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It is assumed that there exists a temperature range in which the transport coefficients in a

Boltzmann-equation approximation are drag limited (i.e., the phonon-phonon collisions are negligible),

and in which the electron-phonon interactions are dominated by phonons in one small pocket of the

spectrum (the one-pocket approximation). Then it is shown that some relatively simple relations exist

among the thermoelectric power, electrical resistivity, thermal resistivity, and specific heat. In the

low-temperature limit, the ultimate behavior of the ideal thermoelectric power S is found to be

S = —
~e~

' (C, + CL/3) in the effective-mass approximation, where C, is the electronic specific heat

and CL is the lattice specific heat.

I. INTRODUCTION

According to Wiser and Kaveh, ' there exists a
substantial (low) temperature range for the alkali
metals in which the ideal (thermal) electrical re-
sistivity p can be treated as "drag limited, " on the
one hand, and by the "one-pocket approximation, "
on the other hand. By "drag limited" I mean that
the phonon-phonon relaxation channel for phonons
can be neglected, whence an equation derived some
years ago should be valid for p,

This expression is the first (standard) term in the
variational solution of the generalized-electron
Boltzmann equation in the drag-limited limit, with-
out computational approximations. A phonon is de-
scribed by wave vector q, polarization j, velocity
v&„ frequency cu, and equilibrium distribution
function N= (e' —1), where z = lieu/k&T. In Eq.
(1), R is a kind of reduced electron-phonon matrix
element independent of temperature. The R„'s are
reciprocal-lattice vectors, and the sum in the
square brackets is over all the types of umklapp
processes the phonon can enter, one of which could
be the normal process K = 0. If a phonon jq can
engage in only normal processes, then n= n', and
the sum is zero. Thus the "only normal" phonons
do not contribute to p in this limit. A is a constant.

The "one-pocket approximation" (OPA) consists
in treating the jq sum in (1) as coming primarily
from one small pocket of phonons in the lower
transverse branch, allowing R(jq) to be removed
from the sum evaluated at the center of the pocket,
jqo. [qo may depend to some extent on tempera-
ture, but R(jqo) could still be treated as constant. ]

Equation (1) is not the equation Wiser and Kaveh
worked with, but it is equivalent to the result they
obtain. It contains directly the important factor
T dN/dz. Some discussion of the mechanism be-
hind drag-limited resistivity is contained in Ref. 2.

Now there is a drag effect also in the thermo-

power. Some years ago attempts were made" to
fit the interesting behavior of this quantity at low
temperatures. In one of these attempts, a kind
of "two-pocket" approximation was used, one
pocket for each of the transverse-phonon branches.
The calculation was crude, and the thermopower
drag effect is very difficult to estimate, since it is
the result of a heavy cancellation between a large
negative and a large positive term. The treatment
of the pocket was different from that of Wiser and
Kaveh. Also, in the thermopower calculation one
must add on the diffusion term to get something to
compare with experiment. Perhaps more impor-
tantly, there is an extra factor (h~/ksT) in the
corresponding thermopower term, and this factor
tends to weaken the dominance and shape of the
pocket. For all these reasons there need not be a
contradiction between a one -pocket approximation
in the electrical resistivity and a multipocket ap-
proximation in the drag term of the thermopower.
However, it seems clear that at low enough tem-
peratures a one-pocket approximation must be
satisfactory in all such calculations, since the ex-
ponential factor must dominate.

In this paper I wish to show what happens if one
adopts both a one-pocket approximation and the
drag limit in the thermopower expressions. In
particular, some relatively simple relations among
the transport coefficients can be obtained. Whether
or not the temperature range in which the approxi-
mations are valid is an interesting one will depend
on future comparison with experiment. It should
be kept in mind at the outset, however, that (i) the
variational principle does not give a maximum or
minimum to the thermopower, as it does for the
resistivity, and the significance of the variational
expression is not well established, and (ii) the drag
term in the thermopower is much more sensitive
to approximations than is p.

II. PHONON-DRAG THERMOPOWER

The starting point will be the drag term SD of
the thermopowe r given by Ref. 5,
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The sum in Eq. (3) is identified with the lattice
specific heat CL under the approximation

kq ~ v, = fsco, (5)

s,"=Ap&e')/T,

where A is a constant,

(6)

[s,"]
3 I e I A [p]

independent of temperature Here .[SI('] means
the large square brackets in Eq. (4}, and [p] means
the large square brackets in Eq. (1). Phonon aver-
ages are defined as

(e') g'z' dN/dz
T g' dN/dz (6)

(g' excludes phonons which can only engage in nor-
mal processes. ) The average will have contribu-
tions mainly from the center of the pocket. At low
enough temperatures kz&8) =br'(q((), and (8) is con-
stant. However, at higher temperatures (8) may
vary as much as 20% over a range where p varies
by a factor of 100.

Equations (6) and (3) substituted into Eq. (2) gives

s, = —c, /3~ e~ +Ap&8'&/T . (9)

which is good for small q's and hence is reason-
ably good at low enough temperatures, especially
since the specific-heat contributions come from
arbitrarily small q s. However, it is still an ap-
p roximation.

In Eq. (4), the reciprocal-lattice vectors are
K„, and c((jq, q+K„) is another quantity (defined in
Ref. 5) depending on electron-phonon matrix ele-
ments. The K„sum does not contain K=0, mean-
ing that phonons which can only engage in normal
processes do not contribute.

The point now is to compare Eqs. (1) and (4).
The restriction on the phonon sum is the same (only
those phonons contribute which can engage in um-
klapp processes), the factor dN/dz which makes
the anisotropy of the phonon spectrum so important
is present in both expressions, and the large square
brackets, containing the electron-phonon matrix
elements, are relatively slowly varying and can be
taken out from the sum sign at the value appro-
priate to the pocket q((. If Eq. (5) is used in Eq.
(4), the following relation emerges:

This is the first of the desired relations. It
seems to me that it should become exact as T ap-
proaches zero. The average in &8 ) must still be
computed, but it is mell defined. The main defect
of Eq. (9}is that it does not connect quantities that
are actually measured. Not only is SD not the en-
tire thermopower, it is not even the entire ideal
thermopower. This suggests looking at the other
terms in the ideal thermopower.

III. DIFFUSION TERM OF THE THERMOPOWER

To do this, Eq. (95) of Ref. 2 is used,

n kzTy
2let E~

p 2Ep d~
L((WT n yk(( T d((((

(10)

Here E~ is the Fermi energy, and y and Lo are con-
stants

y = —', En [din(va}/dE]z zn
= 1,

L(( n'k', /3e', --

(11}

(12)

v(E) being the average electron velocity on the en-
ergy surface E of area a(E). The remaining fac-
tors in (10) are W, the ideal thermal resistivity,
and $(( and d((„ two collision integrals, doo being
the one that enters the electrical resistivity and
ends up proportional to Eq. (1).

The important point to note here is that the one
term not evaluated in Eq. (10} is the last one, and
it contains doo and do„both of which contain drag
effects [see Eqs. (Al) and (A2) in the Appendix]
which cut out the q's that can only engage in nor-
mal processes. In contrast, the drag effect in the
collision integral d» that enters the thermal re-
sistivity does not cut out these q' s (see Ref. 2).
Therefore it is reasonable to apply the one-pocket
approximation to evaluate do~/dM. This is done in
the Appendix. The answer is that most of the tem-
perature dependence cancels out with the result

d„/d = Bk,&e) + Zk (8 )/E + n'Zk T /E, , (13)
where &e) is an average defined as in Eq. (6) (it
is T times the average of z), and where B and Z
are two dimensionless constants which are probably
of order of magnitude 1 [see Eqs. (A6) and (A9)].
Even if Z is two orders of magnitude larger than
B, the Z terms in Eq. (13) are negligible. How-
ever, we shall retain them.



10 SOME LOW- TEMPERATURE - TRANSPORT-COEFFICIENT. . . 5027

Substitution of Eqs. (13) and (9) into (10) gives

3l el T 2l el EF

ks L, (8&», ksT
(14)

where

L = p/y»'T,

B' = B+Zk &e'&/(k, &e&E,) -=B,
8'=Z —~y .

(15)

(16)

(IV)

equation (14) is the main result of this paper.
It connects the measureable ideal transport coef-
ficients S, p, W, and the lattice specific heat Cl
in terms of three constants, A, B, and Z (or two
constants if Z is neglected, as seems reasonable)
and the averages (8& and (8 &, which can be com-
puted from an independent knowledge of the phonon
spectrum and the umklapp geometry. The first
two terms on the right came from SD, and approxi-
mations in those terms must be made with care.
However, at low enough temperatures, Eq. (14)
must be right, and experimental verification ought
to be possible. Just where this low-temperature
range should be is not completely clear, however.
Ultimately, once the temperature dependence is
verified, one can hope to compare the constants
with calculated values.

IV. LOW-TEMPERATURE LIMIT

limS= —(~e~) '(y ,C',+ C), -
T 0

where C, is the electronic specific heat and is
identif ied with

C, = —', vk Tg(E),

(18)

(19)

where g(Ez) is the density of electronic states (in-
cluding spin) at the Fermi surface,

g ' =N 4t'n
V 1 1

elec V EF F

Along with the definition of y from Eq. (11), this
gives

3
2E g(E, )

(21)

The reduction to y= 1 occurs in the effective-mass
approximation.

An interesting feature of this result ig that if
very low temperatures are considered, a much
simplet result ensues. For, eventually, p cuts
off exponentially with temperature, whereas tV cuts
off only as some power of T (since as mentioned
above the drag effects do not cut out the phonons
near q= 0 in N'). Thus the terms in L and p in Eq.
(14) disappear faster than the others and we get

The result in Eq. (18) is remarkably simple.
One does not have to write the electronic contribu-
tion (- C,) in terms of the specific heat, of course,
but if so written it suggests that perhaps a simple
argument patterned after the one used for phonon

drag (see Sec. 2 of Ref. 5) could be made.

V. DIRECT ARGUMENT

To do this consider a metal bar stretching from
x~ to x&= x, + 4x in which the temperatures at the
ends are maintained at T~ and T2-—T»+(dT/dx)r»x,
with, say, dT/dx& 0. Consider now the k electrons
with energy E(k)&Er, say, moving with velocity
v» v» in the positive x direction. Let &t„be the
time it takes such an electron to traverse the bar
(n.t»= nx/v»„). The number of k electrons entering
unti cross section at x, in time nt» is 2f(k, x,)v»nt»
~ x v~, where the caret means unit vector. The
number of k electrons leaving unit cross section at
xz is just the number in the truncated cylinder along
the direction v~ between xl and xz, namely,
2f„» f(k, x)x ~ v, dx If we .expand f(x) =f0(x~)
+ (dfo/dx) (x —x»), where fo is the equilibrium dis-
tribution, then the net number entering in time b, t~
in unit cross section is

—2 —x v ' (x —x)d = ——x v(ax)dfo i""~ dfo
x d

'

A'

~ xl
(22)

The volume associated with these electrons is V~

= Axx v„. Thus the number of k electrons entering
less the number leaving a unit volume in time ht„ is

(23)

The momentum brought into unit volume per unit
time by these electrons is

——(r»x/r»t»)kk, ~ ———E(k) ~
dfo 2 dfo (24)

3 dx
A steady state implies that no net momentum

accumulates in any volume. The variational-prin-
ciple approximation in this problem is to allow
only that there is no accumulation on the average,
i. e. , that the sum over k of Eq. (24) is zero,

Q E(k) —=0 . (25)

There are two external "forces" producing a
dfo/dx. First, the temperature gradient gives
(dfo/dT)(dT/dx). Second, by forcing the current
to be zero, one indirectly sets up an electric field
8„ in the bar by the electrons piling up at the ends.
This provides an energy —

I ei S„xto be added to
E(k) in fo. Thus there will be a term (dfo/dx)(=eg„),

dfo afo dT afo
(26)dx aT dx "aE '

'fhe first term substituted into Eq. (25) gives es-
sentially C,(dT/dx), the second term gives essen-



5028 M. BAILYN 10

tially I el'„. Solving for 8, /(dT/dx) gives the C,
contribution to S in Eq. (18).

There are a few points in this argument to men-
tion. First, what was said in words here consists
simply of multiplying the generalized Boltzmann
equation including drag effects, Eq. (14) of Ref.
2, by A, ., neglecting the collision term 1, and the
phonon-drag term U and summing over k, Second,
the basic approximation was in allowing the elec-
tron-phonon interactions not to affect the behavior
of the electrons as they wound their way through
the bar, because of the drag limit and the freezing
out of umklapp processes. At higher tempera-
tures this is not the case, and the argument cannot
be made. Or, in terms of Eq. (14}of Hef. 2, the
collision terms cannot be neglected at higher tem-
peratures. This means that a steady state cannot
really be obtained by consideration only of elec-
tron-phonon processes in this temperature range,
i. e. , Eq. (14) of Hef. 2 has no solution if the
collision term is neglected. Thus, in this "sub-
drag-limit" region, a steady state is maintained by
appeal to the impurity collisions. As regards the

I

thermopower, it is well known that it consists of a
sum of the form (Wi~„/W)S, ~„+(W, , /W)S, ,
The S«„, is what Eq. (18}gives.

The solution in Eq. (18}indicates that the ulti-
mate low-temperature behavior of the ideal thermo-
power is of the form —(aT+ bT ), the sign being
normal (negative) in both terms.

This completes the discussion of the results.
The simple relations alluded to at the outset are
Eqs. (9), (14), and (18}. In the Appendix, the
derivation (13) is made.
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APPENDIX

prom Eqs. (81) and (82) of Ref. 2, with the k'
sum taken and E' replaced by E+ hen, and the R sum

converted to an energy times a surface (- dS, ) in-

tegral, the following are obtained:

doo ——PT Q [h(u(1 —e ')) ' dEf(E+R(u) (1 —f(E)]J'0, (Al)

(A2)doi= PT g [hm(1 —e ')]
~

dEf(E+ ji~) [1-f(E)][fir(J0+ J&)+ (E —E~)JO] .
ye

Here p is a constant (p =24@ MN/V, where M is the mass of the ion), f(E) is the Fermi function, and the
J's are functions of E and of jq,

&i(Eijq) =2 '~ dSa(l.-,f;-.R„' 5)'
I
V&l 'k (q+K. -QD) (A4)

In this, I is the electron-phonon matrix element,
$ is the phonon-polarization unit vector, and

d = —AT
dN

- dz

~o(jq) =Z (@+K„)&(jq, @+K„). (A5) x[5~(~jo+Zi+ 3 8(gJO)+ 3 nksT JO] . (A7')

Qo was evaluated in Hef. 2, the o here being the
same as in Eq. (4) above. If a phonon can engage
in only one type of umklapp process, the normal
one, then a = I, and Qo= q. Then the last brackets
in Eqs. (A3) and (A4) are zero. This is the pri-
mary drag effect; it eliminates the small-q-phonon
contribution.

The energy integrals can be evaluated by the
usual expansion. If J'0(E) = Jo(E|,) + (E —E~)Jo+ ~ ~ ~,
then

(A6)

The one-pocket approximation rests on the idea
that the qj sums in Eqs. (A6) and (Ai) are domi-
nated by contributions in one small pocket and that
the slowly varying matrix elements such as Jo and

J, can be removed at some average value in the
pocket. With this in mind, Eq. (13) results in

8 = —,
' +Ji /Jo, (A8)

Z = E~o/(340) . (Ae}

Although it does not look like it, Eq. (A6) is equiv-
alent to Eq. (I) to within a constant (see Hef. 2,
Sec. VII for a discussion).
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