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Ground state of electron-hole droplets*
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The free-particle state corresponding to the ground state of a plasma in a band structure composed of

(a) v valleys, (b) two valleys of different masses, (c) one "anisotropic" valley is studied. The Hartree-Fock

approximation leads, for (a) and (b), to only one filled valley. Only intervalley correlations restore the

unperturbed ground state (a), or a state close to (b), and make the droplets stable. For (c), the state is

slightly more spherical than the free-particle ground state, but, in the three cases, the energy is not

significantly changed.

I. INTRODUCTION where S(q, u) is the usual correlation function

The usual way' of calculating the ground-state

energy of a system of particles with a Coulomb in-

teraction (Vc,„,) is to take the ground state 10) of

the Hamiltonian Hp of the free-particle system, to

introduce the perturbation VC y adiabatically, and

to calculate the energy of the perturbed state 16)

corresponding to the total Hamiltonian H= Hp+

When VC,„, changes the unperturbed energy only

slightly, we may think that 10) leads to the real
ground state of H, but when the Coulomb energy
(the sum of the exchange and correlation energy)
is larger, it is not obvious that another state 10'),

an excited state of Hp, will not lead to a lower en-

ergy than (10 IH10). It is this point that we want to

study in this paper for three different band struc-
tures: (a) v valleys of the same mass, (b) two val-

leys of different masses, and (c) one "anisotropic"
valley. We will show that the intervalley correla-
tions play a crucial role in determining the ground

state and stabilizing the droplets.
In the first case, 10) leads in fact to the real

ground state but this is only due to the intervailey
correlation terms. In the two other cases, 10') is
a state close to 10) but still different: The Coulomb

energy varies slowly with 10') compared to the ki-
netic energy, so that the free-particle model is not

so bad for finding the ground state (even if the en-

ergy is completely wrong).
Different methods have been used by various

authors for the calculation of the electron-hole
plasma energy. In this paper, all the correlation
energies E „are calculated by the Nozieres and
Pines' method: E „iswrittenE „„(r,) = f&(q, &,)&q.

For small q, I(q, r, ) takes into account all the
random-phase-approximation (RPA) terms which
can be summed as

—q~ dc@ 4me~
I(q, r, ) = + . , S(q, &u)

I

2(e, —e„,)n, (l —n...)

(e„„—e, )2 —(ur —I 5 sgn&u)2

For large q, I(q, r, ) contains only the second-order
terms (direct and exchange). For the intermediate
region (q = kr), all the terms are important, but as
it is not possible to sum all of them, the assumption
is to interpolate between the small and large q val-
ues of 1(q). We may estimate at 10/o the error on

E„„due to this interpolation, but the relative
variations of E „with respect to parameters
(r„.~ . ) are known with a much better precision
(a few percent of the correlation energy).

Il. v VALLEYS WITH THE SAME MASS m

Let us first look at a system of N electrons (and

no holes) and neglect any coupling between valleys
(which corresponds to the Hartree-Fock approxima-
tion or to any summation of diagrams which do not
include inter-valley correlations). If the total en-

ergy of &, electrons in one valley is given by

E, =X,E(me2/~, ~»)n~e4/2h e,
where c is the static dielectric constant, the total
energy of N electrons in v noninteracting valleys is
just the sum of the energy of each valley E„
= NF(v~'me /Nv') Ry. Thus E,/N has the same mini-
mumas E,/N, : For a densitysmallenough (r, &roon

Fig. 1) it is clear that the ground state corresponds
to only one filled valley (or a linear combination of

such states in order to restore the symmetry).
This surprising conclusion disappears if the in-

tervalley correlations are taken into account. For
a given number of electrons, 1E„I/N always in-
creases with the number of valleys (Fig. 1). A way
of understanding why these correlation terms are
very important is to realize that their main con-
tribution comes from electrons near the Fermi sur-
face. One electron near the Fermi surface may
interact with vk~~v' 'K other electrons near the
Fermi surface, which increases with the number
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state will be taken with the heaviest (lightest) band

filled up to a Fermi momentum k„(k~).
Taking m„and kc= (3n N) Is as units, the Hartree-

Fock energy can be written

E„r 2. 21(ks+kr/mr) 0.916(k„+kr}
(4)
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FIG. 4. EHF (dotted line), E„~ (dashed line), and E„z
+E«~ (solid line) for an anisotropic electron gas (with p

1pp)as a function of the anisotropysof the initial state

Adding the equation for the conservation of electrons
k'~+kL, =1, one finds that the lowest energy corre-
sponds to (ks=1, k~=0): All the electrons must
be in the heaviest band.

There again, it may be advantageous to fill the
lightest band because of intervalley correlation.
Using our simple argument, E„„is a maximum when

the density of states near the Fermi surface k~

+OH is a maximum so that k„=kl, . In fact the cal-
culation shows that the correlations fill up the
lightest band: the ground state corresponds to kss/

m„&kr/mr„so the energy does not change signifi-
cantly from the free-electrons ground state (even
if m„= 2m, ).

From Fig. 3(b) one notes that the Coulomb energy
is a slowly varying quantity compar'ed to the kinet-
ic energy so that the latter one determines the
ground state.

IV. ONE ANISOTROI'IC VALLEY

We now consider electrons with an energy s(k}
=kIa/2m„+kf/2m~. As pointed out by Kohn and Lut-
tinger, symmetry arguments suggest that adding
a Coulomb potential which has a spherical symme-

try to a Hamiltonian with an ellipsoidal symmetry
will give rise to a system with a symmetry more
spherical than the initial ellipsoid. In order to ex-
amine this point more carefully, we will use a set
of initial states 10') defined by a density of state
n, = e((3s'N)a" —saks -k,'/s) (which is not of course
the most general possible I 0'), but leads to tractable
calculations and provides sufficient physical insight).
s is a variational parameter taken in the range
m, /m„=p&s &1. Using kn=(3s N)'~ and m as
units, the Hartree-Fork energy is

E„~ 2. 21 s p 0. 916 s

x arc sin(1 —s )'I . (5)

As shown in Fig. 4, E„r/N has a minimum for s
bigger than p (if p=0. 05, s3=0. 13).

The calculation of the correlation energy is very
tedious but may be performed analytically, except
for the form factor. One finally finds that, here
again, correlations cancel a part of the modification
of the ground state due to exchange: the real ground

stat@ remains, as expected, a little more spherical
than the free-particles one (sa =0.09 for p= 0. 05)
but the change in energy is insignificant, even in
the case of large anisotropy (Fig. 4). As correla-
tions correspond to screen the Coulomb potential,
it is reasonable to find that they tend to leave the
original anisotropy unchanged. The inclusion of
holes tends to smooth all the effects so that this
conclusion will clearly remain true for the calcu-
lation of the energy of electron-hole droplets.

One can conclude that the free-electrons ground
state leads to a correct value of the binding energy
of the plasma (the modification being within the
uncertainties due to the usual calculation of the
correlation energy). The reason for this is that
the intervalley correlation terms cancel the varia-
tion of the exchange energy and lead to a Coulomb
energy which is very slowly varying with 10') com-
pared to the kinetic energy: as we know the free
electron model is not such a bad onet
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