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It is shown that a purely local-pseudopotential calculation is able to accurately reproduce the major

optical gaps and cyclotron masses. However, deviations from the experimental results become manifest

in photoemission and x-ray charge-density results as we extend our calculations to the lower valence

bands. These deviations indicate the necessity of an energy-dependent nonlocal s-well potential, a
conclusion which is also supported by an analysis of the Heine-Abarenkov pseudopotential scheme. A
detailed comparison is made between experimental results obtained from optical, photoemission, x-ray,

and cyclotron-resonance measurements, and the results of both the local calculation and an

energy-dependent nonlocal calculation. Yang and Coppens's recent determination of the valence charge
density in silicon makes it possible to assess the accuracy of the pseudocharge densities for the first time.

I. INTRODUCTION

In spite of the fact that several local-empirical-
pseudopotential calculations exist for silicon, '~
a thorough comparison of the results of such acal-
culation with the abundant amount of experimental
data available for silicon has yet to be performed.
Most authors have been primarily concerned with
an analysis of the optical spectrum, and have usual-
ly not compared their results to the cyclotron-mass
data available, or to the more recent results of
photoemission measurements. This situation is
an unfavorable one, for it leaves open the possi-
bility that, while the local empirically fit pseudo-
potential may be able to accurately obtain the opti-
cal gaps, it may fail to give equally good results
when compared to other experimental measure-
ments. The results of recent x-ray and ultraviolet
photoemission spectroscopy (XPS and UPS)'~ will
serve to illustrate the point. Although optical
spectra (in good agreement with experiment) have
been calculated for numerous diamond and zinc-
blende semiconductors, based upon a local pseudo-
potential, ' when these local calculations are ex-
tended to yield the valence-band electronic density
of states the results are far from satisfactory. ' '

Therefore, in this paper it will be of primary im-
port to compare the results of our calculations to
a wide spectrum of experimental measurements.

In particular, we will be interested in the ac-
curacy of the local-pseudopotential compared with
a nonlocal-pseudopotential calculation, for such
nonlocal-pseudopotential computations have re-
sulted in spectacularly improved band struc-
tures. Recent calculations, for example, on
Ge and GaAs have been capable of obtaining the
major optica], gaps to within - P. P8 ey, "' and
have shown that local-pseudopotential calculations
can result in inaccurate band topologies. ' More-
over, improved densities of states in the nonlocal
calculations were also obtained. In this context
energy-dependent pseudopotentials have also been

used '; however, a nonlocal energy-dependent
pseudopotential has yet to be examined. Hence it
would be of some value to ascertain the importance
of nonlocal and energy-dependent corrections in the
case of silicon.

Further, silicon, which has been the subject of
many theoretical calculations, ' '" has not been
as well understood as some of the other diamond
and zinc-blende semiconductors. Several examples
of this situation come to mind. One is the band
ordering of the lower conduction bands at I'. Un-
like germanium in which it is well accepted that
I &. lies below I'», in silicon the placement of I'2.

has been, until quite recently, a matter of some
controversy. In most of the early band-structure
calculations for silicon the 1"2. conduction band
was found to lie above the I „conduction band.
However, some later calculations have found the
reverse ordering. ' ' Another transition which
has been of some consternation is the determina-
tion of the first direct optical transition. Pseudo-
potential calculations have placed the first direct
transition at I' or L, but experimentally the situa-
tion here is unclear in contrast to other semicon-
ductors (e. g. , germanium).

With respect to a more general viewpoint, there
is a recent calculation on silicon by Kane. In
Kane's calculation a Heine-Abarenkov-type core-
valence interaction fitted to spectroscopic data was
used. This ion potential was then screened by a
parametrization of the valence-valence electron in-
teraction. Kane found that the major optical gaps
and the cyclotron masses were incompatible within
his empirical fitting scheme. If masses were fit to
experiment, then the optical gaps were in error
by -0.5-0. 7 eV. This was attributed to need of
a nonlocal exchange potential. Therefore, it
would be of some interest to determine whether a
purely local pseudopotential would experience the
same diff iculty.

Finally, we note that several new and important
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experimental techniques have been developed which

have not been incorporated into empirical calcula-
tions. Besides the recent photoemission data of
XPS and UPS, there is the recent experimental
work of Aspnes and Studna involving the use of
low-field electroreflectance. 7' This is a power-
ful techpique which has been able to resolve the

Ep and Ep + 4p structures in silicon, and unequivo-

cally determine the correct band ordering of I &

and I'„. ' (I'z, is higher than I'„.)
In addition there is the recent work of Yang and

Coppens in which they were able to determine a
very accurate valence charge density for silicon
through the use of recent precise x-ray experi-
ments. This calculation is quite significant, as
there has been much interest in using the pseudo-
charge density in calculating the Slater exchange
term and achieving self -consistency, par ticularl~
for the purpose of doing surface calculations. '

We intend to examine silicon by the following
methods. We shall use a purely local-pseudo-
potential approach and analyze the results of the
calculation by means of a comparison with the ex-
perimental results of optical and photoemission
measurements along with the experimental cyclo-
tron-resonance masses and the recent valence-
charge-density determination by Yang and Coppens.
To examine the effects of nonlocality we shall then
repeat the calculation using a nonlocal pseudopoten-
tial based on examination of a Heine-Abarenkov po-
tential for Si' .

The paper is outlined as follows: In Sec. II we
shall discuss the basic pseudopotential scheme. The
local (or on the sphere) approximation will be dis-
cussed and examined. We shall examine the Heine-
Abarenkov potential and its implications for the
case of silicon, and we shall discuss a recent self-
consistent calculation done on silicon by Appelbaum
and Hamann. In Sec. III the methods used to cal-
culate the theor'etically determined band structure,
photoemission results, ref lectivity, cyclotron
masses, and pseudocharge densities will be dis-
cussed. In Sec. IV we will discuss the experi-
mental results and compare them to the theoretical
results. In particular, we shall be interested in
comparing the local calculation to the nonlocal cal-
culation. Finally, in Sec. V we shall summarize
our conclusions and results.

II. POTENTIAL

The fundamental concept involved in any pseudo-
potential calculation is that the ion core can be
omitted or "pseudized away. " Computationally
this is crucial for it means that the deep ion po-
tential has been removed and a simple plane-wave
basis will yield rapid convergence. There are
many ways of arriving at this result, but one of

the most straightforward is due to Phillips hnd

Kleinman. "
Simply stated, we may rewrite the one-electron

Hamiltonian as

X=P /2m+ V&(r),

where

(2)

v(r) is the true crystal potential and I 5,) is a core
state with eigenvalue E,. This new potential has
the same eigenvalues E~, but, because the real
potential has been cancelled in the core region by
the second term in (2), the resulting eigenfunc-
tions of (1) are smoothly varying in the core region,
in contrast to the true eigenfunctions. While this
permits the pseudoeigenfunctions to be expressed
in terms of plane waves, the pseudopotential in (2)
is dependent not only on the energy eigenvalues

Ep, but also on the l angular momentum compo-
nents present in the core states.

In spite of the fact that (2) is inherently nonlocal
and energy dependent, much of the optical spectra
for semiconductors can be explained by ignoring
this fact. If we assume the pseudopotential is a
simple function of position, then we may take

V~(r) = Z V(G) e' ',
where

V(G) = V'(G) cos(G ~ T),

7=-,'a(1, 1, 1)

(a being the lattice constant). The V'(G), or
atomic form factors, can be defined by

V'(G) -=—
~~ Vt(r) e d'r,

where we have taken the crystal potential to be a
sum of atomic pseudopotentials V~. 0, is the unit-
cell volume.

The local-empirical-pseudopotential method
(EPM), in fact, is based upon the above simplifi-
cation. If we then take the above pseudopotentials
to be spherical, so that V~(r) = U~(l r i ), this means
the form factors depend upon the magnitude. of G,
with a corresponding reduction in the number of
required form factors. These form factors are the
empirically determined parameters fit to experi-
mental data such as optical gaps.

The validity of this approach rests upon two
arguments: (i) Ef» E„so that (EI —E,) can be
replaced by a mean energy in (2), such as E~ (pro-
viding one is interested in only a limited energy
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range}; (ii) the cancellation is equal for all l (or
at least the l components of the valence wave func-
tions which are significant). Until recently (e.g. ,
recent comparisons to XPS and UPS data), these
assumptions have been found to be satisfactory.

In order to better understand the possible fail-
ings of such a local approach we now examine a
model pseudopotential devised by Heine and

Abarenkov. In this model they assume that the
positive-ion pseudopotential may be written

purpose, as we have indicated in the figure, a
linear interpolation is used, a procedure which
has been justified, at least for the l =0,1 cases,
by Shaw.

In order to reduce this nonlocal potential to a
local form, one can evaluate it at an appropriate
mean energy such as E~ and use the "on-the-sphere
approximation. " This well-known approximation
converts the nonlocal potential to a local one by
means of

-A, (E), r= R„
Vi(r)=

—Ze'/r, r R„

VNL(r)=g Vi(r)y&,
l=0

(6)
V'(q) = (k. I V:L(E,r) lk. + q),

where

E=E, Ik I=1k +ql
qll-k„

We now have a local ionic potential; this potential
must now be screened appropriately before it can
be used in calculating the electronic properties of
a solid such as an optical spectrum. "

An examination of Fig. 1 indicates quite clearly
where the assumptions of a local potential may
fail in silicon. While A, =A~ at E~, so P-d non-
locality might be ignored, the fact that Ao is not
equal to A, and A, means that the s nonlocality
probably cannot be ignored. Indeed, if one extrap-
olates a rydberg away from EJ;, as might be the
case in attempting to fit photoemission data, the
relative value of A, to A, (or A,} increases by a
factor of 2 or more.

From a pseudopotential viewpoint the s potential
is the most "favorable" in that it is cancelled to a
greater extent than either the P or d potentials.
One therefore might like to take the approach of
using a local potential along with P and d correc-
tions, rather than an s correction as we shall do.
The reason for considering only the s well is
basically computational. Since the s well is so
energy dependent relative to both the p and d wells,
we would have to include energy dependence for
both, resulting in four additional parameters rath-
er than two, if nonlocality is restricted to the s
well alone.

We may add here that while it is true that A, (E~)
=A2(EF), the d well, like the s well, is quite ener-
gy dependent. However, unlike the s well which
affects the bottom valence and lower conduction
bands (a span of - 15 eV), the d well has influence
only on the upper conduction bands or a rather
limited energy range (at least for the region of
interest in our calculations).

Finally, with respect to Fig. 1, we note that a
possible reason for the relatively better cancella-
tion of the s potential can be understood in terms
of the core states. '6 From (2) we observe that the
true silicon crystal potential is canceled by the
1s, 2s, and 2P core states. Because there are

where &, projects out the lth angular momentum
component of the wave function. R is the model
radius, which is taken to be the same for all l.
For convenience, it is assumed that A, (f = 2) =A&,
this can be done in the Si case, as the higher l
values are negligible in the region of interest.

To determine A, (E), after selecting a value for
R, the spectroscopic-term values are examined
for an electron in the atomic-ion core potential
(e.g. , Si'). The well depths A, are then adjusted
to reproduce these spectroscopic terms; the be-
havior for the first three A, is shown in Fig. 1.
One can observe that the l =0 and l =2 well depths
are quite dependent on the energy of the spectro-
scopic term to which they are fit. This should be
of particular importance if one wishes to use the
potential over a large energy range. To obtain
the values of A, (E) for a particular energy not
corresponding to a term value, an extrapolation of
the A& to the desired energy is required. For this

I I
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FIG. , 1. Behavior of the Heine-Abarenkov well depths
A&(E) as determined by Animals (Ref. 70).
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two s states which serve to cancel the core poten-
tial, but only one P state, one might expect a bet-
ter cancellation for the s potential, which is the
case. Similarly, the d well is uncanceled by any
core states, resulting in a more attractive well
depth than for either the s or P wells. The role
of d nonlocality and its role in other semiconduc-
tors, e.g. , Ge and GaAs, where it has proved to
be of significant importance, will be discussed in
our concluding remarks.

While it would be desirable to use a model po-
tential with no empirical adjustments, such a cal-
culation would be most difficult. For example,
there is no reliable determination of E~, the ener-
gy relative to a free ion of an electron at the
Fermi level &~, in a solid where e~ is on an ab-
solute energy scale. " Estimates of this value can
be quite different. Kane, using an adjusted Heine-
Abarenkov-type calculation~~ used a value of —2. 3
Ry on the scale of Fig. 2 to evaluate the A, (F),
while Animalu and Heine used -2.93 Ry. Such a
difference can result in a very significant change
in the resulting band structure, as we shall dis-
cuss shortly. Another difficulty is in the screen-
ing of such a potential. While the use of a Slater
exchange term seems to be a well-accepted tech-
nique in ab initio calculations, Kane has noted that
such an approximation is questionable, and
he has suggested the use of a nonlocal screening
potential. ~ In any event, we have performed a
nonlocal-type calculation using a Heine-Abarenkov-
type core potential which we have screened, self-
consistently, in th6 manner of Appelbaum and
Hamann. This involved the use of the pseudo-
charge density to calculate the Hartree potential
and Slater exchange terms. We find that a very
small change in the core potential can result in a
rather large change in the resulting band structure.
For example, a 1% change in the core potential can
result in a 0. 5-eV change in the band structure.
This means that some sort of empirical adjustment
is almost certainly required.

In any type of empirical calculation the question
arises of where adjustments should be made. Kane,
as mentioned previously, has parametrized the
valence-valence interaction, and recently Appel-
baum and Harm&an have paxametrized the core
potential, which they then screen in a self-consis-
tent manner. Traditionally, however, the EPM
approach has fit the first few Fourier coefficients
of the total potential. In fact, it has bein ob-
served that usually only three form factors per
each type of atom are needed for a satisfactory
fit. 7 Such a truncation is made so that the V(G)
are equated to zero for G &(2v/a)~11.

Contrary to Appelbaum and Hamann's comments
that such a truncation appears to have been per-
formed in arbitrary fashion, there are some very

good reasons for using the aforementioned cutoff.
First, from the practical point of data fitting, Kane
has shown that the higher V(G)'s become linearly
dependent. ' For the specific case of silicon he
found that by increasing the number of nonzero
V(G)'s an improved fit to the band structure was
not obtained. In fact, Kane noted that one has,
loosely speaking, between two and three truly in-
dependent parameters. In addition, Cohen and
Heine' have pointed out that the higher coefficients
can be "absorbed" into the lower coefficients by a
partial diagonalization of selected off-diagonal ma-
trix elements. In particular it is possible to trans-
form to zero all V(G)'s beyond some cutoff q, ';
so in this sense there is no loss of generality in
using a truncated V(G). Finally, keeping V(G)'s
beyond some reasonable cutoff such as q, =3kF
(the value suggested by Cohen and Heine) and at-
taching physical meaning to them goes against the
philosophy of the pseudopotential approach. This
is a consequence of the fact that the higher coef-
ficients "test out" the core region of the pseudo-
potential. It is this region, however, which has
been pseudized away, and this process we know is
an arbitrary one. ' In fact, we have performed cal-
culations in which the V(G)'s were not truncated
until q, =(2v/a) 25, and we find, as one would ex-
pect, that nearly identical band structures can be
obtained. The only observable difference obtained
was that the pseudocharge density in the core re-
gion was slightly altered, but we would not expect
the results to be accurate in this region in any
event.

Another point to consider is the possibility that
such a truncated potential might not be self-con-
sistent with the pseudocharge density. This, how-
ever, is not the case, for the pseudocharge density
is very smooth, with the Fourier coefficients of
the charge density falling off quite rapidly. And,
since the screening potential involves even more
smoothly varying functions, e. g. , [p(r)]'~', this
is not a problem. '

We may mention in this sense that the meaning
of achieving a self-consistent potential with respect
to an adjustable core potential is not clear, as any
total potential can be made self-consistent to some
type of core potential. Only if the core potential
is accurately known, e.g. , through a fitting to
spectroscopic-term values, and not radically al-
tered in an empirical fitting scheme can self-con-
sistency truly have significance. Hence, within
this framework, most of the present local-pseudo-
potential calculations for silicon involving a trun-
cated Fourier expansion of the potential, but whose
form factors are close to a model potential such
as Heine and Animalu's, ' are probably just as
"self-consistent" as the recent Appelbaum and
Hamman calculation. 4
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Therefore, we propose to follow the usual local
EPM procedure, using three form factors, near
the Heine-Animalu screened results, and make em-
pirical refinements. Then, to incorporate what

appears to be the most important nonlocal correc-
tion for silicon, we will use an energy dependent
s well and, again, make empirical adjustments.

III. METHODS OF CALCULATION

.The band structure is calculated as in Ref. 2.
The potential is expanded as in (3), with the form
factors listed along with the la,ttice constant in
Table I. These form factors are fairly close to
the Heine-Animalu screened potential ' except for
V(v 3); this is not surprising since we would ex-
pect a difference to arise from the fact that the
Heine-Animalu potential was screened with a free-
electron dielectric function. Similar conclusions
have been reached by other authors. ' ' The eigen-
values and eigenvectors are found by solving the
secular equation

detl&o, o (k) —E(k) ~o, o 1=0 (7)

where for XG G. , in the local approximation, we
use

K- -,=(8 /2m)(k+G) Bo,o,

+ V(~6 —6'~ }cos[(G—6'}~ 7].
The matrix site was chosen so that at F, 27 plane
waves were treated exactly, with another 86 treated
approximately via L6wdin per turbation theory. '
Equation (7) was solved over a grid of 308 k points
in the irreducible part of the Brillouin zone.

We then repeat the calculation using a nonlocal
potential of the form

V'„&(lr I) = V~(lr
I
)+co(E)e(R r) 0'0, —(8}

1, x~0

0, x(0

TABLE I. Parameters used in the caiculations.

Si
Form factors (Ry) 6 0 ~B+ a

v(&3) v(v 8) v(~11 (Ry) BE Q.)

Local —0.2241 0. 0551 0.0724 ~ ~ ~ ~ ~ 5. 43

Energy-
dependent —0.257 —0. 040
nonlocal

0 ~ 033 0. 55 0. 32 5.43

where it is assumed, as discussed before, that the
only significant nonlocal correction is from an s
well. A first approximation to the size of &0(Ez}
can be obtained by an inspection of Fig. 1 under
the usual assumption that the screening can be
treated by a local potential and included in the
local term of (8). It has been suggested that a
proper (i.e. , nonlocal) screening procedure might
reduce the nonlocality of the ion potential. ~~ In such

where K= ik+Gl, K'= Ik+G'I, and

I (K=K') =-,'R' ([j,(KR )] j,(KR —)j,(KR )$,

I (K~Ki) [Rz/(K~ ypz)] x [KI,(KR~) jo(K'R~)

—K'jq(K'R )jo(KR ).
(10)

The above derivation is from Ref. 7, in which the
definition of the usual spherical Bessel functions

j„ is also given.
The inclusion of the required energy dependence

of ~B(E) can be accomplished in a simple, but ap-
proximate, manner. We take, for the matrix ele-
ment involving K and K',

ao(E) = 80(Ez)+ ([E (K)E (K')] —E (Kz)),
(11)

where E (K}=k'K'/2m and Kz =(6v z/0, )'~'. This
form has the advantage in that it accurately simu-
lates the true energy dependence' and results in
a considerable reduction of computing time com-
pared with other techniques. It is possible also
to mimic the energy dependence through the use
of an effective-mass parameter, '" a point which
will be discussed in more detail in our concluding
remarks.

The same grid used in the local calculation was
used for the nonlocal calculation. However, in
order to insure good convergence at I', 59 plane
waves were now treated exactly, and another 87
included by Ldwdin perturbation theory. In both
cases, convergence should be good to within
-0.05 eV.

Once (7) has been solved throughout the Brillouin
zone, one can then proceed to calculate the elec-
tronic density of states and optical spectra. The
density of states is given by

IV(E) = —Q Q B(E—E„(k)),

where the sum is over wave-vector and band in-
dices. N is the number of unit cells, so that if
E(k) is in eV, then N(E) is in units of (states)/eV
atom. The required sum in (12) was evaluated by

(12)

a case we might expect our nonlocal correction to
be reduced from the value suggested by inspection
of the Heine-Abarenkov core potential. We note,
as before, that A, (Ez}= Az(EF), so that one expects
ao(Ez) =A, z(Ez) —Ao(Ez). Likewise, the value of
B80/BE can also be approximated from Fig. 1 by
BAD/BE. The resulting empirical values for Co,
BCO/BE, and the local form factors are given in
Table I. R was taken to be that of Heine and
Animalu's result (i.e. , R =1.08 A).

The eigenvalues are still given by (7), but now

we have

K- .(E, k) =Xn, (k)+(8v/0, ) 8 (E)I(.':,K'),
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a technique due to Gilat and Raubenheimer. " The
energy gradients required in this method were
calculated from k.p perturbation theory.

The optical spectrum can be calculated as fol-
lows. First the imaginary part of the dielectric
function is evaluated using the expression

f„~,(k) dS

vm ~»„~E„„(k)I &p E„„(k)I

where E„„(k)= E„,(k) —E„(k}and

f„„(& =(2a'/2m& ~(n„k J~(In„, k&['/E„„(k)

2 g l(r ~ I p„l r",)I
n E25' ~is

2 g I(r2» I P, Irl2. &I

n Eas -~i2

(14)

where we have neglected an interaction term be-
tween F~s. and F&s, which should be negligible. '
Pseudowave functions were used to evaluate the
required matrix elements. Contrary' to comments
made by other authors, ' ' these matrix elements
are quite accurate when compared to orthogonal-
ized-plane-wave (OPW) calculations. » We have
also calculated the conduction-band minimum mass
by directly calculating the band shape over a fine
grid of points in the neighborhood of the minimum.

Finally the pseudocharge density was calculated

is the interband oscillator strength. The sum is
over the initial valence-band index n„and the final
conduction-band states n, . S is a surface in k

space of constant interband energy. Four valence
bands and six conduction bands were included in
the sum. Again the Gilat-Raubheimer scheme was
used to evaluate the integral. The expression for
e~(&u} is based upon several assumptions, such as
neglecting excitonic effects, but has been quite
satisfactory for the purpose of analyzing reflec-
tivities" (particularly in the case of Si where ex-
citon effects should not be large}. Once the imag-
inary part of the dielectric function has been eval-
uated, the real part may be calculated from a
Kramers-Kronig transformation, and a reflec-
tivity may be calculated. 7 To compare the theo-
retical results to the experimental derivative
spectra, the logarithmic derivative of the reflec-
tivity is computed by numerical means. Since the
calculated ref lectivity is susceptibile to noise aris-
ing from the discrete nature of the grid over which
&2(&u) is calculated, some averaging is usually per-
formed.

We have also calculated the cyclotron resonance
masses using the mass parameters of Dresselhaus
et al. as modified by Kane,

2 + 1(r„.I P„lr,",) I'
m „Eps.—Ep

by using the special-point scheme of Chadi and
Cohen. ~ Instead of evaluating the sum

P(r) =eZ 2 I&.„.f(r&l' (15)
n„

over a fine grid throughout the Brillouin zone, as
performed by Walter and Cohen, only a few
representative points need be considered. The
two point scheme of Chadi and Cohen, with k,
= (2v/a)(», —„—,) and k2 = (2v/a) (», —,', —,) (and appro-
priate weighting factors), yields a valence-band
pseudocharge density accurate to within (1-2)/0, "
as compared to a sum throughout the zone. There-
fore we have used this two-point scheme. Ap-
proximately 90 plane waves were used in the cal-
culation of the required pseudowave functions.

IV. RESULTS

The eigenvalues for the local and nonlocal cal-
culations at the symmetry points F, X, and I
are listed in Table II. The band structures for
both cases are given in Fig. 2. The results for
the local and nonlocal cases are quite similar,
except for the lower valence bands (which have a,

good deal of s character), and the band ordering
at 1" for the upper conduction bands (i.e. , r,2.
and rl).

In Table III we have identified the theoretically
determined structure in the ref lectivity derivative
spectrum, and as usual associate the structure
with Van Hove singularities (or critical points) in
the Brillouin zone. Silicon, as noted by other
authors, has a large number of critical points,
and the identifications in Table III should be con-
sidered as representative for the specific energy
region under consideration. Saravia and Brust3
have done a very thorough analysis of band topol-
ogies of three model potentials for silicon. Our
results are quite similar to their "Model II, " and
the interested reader is referred to their extensive
contour maps.

A comparison between the experimental results
of Ref. 15 and our calculated derivative spectra is
given in Fig. 3. Over all, the agreement is quite
satisfactory for both the local and nonlocal cases.
In particular, the placement of the ref lectivity
peak positions for both cases is accurate to with-
in -0.15 eV. The nonlocal energy-dependent re-
sult is superior at the higher energies, with the
E,' structure in slightly better agreement than the
local calculation. On the other hand, the local cal-
culation is slightly superior in the E& region, at
least as far as the placement of the 4. 3-eV re-
flectivity structure is concerned, although both
the theoretical curves have a line shape different
from the experiment's. In the nonlocal curve the
ref lectivity structure at 4. 15 eV is in perhaps the
greatest discord with the experimental results.
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I'ABLE II. Eigenvalues (in eV) at I', X, L symmetry
points for local and energy-dependent nonlocal-pseudopo-
tential calculations.

Point

X

Level

X)
X4
Xg

L2 ~

L)
L3i
L,
L3

Local

—12.53
0. 00
3.43
4. 17
8, 60
7. 82

—8.27
—2. 99

1.22

—10.17
—7.24
—1.22

2. 15
4. 00

Energy-dependent
nonlocal

—12.36
0. 00
3.42
4. 10
7. 69
8. 19

—7. 69
—2. 86

1.17

—9. 55
—6. 96
—1.23

2. 23
4. 34

The reason for this can be traced back to the band

shape near the Q-X, region. The band gap at X
for the nonlocal case is on the order of -0.2 eV
smaller than the local case. We also note that the
indirect gap is smaller for the nonlocal case. If
we were to slightly increase the X4-X, transition
by -0. 2 eV the resulting ref lectivity curve (and
indirect gap} should be in better accord with ex-
periment. In the E& region we are not able to re-
solve the fine structure present in the experimental
results.

The first ref lectivity peak at 3.45 eV has been
the subject of some controversy. Piezoelectric
experiments (both ac" and dc'2}, chemical shifts
in Ge-Si alloys, ' electroreflectance, and some
wavelength-modulation techniques ' have suggested
that the peak has 6 symmetry. However, more
recent work has suggested that the peak has A sym-
metry, '6' and this'assignment is also suggested
by analogy with other zinc-blende structures. "

In both the local and nonlocal results this re-
flectivity peak arises from contributions from
points near I', along A and off the b, direction.
However, the dominant contribution arises from
the A transition. The complexity of this peak in
our theoretical calculations, that is, contributions
from several critical points, has also been sug-
gested by several authors, e.g. , Welkowsky and
Braunstein through an examination of experimental
ref lectivity data. ' In this respect, we note that
the I'». -1» and A3-A, . critical points must lie very
close in energy or more widely spaced ref lectivity
structures would be present in our calculated re-
flectivities.

While the topological differences between the
local arid nonlocal calculations in this region are

) —2
Q

lK

Z —e

h I

I

I

X U, K

WAVE VECTOR Ic

FIG. 2. Band structure for Si as determined from a
local-pseudopotential calculation (dotted line) and an
energy-dependent nonlocal-pseudopotential calculation
(solid line).

small, it is interesting, and perhaps significant,
that our nonlocal calculation is "flatter" along the
A-symmetry direction. This trend has been ob-
served previously in nonlocal calculations involving

a d weQ. We find in the nonlocal calculation
that from the L point midway to I', the energy dif-
ference between bands 4 and 5 is less than 0. 01 eV,
while over the same range in the local calculation
the gap varies by -0.15 eV. This means that the
nonlocal band structure has a nearly hvo-dimen-
siona/ Mo point at L, in agreement with recent
electroreflectance data by Grover and Handler';
however, the transverse mass for this critical
point in the nonlocal case is quite similar to the
one calculated in the local case, and not in agree-
ment with Grover and Handler's value. We find
the transverse mass p. , -0.1m, whereas the ex-
perimental value found by Grover and Handler is
closer to 0. 02m.

Another controversial transition has been the
previously mentioned I'». -I'~. . In most diamond
and zinc-blende semiconductors I'~. lies below I'».
Only in silicon have theoretical calculations found
the reverse to be true. This ordering, however,
has been confirmed by the low-field electrore-
flectance data of Aspnes and Studna. They have
been able to resolve, for the first time, the Eo
and Eo+ Ap transitions, and they find the spin-orbit
critical points to occur at 4. 185 + 0. 010 and 4. 229
+0.010 eV at 4.2'K. This is in good accord with
the theoretical values for both the local and non-
local cases, as can be noted in Table II.

We observe that the experimental results of
Aspnes and Studna contradicts the assignment of
Kunz, ' which placed I'~. below I „. This assign-
ment was based upon an analysis of soft-x-ray data.



105102

Q

0
H

8

Q

0
~A
Cdo0
bO

'U

o
~W

0
Cdo

Q

~A
Q

'U

Cd

Cfl

Q

o

U2

~M

~ W

o
Q

Q GQ~ s0
N

Q
8 0

Q
Q

Cdo

Cd

U
Cd Q

4 O
O ~
Q O

Q

M 0
s

e 6
02

JAMES R. CHE LIKOWSKY AND MARVIN L. COHEN

However, we feel the assignment of Aspnes and
Studna to be more conclusive. Soft-x-ray data can
be difficult to interpret, as the leading edge may
exhibit excitonic effects. ' In fact, one finds that
the agreement between the soft-x-ray spectra and
the theoretical results with I',~ placed lower than
12. are in satisfactory agreement away from the
suspect leading edge. Furthermore, Ge-Si al-
loying experiments tend to confirm the Aspnes-
Studna assignment. '

In Table IV we compare our results for the local
and nonlocal cases with the experimental results
of photoemission measurements. The agreement
is quite good for both cases, but the nonlocal cal-
culation appears to be superior for the L& and Lz.
levels. Unfortunately the ordering of the F». and
I', conduction bands is not made clear by the ex-
perimental results, since both theoretical results
are in fairly good agreement with the experimental-
ly determined transitions. The nonlocal results,
however, are again in slightly better accord. In
Fig. 4 we compare our calculated electronic den-
sity of states to the results of XPS. %e have not
included the transition matrix elements, hence the
theoretical peak heights do not match the experi-
meiital ones, but the peak placement for the non-
local results are in excellent agreement.

In Table V the experimentally determined cyclo-
tron-mass parameters are given along with the
theoretically calculated parameters. The position,
magnitude, and transverse and longitudinal masses
of the conduction-band minimum as determined by
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TABLE IV. Comparison of critical-point energies (in
eV) as calculated by local and energy-dependent nonlocal
pseudopotentials and as measured by photoemission ex-
periments.

Energy
level

Theory
Local Nonlocai Experiment

rt2 ~

r,
r2,
r,
X4
amiaI

L3
L3 ~

L,
L2

8. 60 I

7. 82 $

4. 17
—12. 53
—2. 99
—4. 48

4. 00
—1.22
—7 ~ 24

—10.17

8. 19
7. 69
4. 10

—12.36
—2. 86
—4. 47

4. 34
—l. 23
—6.96
—9.55

8.3+0.1a
6I,

15+0.05a
4~0. 6, '—
9, a —2. 5~
4a —47
9+ 0. 1a
2~0. 2a

4+0.4, b—
3+ 0.4'

7
4

—12.
2 ~

—4.

12.5+0.6
0 3c
0 3'"

6 8+0 2c

See Ref. 62.
~See Ref. 6.

cSee Ref. 5.

EXPERIMENT
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ca c
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LLJ

CL
X p

experiment are also compared to the theoretical
results. It is interesting that a simple three-
parameter purely local pseudopotential is able to
so accurately reproduce the mass results and that
the nonlocal calculation gives such excellent re-
sults. This should be contrasted with Kane's cal-
culation in which he was unable to fit both the
masses and gape. The difficulty was attributed to
the failure of the local Slater exchange term, but
it was observed that changes outside the "linear
regime" of his empirical adjustments might remedy
the situation.

Finally we compare our local and nonlocal valence
pseudocharge densities to the recent calculations
of Yang and Coppens. Using the results of very
accurate x-ray experiments now available, they

TABLE V. Cyclotron-mass parameters (see text) and
conduction-band minimum masses compared to the theo-
retical values from a local and an energy-dependent non-
local pseudopotential. The magnitude and position of the
indirect gap along the b, direction is also given.

Experiment
Theory

Local Nonlocal

gl
H'
Qt

mp/m„
m p/mgt

ah~, /2~
Eind

—5.04
-4. 53a
-0.87L

5.25
1.09~

0. 86'
1 15a

—5. 11
—4. 49
—0. 88

5. 15
1.21

-0.85
1.13

—5. 07
—4. 23
—0. 89

5. 31
1.18

-0.85
1.05

aFrom J. C. Hensel as listed in Ref. 16.
See Ref. 63.

cSee Ref. 64.
See Ref. 65.

were able to obtain an extremely accurate valence
charge density for silicon. In Fig. 5 we present
their valence-charge-density result which has
been obtained by the removal of the core states by
the use of Clementi wave functions. 6' They esti-
mate a standard deviation of 0.3 e/0, in the charge
density near the bonding region. However, at the
nuclear sites the error is larger owing to anoma-
lous scattering, but we would not expect the pseudo-
charge density to be accurate in this region either.
In Fig. 6 we give the theoretical pseudocharge-
density results for both the local and nonlocal cal-
culations. The Fourier coefficients of the charge
density are given in Table VI for both results;
these coefficients are similar to the results of an
OPW calculation by Brirdcman and Goodman. "

Since our local calculation resembles that of
Walter and Cohen's, Yang and Coppen's observa-
tions made regarding the Walter-Cohen calcula-
tion are valid here. A comparison of the local re-

10
EA
UJ

E& oI
cA p
U

Q e
~A 0

v)

O

THE

0
—14 —12 —10 —8 —6 —4 —2 0 2 4 6

ENERGY (eV',

FIG. 4. Experimentally (a) and theoretically (b) deter-
mined electronic density of states for Si. Experimental
results are from Ref. 5. Dotted theoretical curve is
from a local-pseudopotential calculation; solid curve is
from an energy-dependent nonlocal-pseudopotential calcu-
lation.

FIG. 5. Experimental valence charge density as de-
termined by Yang and Coppens (Ref. 29) using the x-ray
results of Ref. 66. The contours are in units of e/Qc.
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FIG. 6. Valence pseudocharge density for Si as calcu-
lated by a local pseudopotential (a) and by an energy-de-
pendent nonlocal pseudopotential (b). The contours are
in units of e/Q .

suit to the experimental charge density shows, as
Yang and Coppens point out, that in both cases the
maximum of the valence charge density occurs at
the midpoint of the bond, and that the bond-height
maxima of 28 and 26 e/0„ for both experiment
and theory, respectively, are in very good agree-
ment. We find that similar results are also true
for the nonlocal calculation. This is indeed quite
encouraging, especially in view of recent self-
consistent orthogonalized-plane-wave (SCOPW)
calculations. In these calculations, while the cal-
culated crystalline form factors are found to be an
improvement over the free-atom form factors,
there still existed significant discrepancies. s Un-
fortunately since difference densities (i.e. , p,~
= p„t,|—p„„)have not been prepared for the SCOPW
case, a direct comparison cahoot be made between
their results and our calculations.

That the pseudopotential should do so well away
from the nuclear region is perhaps not as surpris-
ing as it may seem. It is in the bonding region that
we would expect our wave functions to be most ac-
curate. On the other hand, the fact that the agree-
ment is so good is unexpected, as energies are
always more accurate than the corresponding wave
functions. Calculations for the temperature de-
pendence of the "forbidden" (222) reflection in sili-
con, involving pseudocharge densities, have also
been able to accurately reproduce the experimental
results. However, in the local case we do find
some discrepancy with experiment, namely, the
orientation of the bond. The local pseudopotential
bond axis is aligned Perpendicular to the bonding
direction, while experiment finds a bond elongated
Parallel to the bonding direction. This result is
outside of the experimental error quoted by Yang
and Coppens. But in the case of the nonlocal

pseudopotential we find a pseudocharge density in

which the bond is elongated Parallel to the bonding
direction.

The rotation of the bond from the local perpen-
dicular orientation to the nonlocal parallel orienta-
tion result can be traced directly to the energy-
dependent nonlocal s well's effect on the bottom
valence band. A band by band comparison of the
local and nonlocal pseudocharge densities is given
in Figs. 7 and 8. The bottom valence bands in the
energy-dependent nonlocal case see a much weak-
er (i.e. , less repulsive) s well than do the upper
valence and conduction bands. This permits the
s-like bands in the nonlocal case to remain the
same for the upper bands, but different for the
lower bands. Hence, in the nonlocal case we have,
for the bottom bands, charge "leaking" into the
core regions, while in the local case it remains
excluded. This accounts for the "bondlike" fea-
ture appearing in the local case for the bottom
bond, while in the nonlocal case the charge ap-
pears uniformly spaced between the atoms. The
second valence band also mimics to some extent
the changes occurring in the first band. But it is
the major change in the first band which causes
the change in bond orientation.

V. CONCLUSIONS

We find that with the addition of an energy-de-
pendent nonlocal s-well correction to the usual
local pseudopotential we are able to account quite
satisfactorily for the experimentally determined
optical gaps, masses, electronic density of states,
and charge densities in silicon. This should be
contrasted with recent nonlocal calculations on
Ge, ' '" GaAs, ' ' and ZnSe, ' which have indi-
cated the need for a nonlocal d well. This fact can
be accounted for by an examination of the Heine-
Abarenkov pseudopotentials. "'"' First, as we
have noted, s nonlocality becomes important be-
cause only one P state cancels the core potential

G(p/27t ) Local Nonlocal

000
111
220
311
222
400
331
422
333
511
440

8. 0
—1.748

0. 270
0.412
0.481
0.206
0. 018

-0.006
—0. 001
—0. 004

0. 007

8. 00
—1.924

0. 035
0. 345
0. 467
0. 273
0. 015

—0. 033
—0. 032
—0. 022

0. 002

TABLE VI. Fourier coefficients of the valence pseudo-
charge densi, ty (units of e/Q~) as calculated by local and
energy-dependent nonlocal psuudopotentials.
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FIG. 7. Pseudocharge density band by band for Si as
calculated by a local pseudopotential. The contours are
in units of e/Q~.

that d nonlocality becomes increasingly important
in going across the germanium row from zinc to
selenium.

Finally, we shall briefly discuss the energy de-
pendence in silicon and other semiconductors.
I ittle investigation has been done concerning the
energy dependence, with the exception of a recent
calculation by Chekroun et al. However, their
calculation involved the use of a local energy-de-
pendent potential, and, as can be observed in
Fig. 1, the s, P, and dwells have quite different
energy-dependent behavior. This would seem to
cast doubt on the appropriateness of treating the
wells using the same energy dependence as would
be the case in a local calculation. In fact, it was
noted that, while some success was achieved in
obtaining an improved valence-band density of
states, equally successful improved optical transi-
tions were not obtained.

Another calculation which also resulted in an
improved valence-band density of states involved
the use of an effective-mass approximation. That
is, m was replaced by an m* in the Hamiltonian
and treated as an adjustable parameter. By direct
numerical calculation it is found that such a re-
placement simulates in many respects an energy-
dependent s well in its effect on the bottom valence

in silicon. However, as we progress down the
carbon column from silicon to lead the cancellation
becomes more complete and equal (at least at Ez)
as the ratio of core s and P states becomes closer
to unity. This can be verified by an examination
of the results of Ref. 35. Hence s-P nonlocality
may be important in silicon, but not in, for ex-
ample, germanium or tin. (It should be men-
tioned, however, that in the heavier elements,
e.g. , Pb, nonlocality between s and P states can
arise from relativistic effects. ~)

The requirement of a nonlocal d well in Ge,
GaAs, and Zr8e to achieve agreement with ex-
periment can likewise be understood in an analysis
of the core states. In silicon there are no d core
states, but in germanium there are; hence in Ge
a "d electron" sees a more repulsive d well than
a corresponding "d electron" in silicon. This
manifests itself in the need for a repulsive d well
in germanium, but not in silicon.

Such a result is indeed found by an examination
of the Animalu-Heine calculations. Further, a
study of their results shows a rather interesting
trend, namely, that d nonlocality should become
mo~e important in selenium and arsenic than in
zinc or gallium. This is contrary to the sugges-
tion of Pandey and Phillips' that the reverse trend
should be true, but it agrees with our findings

FIG. 8. Pseudocharge density band by ba~d for Si as
calculated by an energy-dependent nonlocal pseudopoten-
tial. The contours are in units of e/Q, .
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bands. Since the value of m* deviates increasingly
from the free mass m, in such calculations for the
heavier elements we might expect to find the ener-

gy dependence of the s well in a Heine-Abarenkov
potential to follow this trend. And, indeed, this
is observed. '
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