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The ground-state energy of a quantum electron-hole liquid in the three cases (i) a single isotropic
maximum for the hole band and a single minimum for the conduction band (called the model system),

(ii) Ge under a large [111] strain, and (iii) Si under a large [100] strain, has been calculated in the
random-phase (RPA), Hubbard (HA), and fully-self-consistent (FSC) approximations. The last

approximation takes into account multiple scatterings to infinite order between all components of the

plasma. Effects of anisotropy of bands have also been fully considered. Besides the ground-state energy,
we have also calculated the partial-pair-correlation functions and enhancement factors. For the model

system, calculations have also been made for different mass ratios. Two important results of this paper
are (i) the electron-hole liquid in both Ge and Si under a large uniaxial strain should exhibit a metallic

phase relative to a free excitonic phase. The calculated binding energies for Ge[111] and Si[100] are,
respectively, 4.9'K and 21.8'K, corresponding to equilibrium densities of 1.11 )c 10' and 4.47 &( 10"
cm . (ii) The enhancement factors at the equilibrium density for Ge[111] and Si[100] are, respectively,
6.8 and 7.4. We suggest that experiments should be done to test these predictions of the FSC theory
because of their bearing on the validity of different many-body approximations.

I. INTRODUCTION

It was first suggested by Keldysh' that nonequilib-
rium electrons and holes in Ge and Si, generated
under high excitation power, would undergo a gas-
liquid-type transition at low temperatures as a
function of density. That such a transition does
indeed occur has now been demonstrated by a
variety of experiments. ~ ' These experiments
furnish us for the first time with a quantitative
measure of the ground-state energy and equilib-
rium density for the degenerate electron-hole
plasma-a situation which is quite unique. More-
over, we have here a system whose characteris-
tics, in contrast to the metallic case, are known
exactly. For these reasons, the theoretical prob-
lem of calculating the ground-state energy of the
system becomes very interesting. It provides an
opportunity to test unambiguously the validity of
different many-body approximations that are used
in the calculation.

Ground-state energy calculations, including
many-body effects, of the electron-hole liquid in
ordinary Ge and Si have recently been reported by
Hanamura, ' Brinkman etaf." (BRAC), and Brink-
man and Rice" (BR) and independently by
Combescot and Nozieres (CN). The basic theo-
retical approach of the latter two groups of authors
is equivalent in principle, although they differ in de-
tail such as the consideration of anisotropy and de-
generacy of hole bands in the calculation of the
correlation part of the ground-state energy. BRAC

use the Hubbard approximation" as generalized to
a many-component plasma. The Hubbard approxi-
mation takes only exchange effects into account,
and, as we know from our experience of the elec-
tron-gas case, it is a fairly good approximation
for not too low densities. CN, on the other hand,
use the Nozieres-Pines interpolation scheme, "
which is exact in the two limiting cases of small
and large wave numbers. We shall not dwell here
on the merits of these and other approximations
since they have been discussed at great length for
the electron gas by Singwi et@i."in a series of
papers. The energy minima and the equilibrium
densities as calculated by BR and CN both in Ge
and Si are in reasonably good agreement with the
available experimental data. " The results of CN
should be more trustworthy, since they have pro-
perly treated effects of anisotropy and valence
band coupling.

In the above-mentioned calculations, an impor-
tant effect of multiple electron-hole scattering has
been completely neglected, and it has not been
found possible in the formulation of these authors
to take this effect into account. At the same time
we know that it is the multiple scattering which in
the very-low-density limit is ultimately respon-
sible for the excitonic phase. But since the calcu-
lations' "already give lower values for the bind-
ing energy compared with experiment, one is led to
to believe that the effect of multiple scattering, at
least in the region of densities of interest (r, =06.
in Ge and 0.9 in Si), is very small if not negligible.

10 5108



10 E LECTRON-HOLE LIQUID IN MARY-BAND SYSTEMS. I. . . 5109

This, however, needs to be examined quantita-
tively. On the other hand, in a recent experiment-
al paper Benoit a la Guillaume and Voos" point
out that at the present time there is a real dis-
crepancy between experiment and theory (BR}as
regards the value of the enhancement factor
g,„(0},the ratio of the electron density on the hole
to the mean density. They estimate g,„(0}to be
less than 12 but much greater than 2, the latter
value being the estimate of BR. If the experi-
mental estimate of g,„(0}is to be trusted, it would

imply, as these authors also suggest, a substan-
tial contribution from electron-hole scattering,
a result in direct contradiction to what is dictated
by the ground-state energy calculation. The only

way to settle these questions is to incorporate the
effect of multiple scattering in the theory. The
complexity of the band structure of Ge and Si
makes a numerical calculation of the ground-state
energy with multiple scattering almost prohibi-
tive to handle, even on a fast computer. To make
such a calculation feasible one has to resort to
approximate schemes.

Fortunately, the band structure of Ge and Si is
considerably simplified under a large uniaxial
strain. " In the limit of infinite strain, in each
case one deals with a single valence band, but
while for Ge[111]one has only a single conduction
band, for Si[100] one has two. In this paper we
shall be concerned with the calculation of the
ground-state energy of the electron-hole liquid in
strained Ge[111]and Si[100].' As we shall see,
both these systems are very interesting. Brink-
m~n and Rice" have calculated the ground-state
energy of Ge under a large uniaxial [111]strain
within the Hubbard approximation. They find that
the metallic phase is bound by such a small
amount that in view of the uncertainties inherent
in the Hubbard approximation no definite theo-
retical conclusion as to the existence of this phase
can be reached. On the other hand, Combescot
and Nozieres" find no binding within their inter-
polation scheme, which is supposed to be some-
what better than the Hubbard approximation. Ex-
perimentally, "recombination radiation of the con-
densed phase both in strained Ge and Si has been
observed, although no definite values of the energy
minima and the equilibrium densities have been
given.

In these experiments it is not certain whether
one has reached the limit of infinite Strain. Under
very large strain, one could even be skeptical
about the very existence of a metallic phase. It
is at least clear from the calculations of both BR
and CN that, if a metallic phase occurs at all in
highly strained Ge and Si, it will occur for a value
of r, =1.5. This value of &, is much greater than

that for ordinary Ge and Si. The effect of multiple
scattering on the calculation of the ground-state
energy for such densities turns out to be very im-
portant, and as we shall see it is responsible for
metallic binding in these systems.

It seems appropriate here to comment briefly
on the mathematical formulation which we shall
employ for our calculations. The formulation is
based on the theory of electron correlations of
Singwi ef'al. , as generalized to a many-component

plasma. Such a generalization to a two-component
system consisting of a degenerate electron and a
few positrons was first made by Sjolander and
Stott" and later extended by Bhattacharyya and
Singwi. " The merit of this formulation consists
in the fact that it is self-consistent and treats both
exchange and Coulomb correlations better than
previous theories and takes multiple scattering be-
tween components into account to infinite order,
although in an approximate way. Random-phase
and Hubbard approximations are special cases of
this formulation. That our self-consistent scheme
is a definite improvement over the random phase
and Hubbard approximations for a single-com-
ponent case (electrons at metallic densities} has
been demonstrated before. Since, within the
framework of this scheme, it has been found pos-
sible to account satisfactorily for the positron an-
nihilation rates" in the metallic-density range, it
is an indication of the fact that multiple scattering
is being treated satisfactorily. Also, using this
formulation, it has been shown" that the correla-
tion energy of a positron in an electron gas ap-
proaches smoothly, as a function of r„to the
binding energy of a positronium. These facts,
together with others, give us some confidence when
we apply the self-consistent scheme to a multi-
component quantum plasma.

This paper is divided into several sections. In
Sec. II we outline briefly our self-consistent scheme
as generalized to a two-component degenerate
plasma of electron and holes, and give formulas for
various response functions. Special cases of the
random phase, Hubbard, and self-consistent par-
ticle -hole approximations are discussed.

In Sec. III we give the formulas for the Hartree-
Fock and correlation energies for the isotropic
and anisotropic bands. Section IV outlines the
procedure for calculations and in Sec. V we give
our results. In the same section, a detailed dis-
cussion of the ground-state energy, partial-pair-
correlation functions [g«(r), g, „(r),and g„„(r)],
and the enhancement factor g,„(0}for the model
system in different approximations is given. A
similar discussion is given for highly strained
Ge[111]and Si[100]. One of the two import" nt re-
sults of this paper is that within the framework of
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our self-consistent theory we are able to predict
that both Ge and Si under a large uniaxial strain
should exhibit a metallic state relative to free ex-
citons. The other important result is that the
enhancement factors in both Ge[lll] and Si[100]
are nearly three times as large as those obtained
in the Hubbard approximation. In the concluding
Sec. VI, we suggest that experiments should be
done to 0erify our predictions.

(6n;(q, (o)& = X;,(q, (u) V~, (q, (u),
=1

where 6n;(q, &u) and V~~r(q, &u) are, respectively,
the Fourier transforms of 6n;rx, t) and V.', i(x, t},
and X;,(q, ~) is the density-density response func-
tion.

In the spirit of the generalized random-phase
approximation, we write

(2)

(6n, rq, (u)& = X', (q, &u)[V,'(q, (u) + g„(q)(6n,(q, (u)&

+ y»(q)(6n, (q, (u)&] (3a)

(6n, (q, m}& = X', (q, &u)[ V,'(q, cu}+4„(q)&6n,(q, ur)&

II. TWO-COMPONENT DEGENERATE PLASMA

We consider a neutral two-component degenerate
plasma consisting of electrons and holes. In the
absence of any external disturbance, the dynamics
of the system is governed by the Hamiltonian 8,
consisting of kinetic and Coulomb energies. We
now apply a weak external potential V~«(x, t) which
acts only on the i th component of the plasma. The
dynamics are then governed by the Hamiltonian

H =Ho+ + e,n;(x, t) V,'„., (x, t) dx, (I)
5

where e; is the charge on the ith-type particles
and n, the corresponding density.

Following the linear response theory, "we can
write the induced density in the ith component as

The equation for (6n, (q, e)& follows by interchang-
ing the indices 1 and 2 in Eq. (4).

A comparison of Eq. (4) with Eq. (2) gives the
response functions

x'. rq, ~)[l —xl(q, ~)0„rq)]

„}x'rq ~)x'rq, ~)0., rq) (6}

xorq, ~)[1—x'.rq, ~)0-rq}]
X22rq) 'tu} =

A( )

It follows simply from the symmetry that g»(q)
=0, (q} and X»rq, &u&=Xi rq ~&

So far we have discussed the formalism for a
two-component plasma as applicable to the model
system and Ge[111]. In Appendix I we giv the
expressions for the response functions X;&(q, &u)

for a three-component system, as is the case in
Si[100].

In general, the effective potential g;, (q) defines
a local field correction in terms of the "bare"
Coulomb potential y;, (q) = 4ve, e, /~q', where ~ is
the static dielectric constant of the medium:

1

( )
6

g
=0' rq)x. yrq ~)f 5)(qq (d (8)

(9)

A. Random-phase approximation (RPA)

In RPA, G, ,(q) = 0 and therefore g;&(q) = p, , (q).
Using Eqs. (6) and (8), Eq. (9) becomes

t;&rq) = v;, rq}[I —G;,(q)] .

Approximations, which go under different names,
to the response functions in Eq. (6) are indeed the
approximations for G, &(q).

The elements e,&rq, &u) of the dielectric tensor
are defined in terms of the elements X;&rq, &u) by

+ y„rq)(6n,(q, (u)&], (3b) ~rq, ~) =1 —mrq}x', rq, ~) —9rq)x'. rq ~), (10}
where Xo(q, rv) is the noninteracting polarizability
of the fth component and g;, (q) is the static effec-
tive interaction between the components i and j.
The set of Eqs. (3) can be trivially solved to give
explicit expressions for (6n, rq, &u)&,

x!rq, ~}[I-x:(q ~N-rq}]v' rq,

where cp(q} =4ve'/xq' Thus in RPA. , e (q, &u} has a
very simple form. Extension of Eq. (10) to a sys-
tem with more than two components is obvious.
From Eq. (10}it follows that the square of the
plasma frequency of the two-component plasma is
equal to the sum of the squares of the individual
plasma frequencies.

, x.rq, )x'.rq, )0., rq)v.', (q, )
nrq, (u)

(4)
B. Hubbard approximation (HA)

This approximation is characterized by
where

n(q, &=[I-Xlrq, )C„rq)][l-xlrq, )q..rq)]
—X.'rq, ~)0»rq)x'. rq, ~)g»rq) . (6)

G;&(q) = -'[V'/(e'+ V,',)]6;&,
where q+& is the Fermi wave vector of the ith com-
ponent. The HA takes exchange into account and
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C. Fullymlfwonsistent (FSC) approximation

In the approximation of Singwi et al. ,
2' G,.&(q) is

given by

1 q'q', dq'
G&i(q)=- — ~ y;, (q-q')

n q
' (2v}

(13)

where n is the number density of electrons and the
structure factor y;, (q) is related to the partial-
pair-correlation function g, ~(r }as

a ( ) —(= —j ( )* "'v;;(il (14)

The fluctuation-dissipation theorem" in a multi-
component case is

(n-' l) =()n, ()„+~ y„(q))
Q -q n

(15)

In this approximation Eqs. (13), (15), and (6)
have to be solved self-consistently. In a two com-
ponent case, which we are considering here, we
have three simultaneous linear integral equations,
one for each y»(q}, y»(q), and y»(q) to be solved
self-consistently. The number of such equations
increases rapidly as the number of components in
the plasma increases, thus making a FSC solution
of the problem very time consuming, even on a
fast computer.

D. Selfwonsistent particle-hole (SPH) approximation

As mentioned before, the FSC approximation
becomes impracticable when one is dealing with
multicomponent plasmas, as in normal Ge and
Si. One is therefore forced to devise a further
approximation to handle such problems. The ap-
proximation that we have tried and tested nu-
merically is what we call SPH. It consists in
choosing (say in a two-component case)

corresponds to the case where the Pauli hole is
used in calculating the local-field correction be-
tween the particles of the same species. No
Coulomb correlations are included. In this approx-
imation it is straightforward to show that

) I )~ xo(q, ) (12)~ 1+q'(q}G;;(q)xl(q,

Equation (12) justifies the procedure of BR when

they generalize the Hubbard approximation to
multicomponent plasma.

III. GROUND-STATE ENERGY

The ground-state energy E, is the sum of (i)
kinetic, (ii) exchange, and (iii) correlation parts.
The first two contributions, called the Hartree-
Fock energy, can be calculated exactly, whereas
the last one can only be calculated in an approxi-
rnate scheme. Relative merits of the approxima-
tions mentioned in Secs. IIA-IIC in the calcula-
tion of the correlation energy have been discussed
in detail for one-component plasma by Singwi
etal. 25 In a multi-component plasma the superi-
ority of this FSC approximation over the others
lies in the fact Chat it takes multiple scattering be-
tween electron and holes into account to all orders
in an approximate way and yields physically ac-
ceptable partial-pair distribution functions.

We shall in what follows adopt appropriate re-
duced units, in line with earlier authors. ' All
wave vectors are measured in units of the wave
vector K„which is related to the number density
of electrons n through

K, = (3v'n)'~' . (16)

Energy is measured in units of excitonic rydberg

E, = pe'/2''z' = e'/2ea, ,

where the reduced mass p is

I/}(, = I/m~+ 1/m,„,
(19)

(20)

where m and m, ~ are, respectively, the optical
masses of the electron and the hole, which in turn
are defined in terms of the longitudinal mass m,
and the transverse mass m, by

1/m, = ~(1/m, +2/m, ) . (21)

In Eq. (19) a, is the excitonic Bohr radius defined
by

a„=~k'/i(. e' . (22)

G, , (q) = —,'q'/(q'+ q', ) .
In essence, here one uses the Hubbard approxirna-
tion between particles of the same species and
takes electron-hole multiple scattering in the
spirit of the FSC approximation. Thus, in con-
trast to the FSC approximation, where we have
three equations to be solved, in SPH approxima-
tion there is only one equation for y,2(q) to be
solved self-consistently. The RPA, Hubbard, and
SPH approximations discussed above are special
cases of the FSC approximation. We shall discuss
this approximation in detail in another paper deal-
ing with normal Ge and Si.

1 q'q', d q'
G,.(q) = —— „y,.(q —q'),,2,,n q (2'�) (16)

The usual dimensionless parameter &, is defined
by

r, =( s)a&4'/K, a, . (23)



5112 VASHISHTA, BHATTACHARYYA, AND SINGWI 10

T 2.2099 p, LL(,

v my mph'

Sex 0.9163 &/(3[~ "'q(p. )+ q(p«}] Ry,
S

(24)

(25)

A. Hartree-Fock (HF) energy

The kinetic and exchange energies per electron-
hole (e-h) pair, for a system of (I conduction bands

and one valence band, in excitonic rydbergs, are
given by"

from the self-part of the density-density correla-
tion function. Using Eq. (34) in Eq. (33) we can
write

Rg Pl~r%)=g & &( 's'r(((q),
Pl

(36)

q

where $& =+1, -1 for holes and electrons, respec-
tively. Defining a quantity

where the function q](p} is given by

q] P =P
(1 )(ya P( ) «(s sill [(1—p) ]

( )

I'w '[(P -I)~']
)(p 1)1I'2 P

and

(26)

Eq. (35) can now be written

(3&)
q

The above expression is now similar in form to
the corresponding expression for one-component
plasma. " Proceeding in an analogous manner, we
have

p=-m(/m, . (27)

e(p) is the usual step function and N is the number
of e-h pairs. In Eq. (24}, m, is the density-of
states mass, which is given by

(38}
dE|n( («) E,„,(P. ) N ~ 4((e

dk. k. 20 ~ «q'

The interaction energy per e-h pair is therefore

m„=(m, m ')'~' (28)
1 'dA

0

For the isotropic electron-hole bands, p' =p"
= 1 and q((p) = 1, the HF energy per pair is dA. 3 y qA, (39)

EHF

N
2.2099 1.8326

Ry, model . 29) We can now change over" to an integration over
r,' by using

1.6180 1.6594,
)e HF =

2
— '

Ry, Ge[111r r (3o)

For Ge[lll] and 81[100], using the parameters"
given in Tables I and II, which are the same as
used by BR, the HF energy per e-h pair in ex-
citonic rydbergs is determined to be'

K,r,'«Ii'/t(e'k = (a w)'~' = I/(r .
Using Eq. (40), Eq. (39) becomes

2 A@2 K' dr'
tAt p p

0 8
0

x —— dQ dp. y Q, p., r'

(40)

(41)
1.6846 1.6052, I.

]&HF =
2

— Ry, Si[100r r (31)
where Q =q/IC, . Defining

B. Correlation energy

For a multicomponent system interacting via the
Coulomb law, the interaction Hamiltonian X,„,is

X,„,(q, k) = —„g','"(n-'n'- -XP 5,,), (32)2a ., ~q'

and hence the interaction energy is

q

where N; is the number of particles in the ith com-
ponent and A is the interaction parameter. " The
density-density correlation in Eq. (33}is given as

1

y(r!) = ad@ d] y-(Q, ], r,'),
0 0

(42)

and using Eqs. (19), (22), and (23), Eq. (41) be-
comes

TABLE I. Table of constants for Si and Ge. The form
of the energy eigenvalue is E((Q =Ah +[B k(+C (k k

+k„k2+k k„)]' . The values of A, B, and C are taken
from the latest cyclotron-resonance work of Hensel and
Suzuki, Ref. 36.

(n'n (-) =H([6;(+ (n, /n)y;((q)], (34)

where the first term on the right-hand side arises

Si
Ge

4.28
13.38

0.75
8.48

4.85
13.15

11.4
15.36
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y(r,') dr,' Ry .
7TGr

(43)

r
y(r,') dr,' —e„Ry,

&&+s

where e,
„

is given by Eq. (25).

(44)

Correlation energy by definition is e,„,minus the
exchange energy, and therefore

mations are the limiting cases of FSC approxima-
tion. Equations (5) and (6) can be written in the
dimensionless form as

&„rq,~)& '(q, ~) = -q (q)x»rq, ~)
= Q', [I+Q2o(1- G»}]n '(q, (u),

(45}

IV. CALCULATIONS

In this section we shall briefly outline our pro-
cedure for performing numerical calculations.
For simplicity, we give an explicit discussion
for the two-component case only. The relevant
formulas are given in dimensionless form.
Throughout this section the frequency co and wave
vectors q are expressed in units of KK', /2p and

K„respectively.
Equations (13), (6), and (15) constitute the basic

equations of this paper. For a two-component
plasma the three equations for y»(q), y»(q), and

y»(q) have to be solved self-consistently inthe FSC
approximation. RPA, Hubbard and SPH approxi-

and

&,.rq, ~}& '(~, ~}=p(e}x.rq, ~}

=go, Q,(I —G,2)A '(q, (u), (46)

A(q, &u} = [1+(1 —G»)QO, ][1+(1—G„}go]
—(I —G~, )'O', 9,'.

Similarly, the expression for N»(q, &u) can be
written by interchanging 1 and 2 in N» in Eq. (45).
Qorq, ~) = -p(q)y,'rq, ~) is the usual Lindhard func-
tion. ' In the isotropic situation, the real and
imaginary parts of Q&(q, &u), for the ith plasma
component whose density is n; and particle mass
is m, , can be written

1 ~&. to+ P, q u+2P, b,q+ P;q
q' P& 2 4q 2P;5;q m —2P;5;q + P;q

PN
1

24~&q Aq
4q 2P; 6;q &u + 2P;6;q —Pq (48)

p 1T K
Imq, (q, (o) = ——

'f & 4 P P q3
&ar

~ P;(26;q —q2)

K ~5 (d P)q
4 P] q 2P]5tq

=0, &uo P, (26, q+q'),

I P~(26~v -e') I- ~ ~
I P&(26~v+ v')

I (49)

where K' =4pe'/vh'K, », P&
= p/m&, and 6; =qF, /K, . Recall that in the present case m, =—m„.The local

field G;&rq) in Eq. (13) becomes

G„(q)=-— q"y„(q) 1+ ~ ~ ln ~'~, (50)

TABLE II. Values of constants used in the calculations for Ge[111] and Si[100]. The masses
are given in units of the bare electron mass. mz„m&& =density-of-states masses for electron
and hole. mp„mp„=optical masses for electron and hole bands. p, p

—= p, = reduced optical
mass of electron and hole. E„=excitonic rydberg. m@ =A+ 3(3C + 9B ) and m„t=A
-~(3C + 9B ) 2 (Ge[111] 8). m„,~ = A+ B and m ~ = A —-'B (Si[100] 6)

m
g met moe mht mfa' g m P, p

Ex
(meV)

Ge[ 111] 1.580 0.082 0.2198 0 120 0.040 0 130 0 088 0.075 0 046 2.65
Si [ 100] 0.9163 0.1905 0.3216 0.2588 0.154 0.523 0.2354 0.2336 0.1228 12.85
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The fluctuation-dissipation theorem can be written

)
3q' n' N„(q,ill) 3 q' n' ReN„(q, ld} n+ 22vK' n, n~ „„„,„„;,„„„,„„„„„h(q,e) 2 K' n, n& Red'(q, a&) „n,

(51)

ill l 4 ~) = (q'/q'%l h ri l (q ~) (52)

where we have written explicitly the contributions
of the single-particle excitations and the plasmon
excitation to the structure factor y, &(q}. The prime
stands for the derivative with respect to cv. Some
details about the limits of integration for the par-
ticle-hole continuum are discussed in Appendix B.

In FSC approximation, the iteration was started
from the Hubbard expression for G,&(q) in Eq. (11);
the equation Red(q, &u}=0 was then solved outside
the particle-hole continuum to determine the
plasma pole &d = &u~(q). y, ~(q) was computed from
Eq. (51), which was then used to calculate G,~(q}
in Eq. (50). In the second and subsequent iterations
a mean of the previous G, ~ and calculated G;& was
used to start the next iteration. Depending on the
value of r„approximately 10 to 15 iterations were
needed for a 0.1% or better convergence in G, &(q).
This corresponds to much higher degree of ac-
curacy in y, &(q) .

It may be mentioned here that the integral over
q' in G« in Eq. (50}was calculated over the en-
tire region from q' =0 to ~. This was done by
fitting y;&(q ') between q

' = 10 and 50 by a poly-
nomial of the form C,/q" + C,/q" + C,/q" + ' '
The fit was then checked for q' = VO and 100 against
the calculated values of y, ~(q'). The fit was ex-
cellent. It was this polynomial that was used to
calculate the integral q' = 10 to infinity in Eq. (50).
This is important for large q's as a substantial
contribution to the integral in Eq. (50}comes
from large values of q'. Having calculated y, &(q),
the partial-pair-correlation function g,~(r) and
y(r, ) were calculated from Eqs. (14) and (42) in a
straightforward manner. To calculate the corre-
lation energy from y(&,) we fit it to a suitable
polynomial and evaluate the integral in Eq. (44).
This procedure was repeated with several poly-
nomials. The final accuracy of f gp is estimated
to be better than ~

In SPH approximation with G«(q) as given by
Eq. (17), one only needs to solve one set of equa-
tions (i =1, j=2}to determine y» and G» self-
consistently. One can then calculate yyy and y22
from Eq. (51) using G„and self-consistent G„.

In RPA and Hubbard approximations it is
straightforward to evaluate Eq. (51) using G,~

= 0
and Eq. (11), respectively, as there is no self-
consistency involved.

In an ansiotropic situation the Lindhard function
can be written2'

where

q' =p,. '~'[I + (p, —1)cos'ep',

cos &=q, /q, p, =m„/m, l,2 2 / 2

(53)

V. RESULTS AND DISCUSSION

A. Isotropic electron-hole liquid (model system)

Since the model system is free from all the
complications of anisotropy of bands, it is amen-
able to a rigorous calculation within the frame-
work of our approximation. We have calculated,
in different approximations, the ground-state en-
ergy, enhancement factors, and partial-pair-cor-
relation functions as a function of density r, and
mass ratio m„/m, . We shall discuss below our
results for the model system in detail.

In Fig. 1 we have plotted the ground state energy
per e -h pair as a function of r, in four different
approximations for the mass ratio m„/m, = l. All
four curves exhibit minima which lie between r,
=1.90 and 2.10. At the minimum the ground-state
energy in the fully-self-consistent (FSC) approxi-
mation is nearly 15% lower than the corresponding
value in the Hubbard approximation. In the FSC
approximation the model system is not bound rela-
tive to free excitons. " The RPA gives a lower en-
ergy than the Hubbard approximation, which is not
surprising, since it is known that RPA introduces
too much correlation. One should also note that
for a ground-state-energy calculation for small
values of r, (r, (2), the difference between the
FSC and SPH approximations is small, the latter
always overestimates the correlation energy. In
a multi-component system such as normal Ge and
Si, it is difficult at present, even on a big digital
computer, to carry out a fully-self-consistent
calculation, but a partial self-consistent SPH sol-

and Q,',»„,„l(q, hl) is the Lindhard function as given
in Eqs. (48) and (49), with the important difference
that here, in the definition of P&, we must use the
density-of-state mass m«, Eq. (28}, instead of
the optical mass m„asused in the isotropic situa-
tion,

P, = p/m„(m, =-m„).
The calculation in the Hubbard approximation re-

mains straightforward as described above for the
isotropic case. The appropriate expression for
the local field G« in the anisotropic situation is
given in Appendix C.
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ution is possible. Fortunately, the difference
between FSC and SPH approximations is very
small in the region of interest of r, values for Ge
and Si. These systems will be discussed in a sub-
sequent paper.

In Table GI we have given the values of the cor-
relation energy in different approximations for
values of &, in the range 0.2-4. The difference
between the values in the Hubbard and FSC ap-
proximations steadily increases with the increase
in r, , becoming as much as 33/p at r, =4. It should
be pointed out that our numerical values of the
correlation energy in the Hubbard approximation
agree to within 2% with those calculated by Brink-
man and Rice." Mathematically, within the
Hubbard approximation our procedure and that of
BR are exactly equivalent for m~/m, =1. For m„
4m, , unlike BR, we do not make any further ap-
proximations. However, it turns out that nu-
merically the differences are, indeed, very small.

As r, increases beyond 4, the convergence of
our fully-self-consistent numerical solution of the
three coupled integral equations becomes slow and
time consuming, and ultimately the scheme does
not converge. In order to study the trend of the
ground-state energy for r, &4 and mass ratio
unity, we have used the SPH approximation. The
ground-state energy curve based on Hubbard ap-
proximation continues to rise and shows no ten-
dency to bend and hence toward the formation of
the excitonic state in the limit of large r, . This
is expected, since in the limit of large &, it is
the correlation energy alone which dominates and
in that too it is the electron-hole contribution

which is the largest, whereas the curve based on
SPH approximation flattens out, and it shows no
tendency even at r, =10 to bend down and merge
with the curve co = -1 Ry.

On the basis of the Mott criterion for the
metal-nonmetal transition, we should expect the
formation of a bound excitonic state at r, = 10.
Since the present theory fails to give a bound state,
the obvious conclusion is that it is unsatisfactory
in the limit of very low density. As in the calcu-
lation of positron annihilation rates ' and correla-
tion energy, "we feel that it is essential to use
the expression for the local field g(q) which in-
volves the density-derivative terms" if we wish
to push the fully-self-consistent calculation in the
region of large &, (&,&4). Such a calculation is
very time consuming and at present beyond our
resources.

In Figs. 2 and 3 the partial-pair-correlation
functions g„(r)[for equal mass ratio g„(r)
=g„„(&)]and g,„(r)are plotted for &, = 1, and in
Figs. 4 and 5 the same quantities are plotted for
r, =2. The first thing to note is that both RPA and
HA give negative values for g„(r)for small inter-
particle separations, which is not surprising. An-
other fact to note is that for &, =1 the curves for
g„(r)in different approximations do not exhibit
any structure except for very small Friedel oscil-
lations (not seen in Figs. 2 and 3). On the other
hand, for r, =2, g„(r)in, the FSC approximation
exhibits marked oscillations, but the g„(r)in

TABLE III. Correlation energy per e-h pair in exci-
tonic rydbergs of the model system with mz/m, = 1.

-0.3-

I I

MODEL m&/rn =
I

+s
RPA

& corr

Self-consistent Fully self-
Hubbard particle-hole consistent

& corr E' corr E' corr

-0.4-

-0.5-

-0.6—

~ -07-
D

-0.8-

-0.9-

- I.O ~SPH

I

2
rs

FIG. 1. Ground-state energy per e-h pair eo, in exci-
tonic rydbergs, vs r, in four approximations for the
model system.

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2 ~ 6
2.8
3 ~ 0
3.2
3.4
3.6
3.8
4.0

-1.404
-1.074
-0.926
-0.829
-0.756
-0.698
-0.651
-0.612
-0.580
-0.552
-0.527
-0.506
-0.487
-0.470
-0.454
-0.439
-0.426
-0.413
-0.402
-0.391

-1.288
-0.982
-0.845
-0.755
-0.689
-0.636
-0.593
-0.557
-0.528
-0 ~ 502
—0.480
-0.461
-0.443
-0.428
-0.413
-0.400
-0.388
-0.376
-0.366
-0.356

-1.307
-1.009
-0.886
-0.812
-0.761
-0.725
-0.697
-0.675
-0.658
-0.644
-0.632
-0.621
-0.611
-0.601
-0.591
-0.582
-0.573
-0.565
-0.558
-0.551

-1.293
-0.993
-0.867
-0.793
-0.742
-0.706
-0.678
-0.657
—0.639
-0.624
-0.609
-0.595
-0.581
-0.566
-0.552
-0.537
-0.522
-0.508
-0.495
-0.484
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1.0—

0.8

0.6 h/me =
I

Fsc

~FSC

SPH

0.4

~ 0.2
tL}

0.0

0.2

0.4

0.6-

0.8
K0r

FIG. 2. Partial-pair-correlation function g«(r) vs
Eor for the model system for r, = 1.

both the RPA and Hubbard approximation is almost
without any structure. This shows the importance
of multiple scattering of electrons and holes with
increasing &, and the necessity of carrying out a
self-consistent calculation. It is instructive to
compare the curves for g„(r)with those for g,„(r)
(Figs. 4 and 5) for r, =2. For values of K,x~2,
the maxima and minima in g„(r)corresponding to
Friedel oscillations have one-to-one correspon-
dence with those in g,„(r),which is a manifestation
of the fact that charge neutrality is almost main-
tained in any finite region of space.

In Figs. 6 and 'l are shown g„(0)and g,„(0)as a
function of r, . For values of r, ~ 0.5, it is seen
that different approximations yield nearly the
same values of g,„(0)as expected. Already, at
r, =2, the effect of multiple scattering between
electrons and holes is so large that the enhance-

I I I I I I I I I I I

4 5

ODEL rn„/rn, =
1

r =2
$

FIG. 4. Partial-pair-correlation function I,(r) vs
Kor for the model system for r~= 2.

12-

MODEL m„/m, = I

r =2

ment factor g,„(0)in the fully-self-consistent ap-
proximation is nearly three times the correspond-
ing value in the Hubbard approximation. For
values of r, &4, the convergence of the fully-self-
consistent theory is extremely slow and one ob-
tains very large enhancement factors indicating,
as in the single positron case, "'"that the theory
is breaking down. It should be recalled that in the
definition used here (reduced mass) &, =4 corre-
sponds to r, = 8 in the electron-gas problem.

We have also calculated the ground-state energy
for different values of mass ratio m„/m, as a
function of r, in the fully-self-consi'stent and
Hubbard approximations. These results are shown
in Fig. 8. For m„/m, &6 the fully-self-consistent

3

OP~ 2

I ( I I

MODEL mh/me =
I

rs= I

SPH

10-

I 2
KOr

4 5 6

FIG. 3. Partial-pair-correlation function g,„(r)vs
Kor for the model system for r, = 1.

FIG. 5. Partial-pair-correlation function g,„(r)vs
Ear for the model system for r, = 2.
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theory converges very slowly, and hence no nu-
merical results have been given. There are
several points to note in Fig. 8: (i) In the FSC
approximation one does not obtain a metallic bind-
ing, at least up to m„/m, = 6, and the value of the

energy minimum almost remains constant with in-
creasing m„/m, . (ii) In the Hubbard approxima-
tion one does obtain a metallic binding for m„/m,
&10. (iii) The r, value at which the energy mini-
mum occurs shifts slightly to lower values with
increasing mass ratio m„/m, . In both the approxi-
mations the minimum occurs at nearly the same
place. Assuming that this trend continues for
larger mass ratios, one might conjecture that
metallic hydrogen in the liquid phase might exist
for r, around 1.8.

In Table IV values of the correlation energy in
Hubbard and FSC approximations are given for
different values of &, for mass ratios 2, 4, 6, and
10. Owing to slow convergence of the FSC scheme,
we have calculated e,.„

for m„/m, =4 and 6 only up
to r, =2; indeed, the approximation does not con-
verge for m„/m, & 10 and r, & 2.

In Figs. 9 and 10 are shown g„(r)and g„„(r),
respectively, for r, =1 and 2 for the mass ratio
m„/m, =4; in Figs. 11a and lib are shown g,„(r)
for ~, =1 and 2, respectively. Here again there
are several points to note: (i) On comparing Fig.
9 with Fig. 4, one sees that, in contrast to the
case m„/m, = 1, g„(r)for small values of r is
positive for the mass ratio 4 in the Hubbard ap-
proximation for r, =2. Similarly, comparing Fig.
5 with Fig. 11(b), we seethat the enhancement fac-
tor g,„(0)for mass ratio 4 is smaller than that in
mass ratio unity for r, =2. This is simply due to
the fact that although in the above two cases &, is
the same, the two systems actually correspond to

I I I

p5 - MODEL m&/m = I

25
O

cp 20

2
f's

FIG. 7. g,„(r=0) vs r, in four approximations for the
model system.

different number densities, the latter being higher
for mass ratio 4 than for mass ratio unity for a
fixed r, [see Eqs. (18) and (23)]. In the case of
the enhancement factor g,„(0),the effect of in-
crease of the hole mass is more than compensated
by the increase in density. For a fixed density

-0.6

-07-

-0.8-

-09-

I.o

MODE L rnI, /rn, l -I.O I

=6
-IRY

0.0O

-I.O

-2.0

-3.0-

-I.O

-l.o

FSC

m&/m = lOe

~~HA

HA

FSC

-IRY

-I RY

I

2

FIG. 6. g«(~= 0) vs r, in four approximations for the
model system.

FIG. 8. Ground-state energy per e-h pair e, in ex-
citonic rydbergs, vs r, in Hubbard and fully-self-consis-
tent approximations for m&/m~ = 4, 6, and 10. Note the
shift in the vertical scale for the three cases.
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TABLE IV. Correlation energy (isotropic) per e-h pair in excitonic rydbergs of the model

system with mass ratios m&/me = 2, 4, 6, and 10 in the Hubbard approximation (HA) and fully-
self-consistent {FSC) approximation.

rs
m~/m, =2

HA FSC
mq/m, =4

HA PSC
m&/me = 6

HA FSC
m„/m, = 10

HA

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

-1.335
-1.013
-0.870
-0.776
—0.707
-0.652
-0.607
-0.571
-0 ~ 540
-0.513
-0.491
-0.471
-0.453
—0.437
-0.422

-1.335
-1.017
-0.886
-0.808
-0.756
-0.717
-0.688
-0.665
-0.645
-0.627
-0.611
-0.595
-0.579
-0.563
-0.547

-1.479
-1.107
-0.945
-0.840
-0.762
-0.701
-0.651
-0.609
-0.575
-0.546
-0.521
—0.500
-0.481
-0.463
-0.447

—1.463
-1.081
-0.935
-0.852
-0.793
-0.748
-0.710
-0.678
-0.650
-0.625

-1.614
-1.196
-1.014
-0.898
-0.812
-0.745
-0.690
-0.645
-0.608
-0.577
-0.550
-0.527
-0.506
-0.487
-0.470

-1.576
-1.141
-0.978
-0.886
-0.822
-0.772
-0.729
-0.691
-0.657
-0.625

-1.848
-1.348
-1.134
-0.996
-0.896
-0.819
-0.756
-0.705
—0.663
-0.627
-0.597
-0.571
-0.548
-0.527
-0,508

the enhancement factor always increases with the
increase in hole mass. (ii) It is interesting to
compare the enhancement factor in Fig. 11(b) with
the enhancement factor for a proton in an electron
gas." In spite of the fact that the absolute number
density here is lower than in the calculation of
Ref. 31, and the reduced masses are not much dif-
ferent, the enhancement in Fig. 11(b) is still much
smaller than that in the case of a proton in an
electron gas. This is entirely due to the additional
screening provided by the mobile holes in the
electron-hole plasma. (iii) On comparison of
Figs. 4 and 10, one notes that the exchange-cor-
relation hole of g»(r) is much deeper for mass
ratio 4 than that for mass ratio unity. This is
understandable since the kinetic energy of the hole
for mass ratio 4 is much smaller than that for
mass ratio unity.

In Figs. 12, 13, and 14 a,re shown, respectively,
g„(0),g~(0), and g,„(0)as a function of r, for dif-
ferent mass ratios in the Hubbard and FSC ap-
proximations. The Hubbard approximation gives
large negative values for g„„(0)and as such cannot
be trusted for large mass ratios. It is therefore
not surprising that in this approximation the elec-
tron-hole plasma with mass ratio greater than 10
is bound relative to the free excitons.

In Figs. 15, 16, and 17 are plotted the local field
corrections G„(q),G,„(q), and G~(q) for r, =2 for
mass ratios 1 and 6 in various approximations.
We might here recall the relation"

G; ( =")= I -g;, ( =o) .
In contrast to the electron-gas case, G„(q)in the

MODEL lnh/me = 4

I.O-

0.8

MODEL mh/me = 4 ~FSC I.O-

0.2

0

-I 0

3
K0r

-2.0 I

Kpr
5 6

FIG. 9. Partial-pair-correlation function g~ (r) vs
Kor for the model system with mass ratio 4 for r, = 1
and 2 ~

FIG. 10. Partial-pair-correlation function g~(r) vs
Kor for the model system with mass ratio 4 for rs = 1 and
2.
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(a)
mh/me =4

r6 =
I

MODEL
I.p- mh/me = 4,6, 10

/6 Fsc

-1.0

O
N -2.0

-3.0

0 i

(b)

l0-

8-

6

I I I I

2 3 4 5 6
Kpr

I I I I I

MODEL mb/me = 4
I'S = 2

HA

1.0

—-FSC

SC

-4.0

-5.0

O
~ l0-
0)

I I I

MODEL

mh/me = 4,6, IO

I

2

fs
FIG. 13. g~(r= 0) vs r, for model system with mass

ratio 4, 6, and 10.

I

2
I I I

3 4 5
Kpr

FIG. 11. (a) Partial-pair-correlation function g,„(r)
vs Kor for the model system with mass ratio 4 for r, = 1.
(b) Partial-pair-correlation function g,„(r)vs Kor for the
model system with mass ratio 4 for r, = 2.

2
rs

3 4

FIG. 14. Partial-pair-correlation function g,„(r=0) vs
r~ for model system with mass ratio 4, 6, and 10.

0.0—O
0)
0)

- I.O—

-2.0—

MODEL
mh/me = 4,6, IO

FSC&4,6

Hg
~ 4,6, IO

0.6-

0.5
~ 0.4

W 0.5

0.2

O. l

I I

MODEL mh/me =
I

I's =2 Gee()
= HA, SPH

0.5
—FSC
O. 582

I
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FIG. 12. ge (r = 0) vs r, for model system with mass
ratio 4, 6, and 10.

q/Ko

FIG. 15. Local field correction G„(q)vs q/Ko for the
model system with m„/m, = 1 for r, = 2. The values of
G~(q = ~) in various approximations are also marked.
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TABLE V. Correlation energy for Ge [111]and Si[ 100] in Hubbard and fully-self-consistent approximations.

's

&„„Ge[111]
FSC

Isotropic
HA HA

Isotropic Anisotropic
FSC

Anisotropic
HA

Isotropic
HA

Anisotropic

e'gruff Si[ 100]
FSC

Isotropic
FSC

Anisotropic

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2 ~ 7
2.8
2.9
3.0

-1.831
-1.310
-1.109
-0.995
-0.916
-0.856
-0.807
-0.765
-0 ~ 729
-0.697
—0.669
-0.643
-0.620
-0.599
-0.580
-0.563
-0.547
-0.532
—0.519
-0.506
-0.495
-0.484
-0.474
-0.465
—0.456
-0.448
-0.440
-0.432
-0.425
-0.418

-2.524
-1.741
-1.439
-1.267
-1~ 151
-1.063
-0.993
-0.935
-0.885
—0.841
-0.803
-0.769
-0.738
-0.710
-0.685
-0.662
-0.642
-0.623
-0.606
-0.590
-0.575
-0.562
-0.549
-0.537
-0.526
-0.516
-0.506
—0.496
-0.487
-0.478

-1.850
-1.313
-1.111
-1.000
-0.927
-0.874
-0.833
-0.800
-0.772
-0.749
-0.729
-0.711
-0.695
-0.682
-0.669
-0.658
-0.648
-0.639
-0.630
-0 ~ 622
-0.614
-0.607
-0.600
-0.592
-0.585
-0.578
-0.571
-0.564
-0.557
-0.549

-2.543
-1.744
-1.441
-1.272
-1.162
-1.081
-1.019
-0.970
-0.928
-0.893
-0.863
-0.837
-0.813
-0.793
-0.774
-0.757
-0 ~ 743
-0.730
-0.717
-0.706
-0.694
-0.685
-0.675
-0.664
-0.655
-0 ~ 646
-0.637
-0.628
-0.619
-0.609

-2.278
-1.617
-1.357
-1.206
-1.101
-1.021
-0.956
-0.902
-0.856
-0.815
-0.780
-0.748
-0.720
-0.695
-0.671
-0.650
-0.631
-0.613
-0.597
-0.582
-0.567
-0.554
-0.541
-0.529
-0.518
-0 ~ 507
-0.497
-0.487
-0.478
-0.469

-2.500
-1.755
-1.462
-1.292
-1.175
-1.086
-1~ 014
-0.955
-0.904
-0.860
-0.821
-0.787
-0.756
-0.728
-0.704
-0.681
-0.660
-0.641
-0.624
-0.607
-0.592
-0.577
-0.564
-0.551
-0.539
-0.527
-0 ~ 516
-0.506
-0.496
-0.487

-2.279
-1.618
-1.360
-1.214
-1.116
-1.044
-0.989
-0.946
-0.911
-0.882
-0.857
-0.836
-0.817
-0.800
-0.784
-0 ~ 769
-0.754
-0.740
-0.726
-0.712,
-0.697
-0.683
-0.669
-0 ~ 656
-0.643
-0.630
-0.618
-0.608
-0.598
-0.590

-2.501
-1.756
-1.465
-1.300
-1.189
-1.109
-1.047
-0.998
-0.959
-0.926
-0.898
-0.874
-0.853
-0.834
-0.816
-0.800
-0.784
-0.768
-0 ~ 752
-0.737
-0.722
-0.707
-0.692
-0.678
-0.664
-0.651
-0.638
-0.627
-0.617
-0.608

the FSC approximation, but the calculation is ex-
tremely time consuming. To make this calculation
feasible we took recourse to the above-mentioned
procedure-an approximation which seems rea-
sonable. Thus with anisotropy included we obtain
for the binding energy y of the metallic phase with
respect to the excitonic phase a value of 0.161 Ry
=0.426 meV and for the equilibrium density n,
corresponding to &, = 1.57 a value of 1.11&10'6
cm '. From Fig. 19 it is also clear that the effect
of multiple scattering in Ge[111J is as large as
the effect of anisotropy. One also notes that in
the Hubbard approximation with isotropic e and h

bands, one does not obtain any metallic binding.
The enhancement factor g,„(0)corresponding to
the equilibrium density is 6.8, whereas in the
Hubbard approximation it is 2.6.

ergy of the exciton has been taken to be 1.000 Ry.~'

It is interesting to note that with isotropic bands
RPA gives metallic binding whereas the Hubbard
approximation does not.

To estimate the effect'of anisotropy we follow
the same procedure as in the case of Ge[111J;
the final results are shown in Fig. 21, which is
self-explanatory. We obtain R binding energy y
for the metallic phase to be 0.146Ry =1.8%V meV.
The equilibrium density n, corresponding to r,
=1.65 is 4.4'I&& 10" cm '. In Ge[111]the effect of
anisotropy is of the same order as the effect of
multiple scattering, whereas in Si[100] the latter
is four times as large as the former.

The enhancement factor g,„(0)corresponding to
the equilibrium density is 7.4, whereas in the
Hubbard approximation it is 2.8.

C. Anisotropic three-band system Si[100]

In Fig. 20 is shown the calculated ground-state
energy with e,.„,(isotropic), per e —h pair in Si
under a large uniaxial [100] strain as a function
of r, in different approximations. The binding en-

V. CONCLUSION

From the foregoing comparative study of the
ground-state energy of the quantum electron-hole
liquid in the three cases (i) isotropic electron-hole
liquid, (ii) Ge under a large [111]strain, and
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TABLE VI. A summary of results for the binding energy, ground-state energy, equilibrium
density, and enhancement factor for Ge[1111 and Si[100].

System

Binding energy

('K)

Ground-state
energy

(meV)

Critical density
Sc

(cm ~)

Enhancement factor
p =-g„(0)

Ge[111]
Si[ 100]

4 9
21.8

3.08
14.73

1.11x10'~

4.47x 10
6.8
7.4

3 Note that the fundamental quantity here is the ground-state energy. The binding,
—E' 'I, is subject to the value of the excitonic binding energy. We have taken f cxcjfpfl = —2 ~ 655
and -12.85 meV for Ge[111) and Si[100], respectively. When accurate experimental values
of g „;1„anddielectric constant K' are known then p must be recomputed with them.

anisotropy is as important as the effect of multiple
scattering. We get the binding energy of the metal-
lic state in Si[100] to be 21.8'K. This value is
large enough that an experiment is feasible, and
it would be indeed very interesting to perform
such an experiment. Since the absolute value of
the binding in Ge[111] (4.9 'K) is lower than in
Si[100], the experiment in Ge[111]might pose ad-
ditional difficulties.

In our view, experiments to establish quantative-
ly the existence of a metallic phase in both highly
strained Si[100) and Ge[111]are very important,
since such experiments should be able to test dif-
ferent approximations of the many-body theory.
In contrast to electrons in metals, we have here
for the first time a system whose characteristics
are known exactly. We hope that a way will be
found to determine experimentally the enhance-
ment factors, since they are very different in
Hubbard and self -consistent approximations.

Note added in proof. Recently, P. Vashishta,
S. G. Das, and K. S. Singwi [Phys. Rev. Lett. 33,
911 (19'74}] have calculated the thermodynamics of
the electron-hole liquid for five systems: Ge, Si,
and Ge under large (111) uniaxial stress, Ge[111],
Si under large (100) uniaxial stress, Si[100], and
GaAs which is a direct band-gap semiconductor.
Important effects of (e, e), (h, 73), and (e, 73) multiple
scatterings and the anisotropy of the bands are
included in the calculation of the correlation en-
ergy (FSC approximation with the effect of ihe
anisotropy taken into account). For Ge, the
ground-state energy, enhancement factor, com-
pressibility, critical temperature, critical densi-
ty, temperature dependence of Fermi energy,
chemical potential, and equilibrium density are
in good agreement with experiments. Predictions
are made for other systems. In a recent experi-
ment on Ge under uniaxial stress, T. Ohyama,
T. Sanada, and E. Otsuka [Phys. Rev. Lett. 33,
647 (1974)] have found that the binding energy of
the electron-hole liquid decreases as a function of

the stress and the experiment seems to indicate
that in the limit of large (111) uniaxial stress the
binding energy tends toward a nonzero value.
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APPENDIX A

In this appendix we write expressions for the re-
sponse functions 7t„(q,&u) for a three-component
plasma, as is the case for Si[100], in dimension-
less form. We choose our notation such that the
index 1 refers to holes whose density is n and 2

and 3 to the two equivalent conduction bands each
of which has electron density &n." We define

N;&(q, ~)& '(q, ~) = -5;t
& V'(q)X;, (q, ~), (Al)

N„=Q, [(Q3H3, + 1} —(Q+33) ], (A2)

N33 = Q3[(Q,H„+1)(Q+»+ 1) —Q,QPZ, 3], (A3)

N„=Q,Q, [Q, (H, 3
—H„)H„+H,s],

N33 = -Q, [Q, (H„H33—H») +H33]

& = OQ3Hii+ 1)[(QP33)' —(QP33+1}']

+2Q,'Q+3»[Q3'(H» -H»)+I]),

(A4)

(A5)

(A6)

where Q,'(q, &u) is the Lindhard function as given
in Eqs. (48) and (49) and

H, , rq) =1 —G;, (q), (A'7}

where G;, (q} is defined in Eqs. ('7) and (13). Equa-
tions (Al)-(A'7} are analogs of Eqs. (45)-(4'7)
for a two-component system.

where g; =+1 for holes and -1 for electrons and
the N;,.(q, &u) corresponding to four independent cor-
relation functions are
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where r(p;) defines
ing Eq. (Cl) in Eq.

2"'"'= (2.)"

' soid. Substitut-the Fermi ellipsoi .
(13) for G«(q), wewe have

, q (k-k'+q)
IR —k'+ qI'~( p;)~(pi ~ i

(C2)

fix i. In orderwe shall drop the suffix i.
k the transf ormation. (C2) we ma eto simplify Eq.

(C3)~'k, k, =p k„, g=p 'k =p-' k, ,

w = m . Using the above ranwhere p =m, ~m, .
h

Ik —k'+q =p ' — ' ' 1+ p=p'~'Ik —k'+qI 1+ p

UO).:
N)&N

ELEG

REGION (j:)

PLASMA
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+

(C4)

Ik-k +qI y„q
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in Eq. (C6)the integral over p. in
k i ith thcan be evaluated. Hoowever, xn

(C6)

(cv)
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spirit of Hubbard approximation wherein, for
large values of q, the form of local field is such
that it cancels half the RPA contribution, one can
see from Eqs. (C4) and (C f) that p, —p', and hence
Eq. (C6) takes the simple form

G(q) =he'l(0'+Op),
where

(C8)

(C9)
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