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The free-particle state corresponding to the ground state of a plasma in a band structure composed of
(a) v valleys, (b) two valleys of different masses, (c) one “anisotropic” valley is studied. The Hartree-Fock
approximation leads, for (a) and (b), to only one filled valley. Only intervalley correlations restore the
unperturbed ground state (a), or a state close to (b), and make the droplets stable. For (c), the state is
slightly more spherical than the free-particle ground state, but, in the three cases, the energy is not

significantly changed.

I. INTRODUCTION

The usual way? of calculating the ground-state
energy of a system of particles with a Coulomb in-
teraction (Vo) is to take the ground state |0) of
the Hamiltonian H, of the free-particle system, to
introduce the perturbation Vg, adiabatically, and
to calculate the energy of the perturbed state | 0)
corresponding to the total Hamiltonian H= Hy+ Vegy.
When Vg, changes the unperturbed energy only
slightly, we may think that |0) leads to the real
ground state of H, but when the Coulomb energy
(the sum of the exchange and correlation energy)
is larger, it is not obvious that another state 10),
an excited state of H,, will not lead to a lower en-
ergy than (10[HI0). It is this point that we want to
study in this paper for three different band struc-
tures: (a) v valleys of the same mass, (b) two val-
leys of different masses, and (c) one “anisotropic”
valley. We will show that the intervalley correla-
tions play a crucial role in determining the ground
state and stabilizing the droplets.

In the first case, 10) leads in fact to the real
ground state but this is only due to the intervalley
correlation terms. In the two other cases, 10') is
a state close to |0) but still different: The Coulomb
energy varies slowly with 10’) compared to the ki-
netic energy, so that the free-particle model is not
so bad for finding the ground state (even if the en-
ergy is completely wrong).

Different methods have been used by various
authors®~® for the calculation of the electron-hole
plasma energy. In this paper, all the correlation
energies E,,, are calculated by the Noziéres and
Pines!'® method: E, . iswritten E . (r,) = [I(g,7 ) dq.

For small ¢q, I(q, 7,) takes into account all the
random-phase-approximation (RPA) terms which
can be summed as

-q% (dw([4ne?®
I(q, 7’5)=5ﬂ—§— *27;[ po S(g,w)
2
+1n(1—i;%e—5(q,w)>] , 1)

where S(q w) is the usual correlation function

B 2€n = Epega(l =Taeg)
S(q,w)—; (gm—e,,)z—q(w - 10 sgnw)? @)

For large ¢, I(q. 7¢) contains only the second-order
terms (direct and exchange). For the intermediate
region (¢ =~kj), all the terms are important, but as
it is not possible to sum all of them, the assumption
is to interpolate between the small and large g val-
ues of I(g). We may estimate at 10% the error on
E,, .. due to this interpolation, " but the relative
variations of E . with respect to parameters
(rs,.--) are known with a much better precision

(a few percent of the correlation energy).

Il. v VALLEYS WITH THE SAME MASS m

Let us first look at a system of N electrons (and
no holes) and neglect any coupling between valleys
(which corresponds to the Hartree-Fock approxima-
tion or to any summation of diagrams which do not
include inter-valley correlations). If the total en-
ergy of N, electrons in one valley is given by

E, = N,F(me?/N}/3met/2mPe?,

where € is the static dielectric constant, the total
energy of N electrons in v noninteracting valleys is
just the sum of the energy of each valley E,
= NF(vV*me?/N¥®)Ry. Thus E,/N has the same mini-
mum as E,/N;: For a density small enough (7, >70n
Fig. 1)it is clear that the ground state corresponds
to only one filled valley (or a linear combination of
such statesin order to restore the symmetry).
This surprising conclusion disappears if the in-
tervalley correlations are taken into account. For
a given number of electrons, |E,|/N always in-
creases with the number of valleys (Fig. 1). A way
of understanding why these correlation terms are
very important is to realize that their main con-
tribution comes from electrons near the Fermi sur-
face. One electron near the Fermi surface may
interact with vk% < v!/3N other electrons near the
Fermi surface, which increases with the number
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FIG. 1. Eyp (dotted line), E . (dashed line), and
Eyp +E o (solid line) in Ry as a function of 7, for N elec-
trons in v valleys. @ corresponds to the value obtained
by changing e® in ve’ in Eoor (v=1). Since the exchange
diagrams areover counter, E g iS underestimated by 10%.

of valleys as v1/3, (In fact the correlation energy
increases a little faster than v'/3, while this simple
argument corresponds to considering only the static
correlation function which gives the leading term
for small momentum excitation. )

In conclusion, the ground state has all valleys
filled as predicted by the consideration of
Ey,, alone: even if the Coulomb energy is dominant
it is very slowly varying with v compared to Ey,
[Fig. 3(a)].

Turning to a plasma with N electrons of mass m
in v valleys and N holes of the same mass in one
band, the Hartree-Fock energy given by

£u2[2.21(1+‘1/v2/3)_0.916(1 1 )]Ry 3)

N 7? r, \ o3
has a minimum for v =1, so that the ground state
would correspond to only one filled valley. Here
too, our calculation shows that the intervalley cor-
relations restore the expected ground state: the
bigger v is, the more bound is the plasma (Fig. 2).
Note that for v > 3,the binding energy of the plasma
is greater than the binding energy of the exciton so
that droplets become stable, and also the relative
increase of the correlation energy with v is smoothed
by the presence of the holes.

Our simple argument leads to a variation of the
correlation energy as 1+v!/3 instead of v!/3, which
agrees surprisingly well with the numerical results.

Turning now to germanium, where we know that
droplets exist, the correlation energy is 1.2 E, ¢ton-
Univalley unimass structure gives 0.5 E,;10p-
Including only valley effects (v,=4, v,=2) gives 0.9,
other band-structure features (various masses, an-
isotropy, and hole coupling) giving the rest. Thus
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FIG. 2. Eyp (dotted line), E . (dashed line), and Eyy
+E pr (solid line), in Ry for a plasma with v electronic
valleys and one valence band of the same mass.

intervalley correlations appear to be the most im-
portant physical mechanism giving rise to droplets.

[1I. TWO VALLEYS WITH DIFFERENT MASSES (1 and )

This situation may appear, for instance, in the
droplets of GeSi (Ref. 8) (for 15% of Si the two types
of conduction band have the same minimum)., Look-
ing at the binding energy of the exciton, one might
think that droplets made only with the heavier band
would be more stable than those corresponding to a
situation in which both valleys are filled up to the
same Fermi level. In order to see a pure effect
(not smoothed by the holes) we will only consider
N electrons and no holes. The unperturbed ground
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FIG. 3. (a) Ey,, (double-dot—dashed line), Eq+ Eqorr

(dot-dashed line), as a function of the number of valleys.
(b) Eyy, (double-dot—dashed line), Eyp (dotted line), E o
(dashed line), Eyp +E ., (solid line) and E gy + E oy (dot-
dashed line) of N electrons in two bands as a function of
the initial number of electrons N in the lightest band (rg
=35, my=2my is the unit of mass).
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state will be taken with the heaviest (lightest) band
filled up to a Fermi momentum k4 (k).

Taking m, and ky= (37°N)!”® as units, the Hartree-
Fock energy can be written

Eyp _2.21(k%+k3/my) 0.916(k) +k7)
N = T .

4)

Adding the equation for the conservation of electrons
k% +k3 =1, one finds that the lowest energy corre-
sponds to (ky=1, k,=0): All the electrons must
be in the heaviest band.

There again, it may be advantageous to fill the
lightest band because of intervalley correlation.
Usingour simple argument, E...isa maximumwhen
the density of states near the Fermi surface k2
+k% is a maximum so that ky;=k;. Infact the cal-
culation shows that the correlations fill up the
lightest band: the ground state corresponds to k%/
my2k%/m,, so the energy does not change signifi-
cantly from the free-electrons ground state (even
if my=2my).

From Fig. 3(b) one notes that the Coulomb energy
is a slowly varying quantity compared to the kinet-
ic energy so that the latter one determines the
ground state.

1V. ONE ANISOTROPIC VALLEY
We now consider electrons with an energy e(k)
=k%/2m, +k2/2m,. As pointed out by Kohn and Lut-

tinger,® symmetry arguments suggest that adding
a Coulomb potential which has a spherical symme-

on—

FIG. 4. Eyy (dotted line), E .. (dashed line), and Egg
+E, (solid line) for an anisotropic electron gas (with p
corr
=2‘—0) as a function of the anisotropy s of the initial state.
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try to a Hamiltonian with an ellipsoidal symmetry
will give rise to a system with a symmetry more
spherical than the initial ellipsoid. In order to ex-
amine this point more carefully, we will use a set
of initial states |0’) defined by a density of state

n, = O((3MN)*? — s2k% —kZ/s) (which is not of course
the most general possible | 0’), but leads to tractable
calculations and provides sufficient physical insight).
s is a variational parameter taken in the range
my/m,=p<s®<1, Using ko=(3m™N)"/? and m, as
units, the Hartree-Fork energy is

Ege_2.21s(p o\ 0.916/ s 1/2
N 2 3\ r, \1-s°

x arc sin(1 - s%)'/2, (5)

As shown in Fig, 4, Eyp/N has a minimum for s®
bigger than p (if p=0.05, s3~0.13).

The calculation of the correlation energy is very
tedious but may be performed analytically, except
for the form factor. One finally finds that, here
again, correlations cancel a part of the modification
of the ground state due to exchange: the real ground
state remains, as expected, a little more spherical
than the free-particles one (s*~0.09 for p=0. 05)
but the change in energy is insignificant, even in
the case of large anisotropy (Fig. 4). As correla-
tions correspond to screen the Coulomb potential,
it is reasonable to find that they tend to leave the
original anisotropy unchanged. The inclusion of
holes tends to smooth all the effects so that this
conclusion will clearly remain true for the calcu-
lation of the energy of electron-hole droplets.

One can conclude that the free-electrons ground
state leads to a correct value of the binding energy
of the plasma (the modification being within the
uncertainties due to the usual calculation of the
correlation energy). The reason for this is that
the intervalley correlation terms cancel the varia-
tion of the exchange energy and lead to a Coulomb
energy which is very slowly varying with 10’) com-
pared to the kinetic energy: as we know the free
electron model is not such a bad one!
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