (2»aioa), (2&oaa&di), etc. in the carrier velocity. The current density J is related to the carrier
velocity v by the relation

J= -Nev .

Using the driven wave Eq. (15) as in Sec. II, we obtain the amplitude of Es with frequency ioq

av &i f&fe @iz2 I (2[4oi —(o ) +((om —(o,)'] I I 1 1
c' 2 4m"kr ka ~(~o&-~d,)(~o2-io, )(&oi-&om) io, (&o2-~o,) (~o, -~o,)'~,'

Here E, is the electric field of the radiation of frequency &3.

(26)

IV. DISCUSSION

We now make an estimate of the enhancement of
the nonlinear effect by using actual numerical
values for various frequencies. The expressions
given by Eqs. (16) and (26) show that if it were not
for the limitation of

(&d& —io,), (&oa —&o,), and (&og —M )&) T ',
we could get extremely large mixed outputs. How-
ever the above conditions restrict us to values of

~ away from resonance with all of &, &2, and ~3.
A'e take col and ~2 to correspond to the 10.6-
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and the 9.6-p, m lines, respectively, for the CO2
laser. This gives co3= 2w, —co& to correspond to
the 11.S-p, m line. These values are the same as
used by Patel eg ~g. ' in their experiment. The cal-
culations are performed for InSb which has a low
electronic effective mass m*=@m, (where m, is
the free-electron mass) and relatively small ener-
gy gap E~= 0.234 eV. This yields c~/c = sos, thus
justifying the neglect of the ac magnetic field in
Eq. (2).

The carrier concentration N is taken to be 9x10'
cm ', corresponding to the plasma frequency &~
= 1.04 x 10 rad/sec. Our enhancement results
are obtained for &,=0.Sco&. This corresponds to
a magnetic field of 135 kG, a value obtainable in
the laboratory. Using these parameters, we cal-
culate the coherence length I, = w/(2k, —kp —km) to
be 0. 21 mm. The optical-mixing theory requires
that the crystal length be smaller than the coherence
length. Therefore, if the experiment be performed
with a crystal of thickness 0.1 mm, our results
for E, are valid. Taking +p = 13 for our crystal
sample, we find the photon mean free path to be
well above the sample length. Also using this val-

ue of (g~T we see that (&g, -&o,)v, (vz —ur, )r, and

(~3 —~ )y are all la, rge in comparison with unity.
Using the above interaction length, an estimate

is now made of the minimum power obtained for
the mixed frequency. This will obviously happen
in the absence of the magnetic field. As in Ref. 1,
the powers of the wj and co& frequency beams are
taken to be P~=10' and P~=10 W, respectively,
and the focal area 10 cm . Using Eg. (16) we ob-
tain the power for the mixed frequency ~3 to be
P3=1.2X10 W for the case (d, =0. The experi-
ments in Ref. 1 show that this power can easily be
measured in the laboratory. Of course, in the ab-
sence of the magnetic field, the photon mean free
path and the coherence length will become much
larger, and the condition of interaction length )'s
being smaller than either of these values will al-
ways be satisfied.

We now calculate the enhancement of the non-
linear effect- by the magnetic field. Denoting the
power P3 obtained by nonparabolic mechanism as
P3, the ratio of the power with the magnetic field
present, and in the absence of the field, is obtained
as

psst ((o, = 0) ((o, —(o,)((o, —(o,)2((o, —(o,)

showing a large increase in the mixed output owing to the effect of the magnetic field,
Denoting the corresponding power for the energy-dependent collision time mechanism by P3 we ob-

tain the magnetic-f ield-enhancement ratio

P&" (~. = 0. 6 ~&) (2[(~& —~.)'+ (~2 —~,)']/(~& —~,)(~, —~.)(~.—~.) —I/~, ]'(~.~', )
'

pssn (~, = 0) [2(~(+&oI)/(~ —&o2)~,&oz —1/&o, ]2 [(&oz —&o,)(a&, —&o, )~]

We note that for the nonparabolic mechanism,
for the parameters chosen above, the enhancement
by the magnetic field is almost two orders of mag-
nitude larger than for the energy-dependent scat-
tering mechanism. At present, it is generally be-
lieveda that for narrow-gap semiconductors (such
as InSb) the dominant nonlinear effects arise from
the nonparabolic energy-momentum relations. We
would thus expect to verify experimentally the im-
portance of this nonlinear mechanism for InSb by
measuring the output ratio of the mixed frequency
and comparing it with our p" calculated here. On
the other hand, for large-gap semiconductors such
as Ge or Si, it is accepted that the energy-de-
pendent collision frequency is the more important
nonlinear mechanism. This can also be verified
experimentally by the measurements of the ratio
of the frequency outputs without and with the mag-
netic field.

We wish to point out that the magnetic field en-
hancement can be increased by choosing ~, closer
to resonance with v3 for materials having their
nonlinearity arising from the nonparabolic mech-
anism. However, here we are restricted from
doing that by the limitation that the interaction
length l must be smaller than the coherence length,
which decreases sharply when co, -v3.

In conclusion, we have shown in this paper that
a dc magnetic field, besides enhancing the mixed
frequency output, also offers a possible way to
verify theoretical estimates on the importance of
the two nonlinear mechanisms for optical mixing
in semiconducting plasmas.
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