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Calculations are presented for the ground-state energy and enhancement factors for the electron-hole

liquid in germanium and silicon both in the Hubbard and the self-consistent particle-hole

approximations for two simplified models of the actual band structure. It is shown that the inclusion of
multiple electron-hole scatterings lowers the ground-state energy by about 3 K for germanium and by
about 18 K for silicon, while it raises the enhancement factors by about 20% and 50%, respectively. A
detailed comparison of the experimental data with theoretical calculations is carried out and it is

argued that including electron-electron and hole-hole short-range correlations would substantially

improve agreement between theory and experiment.

I. INTRODUCTION

Detailed ground-state energy calculations of the
electron-hole liquid (EHL) in Ge and Si have been
reported by Brinkman et al. ' (BRAC), Combescot
and Nosieres~ (CN), and by Brinkman and Rice3
(BR). BRAC have introduced a model in which the
actual complicated band structure of the two-hole
bands is approximated by two bands each having a
mass corresponding to the optically averaged mass
of the light and heavy holes. In the same spirit,
they have replaced the anisotropic conduction
bands by spherical bands corresponding to a mass
which is optically averaged over the transverse
and longitudinal directions. Using the Hubbard ap-
proximation, these authors have obtained for the
binding energy 4 of the EHL in Ge a value of
17.9 K, corresponding to an equilibrium density
n, = 2.0&10' cm '.

Combescot and Nozihres, on the other hand,
make no such approximation. They take into ac-
count in the correlation energy all the complica-
tions associated with valence-band coupling and
conduction-band anisotropy. Using the Nozieres-
Pines (NP) interpolation scheme, ' these authors
calculate the binding energy to be 29.0 K at an
equilibrium density of 2.0x10" cm '. The exper-
imental situation regarding the binding energy is
still somewhat confusing, although the most recent
careful spectroscopic measurement of Thomas
et al. ' has established the range 18 C &23 K.
Present thermodynamic measurements of 4 are in
the range 14 ( 4 ( 19 K.'7

Although the calculations of BR for the ground-
state energy are in better agreement with experi-
ment than those of CN, this must be considered a
coincidence since the calculations of CN are def-
initely more realistic and moreover involve an ap-

proximation (NP) which is somewhat better than
the Hubbard approximation. It must, however,
be pointed out that in a multicomponent plasma
the effect of the Hubbard approximation (and for
that matter of NP) is considerably weakened, and
therefore in effect, one is still doing an RPA
(random-phase approximation) calculation. The
situation can be summarized by saying that, at
present, there exists a discrepancy between theory
(CN) and experiment of definitely about 20%%uo of the
correlation energy. This discrepancy is larger
than one would normally have expected in the den-
sities of interest (r,( I). What, then, is the cause
of this discrepancy? And is it possible to resolve
it?

Of the four approximations discussed in the pre-
ceding paper, ' hereafter referred to as I, the most
satisfactory is the fully-self-consistent approxima-
tion (FSC). We have seen that in the simplest
case of two-band systems, the FSC scheme in-
volves a numerical solution of three coupled non-
linear integral equations for the partial structure
factors. For EHL in normal Ge and Si, this
scheme would involve the simultaneous solution
of seven such equations, making the whole numer-
ical procedure extremely time consuming even
on the fastest digital computor. To remedy this
situation, we tried in I what was called the self-
consistent particle-hole (SPH) approximation It
consists in using the Hubbard approximation within
the same band and takes into account electron-
hole multiple scatterings in the spirit of the FSC
approximation. It was also shown in I by explicit
numerical calculation that, at least in the case of
two-band systems, the difference between the FSC
and SPH approximations is about 2Q of the corre-
lation energy in the range of plasma density r, (1.
This condition is satisfied in the case of normal
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Ge and Si, and hence SPH should hopefully be
fairly good.

It is known from experience gained from the
electron-gas problem that RPA, because of its
neglect of short-range correlations, always over-
estimates the correlation energy. In contrast to
the electron-gas problem, the correlation energy
of the EHL in Ge is nearly f of the ground-state
energy. It is very important therefore to use a
theory which takes short-range correlations be-
tween electrons and electrons, between holes and
holes, and between electrons and holes into ac-
count.

The purpose of this paper is to present calcula-
tions of the ground-state energy of the electron-
hole liquid and the enhancement factor p within
the Hubbard and SPH approximations and ccmpare
our results with those of previous authors. We
adopt here the same units as those used by BRAC
and CN. We avoid any detailed exposition of the
formal aspects of the problem, since the extension
of the two-component plasma formalism (described
in detail in I) to a multi-component case is
straightforward, although somewhat laborious.
Emphasis will rather be laid on those aspects
which are peculiar to Ge and Si.

II. MODELS FOR Ge AND Si

The band structures of both Ge and Si are similar
in nature. The minima in the conduction bands are
ellipsoidal in shape and are located at the I. points
of the Brillouin zone for Ge, while in Si they are
centered at the set of points obtained from
(0.85, 0, 0)2w/a, the main difference being that
whereas there are four equivalent ellipsoids in

Ge, there are six such ellipsoids in Si. The
valence band structure in both consists of two
bands which are degenerate I', levels at the center
of the zone but are split into heavy and light hole
bands away from the center of the zone. The de-
tailed form of the energy eigenvalue is

E'(k) =Ak s [B'k4+C'(k„k„+k„k +k k')]''2 (l)
where the constants A, B, and C are given in
Table I for Ge and Si. They are exactly the same
as those used by BRAC, which were taken from
the latest cyclotron resonance work of Hensel

and Suzuki. '
The degeneracy of the valence bands at k=0 has

a subtle effect on the plasma frequency, the hole
exchange energies, etc. It also leads to various
complications in the evaluation of the correl. ation
energy even within the RPA. For a detailed dis-
cussion we refer to the work of Combescot and
Nozihres. ' Consequently, in the calculations pre-
sented here we shall neglect the effect of valence
band coupling only as far as the calculation of the
correlation energy is concerned and replace the
actual. valence band structure by two decoupled
bands. We consider two models. In model I we
replace two-hole bands with masses m» (light
hole) and m» (heavy hole) by two bands each having
the same mass, corresponding to the optically
averaged mass m, „defined by

(2)

This is also the model employed by Brinkman and
Rice." In the second model, model II, we have
taken the actual hol. e masses given in Table I. In
both models, the anisotropic structure of the con-
duction bands is replaced by an isotropic structure
corresponding to the optical mass m„, defined by

~oe s(2meg +~el ) t

m„and m„being, respectively, the transverse
and longitudinal masses of the electrons. Let us
reiterate that these approximations onl. y serve to
simplify the calculation of the correlation energy.
The Hartree-Fock (HF) energy is calculated ex-
actly, including all the complications due to anis-
otropy and valence band coupling. Effect of the
valence band warping, which is =0.01 Ry, is
neglected in the exchange energy. "

III. GROUND-STATE ENERGY

Hartree-Fock energy: The total energy of the
system is the sum of the (a) kinetic, (b) exchange,
and (c) correlation contributions. Throughout this
paper as in I, the energy is measured in units of
excitonic rydbergs (ge'/2m%'), with p ' =m, ,'
+m, „. Density is measured in terms of dimen-
sionless parameter r, given by n ' = —,

' nr,'a„', with
a„=el /pe'. The kinetic energy per electron-
hole pair is

TABLE I. List of band parameters used in the calculations. Masses are given in units of
the bare electron mass.

?Sg g met Rlo g ?it/ ff ~l h mph E» (meV)

Ge 1.58 0.082 0.120 0.22
Si 0.9163 0.1905 0.2588 0.32

13.38 8.48
4.28 0.75

13.15 0.042 0.347
4.85 0.154 0.523

15.36
11.4

2.65
12.85
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2.2099 1
r', v"'m„m„, 1+ (m, „/m„„)"

(4)

e,„=-(0.9163/r, )[4(p) /v '"+g(p„)],
where p, =m„/m„and p2= m»//n„2,

(5)

and

C(p) =p"'[sin '(1-p)"']/(1- p)"', p(1, (6)

1+&»2
(1+ 3/2)4/3 16 ( P) I 1/2

p2 +3p3i 2 + 3p&/ 2 + 1
+

4

' dx 1+x
+ —„(1—p') —in

~p x 1-x

Substituting the pertinent parameters for Ge and
Si, we may write the HF energy per e-h pair as

where v is the number of conduction bands and

m~, is the density-of-states mass for the electron,
given by m2, = (m'„m„)"'.

The calculation of the exchange energy is com-
plicated for two reasons. First, although the ex-
change energy does not depend directly on the
electron mass, it does depend weakly on the shape
of the Fermi surface. Second, as a result of the
valence band degeneracy, there are nonzero ma-
trix elements of the Coulomb interaction between
the heavy and light hole bands. Taking these fac-
tors into account the exchange energy per e-h
pair can be written'

e„r=0.7326/r,' -1.1665/r, Ry (Si) . (Bb)

Cor~elaIion energy. For the sake of complete-
ness, we shall rewrite the expression for the cor-
relation energy per e-i'2 pair derived in I [see
Eq. (44)]. It is

F3
&rrrrr =

2 y(r3) dr3 —e„„Ry t2 = (& r)
8 P

(9)

where

and

y(rl) = — y(q)&q
1

2~F 0
(10)

y(q) =Q (,5/nin y„(q). (11)
if

In Eq. (11), n, =n, /n a.nd g, =+1 if the ith com-
ponent is a hole and -1 if it is an electron. y,,(q)
is the Fourier transform of the pair distribution
function g,i(r) —1 as defined by Eq. (14) of I.

The problem of calculating the correlation ener-
gy is therefore reduced to the calculation of y, i(q),
which in the present scheme should be calculated
in a self -cons is tent manner.

Since y, i(q) can, in turn, be calculated from the
fiuctuation&isstpation theorem [Eq. (15) of I] pro-
vided the partial polarizabilities are known, we
first address ourselves to the task of evaluating
them. This can be easily done by generalizing
Eqs. (2) and (3) of I for many components. For
the case of v-electron and two-hole bands, defining
the local field correction G,i(q) through

0;i(q) = &14'(q)[1 —G;i(q)], q (q) =4«'/~q',

and

e„,, =0.469'I/r2, —1.1503/r, Ry (Ge) (6a)

we get for the polarizabilities the expressions

(12)

4(q)x„(q ~) = -[Q.'(q, ~)/ff1(q, ~)&(q, ~)]

x((1+[F,(q)+ —2]Q',(q, ))(I +F.. (q)Q;"(q, )+F" (q)Ql "(q,
+ [F...(q)F...(q) —1]Q,""(q,1v)Q.""(q, 2/)l

—(v —1)[1—G(q)]'Q,'(q, ~)(Q.""(q,~)+Q,""(q,~)+[F.„(q)+F...(q) —2]Q.""'(q, ~)Q.""(q,~6),
(13a)

e(q)x„(q, ) =([Q.'(q, )]'»,(q, )&(q, )l

x({I+F„„(q)Q&& '(q, 1r/)+F„,2(q)Q2+ (q, &rr)+ [F„„(q)F„,2(q) —1]Q2+'(q, &r/)Q2+2(q, 1r/)j

—[I —G(q)]'(Q.""(q, ~)+ Q.""(q ~)+ [F" (q)+ F."(q) —2]Q2 "(q, ~)Q,""(q,~)l), (13b)

4(q)x, .+, (q, ~) = -[Q,'(q, 2/) Q;"(q, ~)/a(q, ~)](1 + [F„„(q)—1]Q,""(q, ~)][1—G(q) ],
&(q)xl, +2(q &) =-[Q2(q ~)Q."(q ~)/&(q ~)l(1+[F„,(q) —1]Q,""(q,~))[1-G(q)l

(13c)

(13d)
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P q)It +i, +i(q (o) = -[Qo '(q ~)/&(q o))l({I+[F ( )+ v-, o) + i q + v- l]Q', (q, (o))[I+F„,(q)Q""( (d)]

— [1—G(q)]'Q,'(q, )Q""(q, )),

(I)(q)lt„+, „„(q,o)) = [Q;"(q, (d)Qo""(q, o))/6( o) "1+ ', , — — q Qq, &o 4 q, (())]((1+[F,(q)+ v —1]Qo(q, (d)) —v[1 —G(q)]'Q'

q ~ q, ~ ] ii+[F (~}+v-i]Q.'(q, ~})[I+F.„(q)]Q.""(q ~

— [1 —G(q)]'Q,'(q, )Q""(q ))

where

H, (q, ) =(I.[F,(q) -I])Q.'(q, ),
F((q) = 1 —oq /(q + qv(), qvo,. = 2v n(,

&(q, (d) =II+ [F,(q)+ v —1]Q,'(q, o)))(l+F„„(q)Q""~(oo

+F„„,(q}Qo+'(q, o))+ [F„„(q)+F„o(q)—2]Q'"+F + o+i o+o o iq) &)Qo (q& )))

I(o q, o), which are evaluated in Eqs. (48) and (49) of I

(»g)

(14)

(15)

(16)

These expressions have been written down under
the following assumptions (') Fi or particles of l.ike
charges, we have used the Hubb du ar approximation

ey are within the same band and th RPA
wise

e other-

tio
the two electron-hole local-f lda - ie correc-

'ons have been taken to be equal, i.e~ ~

G(q) =G, „„(q)=G, „„,(q). (17}

Such an approximation can hardly have too much

nergy, since, as weof an effect on the final energ
shall see later, the effect of multiple s ttca erings

is qui e small. (iii) We have used the Hub-
bard approximation to evaluate b',

, „+,q = G, „+,(q) =0. This approximation saves

ou also be a good approximation for the cor-
relation enerrel t' gy insofar as our experience in the
positron case has been that the use of different

electro
dielectric functions to screen the be are positron-
e ectron interaction has a small effect on the en-
hancement factor which

' f
quantity.

is a ar more sensitive

for t
Let us now follow Sjolander and Stott'

he local field the expression
o and use

G, ...,(q) =-—
q(o +l, o+ 1&9 'q ) (2 )o ) (16)

where n is the nunumber of electrons in a unit vol-
ume. If we now use thee fluctuation-dissipation
theorem [Eq. (15) in I]

yU(q) = —— du&imy0(q, o)), (19)

for the case i =1 and j= v+1j= +, it immediately leads
o e linear integral equation

(i) f(i)((+—...; &=( — ', },1
n q" y'"+' q q ) (2w)'

(20)

where

hq
49Rg]Fzy + i8

duIm Qoq, (d Qo" q, ~ 4 q, co

0.0

0.0

0
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sotropic elec-

x(I+ [F...(q) —1]Q,""(q,~)))

(21}

Equation (20) now has to be solved numerically
and the solutions are used to 1 1ca cu ate the partial-
pair-correlation functions and c 1 t'corre ation ener-
gies, as indicated earlier.
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IV. RESULTS AND DISCUSSIONS

A. Germanium
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B. Silicon
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TABLE II. Correlation energy for Si and Ge in the Hubbard (HA) and self-consistent particle-
hole (SPH) approximations with isotropic electron bands for models I and II.

+s

&,.„„Q,y) Si
Model I

SPH
Model II

HA SPH

&„„(Ry)Ge
Model I

SPH
Model II

HA SPH

0.1
0.2
0.3
04
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

-3.811
-2.595
-2.114
-1.832
-1.635
-1.487
-1.369
-1.273
-1.192
-1.125
-1.068
-1.019
-0.976
—0.939
-0.906
-0.876
-0.849
-0.823
-0.798
-0.774

-3.842
-2.646
-2.174
-1.908
-1.721
-1.582
-1.472
-1.384
-1.312
-1.253
-1.204
-1.164
-1.130
-1.103
-1.080
-1.061
-1.045
-1.030
-1.018
-1.006

-4.101
-2.779
-2.256
-1.950
-1.738
-1.579
-1.459
-1.349
—1.263
-1.191
-1.130
-1.077
-1.032
-0.992
-0.957
-0.925
-0.896
-0.868
-0.842
-0.817

-4.143
-2.844
-2.335
-2.040
-1.856
-1.685
-1.565
-1.468
-1.388
-1.322
-1.267
-1.220
-1.180
-1.146
-1.117
-1.090
-1.067
-1.045
-1.025
-1.005

-3.492
-2.405
-1.975
-1.721
-1.542
-1.407
-1.299
-1.210
-1.136
-1.074
-l.020
-0.975
-0.935
-0.901
-0.870
-0.842
-0.817
-0.792
-0.769
-0.747

-3.519
-2.452
-2.034
-1.791
-1.622
-1.496
-1.396
-1.315
-1.249
-1.195
-1.150
-1.113
-1.082
-1.057
-1.036
-1,018
-1.003
-0.990
-O.g78
-0.968

—4.424
-3.009
-2.447
-2.1lg
-1.890
-1.718
-1.580
-1.468
-1.375
-1.297
-1.230
-1.174
-1.124
-1.082
-1,044
-1.009
-0.978
-0.947
-0.919
-0.891

-4.466
-3.083
-2.537
-2.219
-1.998
-1.833
-1.703
-1.598
-1.511
-1.440
-1.380
-1.329
-1.286
-1.250
-1.217
-1.188
-1.162
-1.137
-1.113
-1.089

Since it is useful to know the density dependence,
we give in Table II the variation of correlation
energy ~,„,as a function of r, in the Hubbard and
SPH approximations with isotropic conduction
bands for models I and II for Ge and Si. The nu-
merical accuracy of the correlation energy in
Table 0 is better than 1/0.

V. CRITIQUE

It is the purpose of this section to sum up the
results of the theoretical calculations and discuss

them critically in the light of the latest experi-
mental data, which are available with some certi-
tude for EHL in Ge and less so for EHL in Si
(see Table III).

It is fair to say that of the various models adopt-
ed, the one considered by Combescot and Nozieres
approaches closest to incorporating all the subtle
band-structure effects. Their calculation of the
correlation energy is basically one within the
Hubbard approximation, but includes effects due
to anisotropy and valence band coupling. We have

TABLE III. Summary of available theoretical and experimental data on the electron-hole liquid in Ge and Si. The
anisotropy of the conduction bands is not included in Brinkman et al . and our calculations of e,„„.

Brinkman
et al. '

Model I
Hubbard SPH

Combescot
and

Nozihres
Model II

Hubbard SPH Experiment

Ge

Si

{meV)

e (z)'

n~ +10 7 cm 3)

p =S,g(0)

(meV)
~ %)'
n @10' cm ~)

p =—Z,g(0)

5.3

19.7

1.8

20.4
67
3.4

5.36

20.4

2.0
1.8

20.4
67
3.4
2.2

5.59

23.0

2.0
2.2

21.8
83
2.9
3.5

6.1

29.0

2.0

21
73
3.4

6.18

29.9

2.0
2.3

21.3
77
3.4
2.5

6.48

33.4

2.0
2.8

22.9
95
3.4
3.7

30, ' 23, ' 18-23'
17, 14—19, 17.9~.=-2.4'

-80 ~ 65d
~37

Reference 1.
Reference 2.
Reference 12.
Reference 11~

~Reference 5.

Reference 6 ~

&Reference 7.
Reference 14.

'
~@~ =e -e,„-,.„,„, where following BR and CN we have
taken q,„„,„„equal to 3.6 meV for Ge and 14.7 meV for Si.
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seen that our calculations based on a simplified
model, model II, gives results in the Hubbard

approximation which are very close to those ob-
tained by CN. The advantage of this simplified
model is that it is possible, in principle, to do a
fully-self-consistent calculation, although we have
so far not done so.

We have seen, however, that within the limita-
tions of our partially self-consistent scheme the
value of 4 is higher than the range of values for
which such a lot of experimental evidence has
accumulated. What, then, is the reason for this
discrepancy V Before commenting on this question,
let us examine the Hubbard approximation. In a
one-component plasma, say the electron gas, the
exchange contribution to the correlation energy
cancels half the RPA diagrams at short wave-
lengths. In a six-component plasma, however,
the cancellation is only about —„of the RPA contri-
bution. In other words, the effect of Hubbard

approximation is considerably reduced and we are
effectively doing a RPA calculation. If we now

compare the correlation energies of the equal-
mass model system (introduced in I) in the RPA
and FSC approximation, we note that the RPA
overestimates by about 7% or so at r, =0.6.
Strictly for the purpose of an order-of-magnitude
estimate, if we assume that the same figures
carry over for EHL in Ge, it would imply that
the FSC scheme would yield a 4-23 K. The same
procedure applied to Si gives 4 -67 K. In our
view, therefore, the self-consistent scheme would

go a long way toward removing the apparent dis-
crepancy that remains between theory and experi-
ment. These complications have their basics in

the circumstance that electron-electron and hole-
hole scatterings are as important as electron-
hole scatterings in the densities of interest.

On the experimental side, a way should be found
to determine the enhancement factors, which, as
we have seen, are quite different in the RPA and
the SPH approximation. On the other hand, the
difference between the ground-state energies cal-
culated in different approximations is not so
marked and hence does not constitute as sensitive
a test of the theory.

Note added in Proof. Recently, P. Vashishta,
S. G. Das, and K. S. Singwi [Phys. Rev. Lett. ~33

911 (1974)] have calculated the thermodynamics
of the electron-bole liquid for five systems: Ge,
Si, and Ge under large (111)uniaxial stress,
Ge[111], Si under large (100) uniaxial stress
Si[100], and GaAs which is a direct band-gap semi-
conductor. Important effects of (e, e), (h, h), and

(e, h) multiple scatterings and the anisotropy of
the bands are included in the calculation of the
correlation energy (FSC approximation with the
effect of the anisotropy taken into account). For
Ge, the ground-state energy, enhancement factor,
compressibility, critical temperature, critical
density, temperature dependence of Fermi energy,
chemical potential, and equilibrium density are in
good agreement with experiments. Predictions are
made for other systems.
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