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Special points in the two-dimensional Brillouin zone*
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Using the method of Chadi and Cohen, we present, for each of the two-dimensional lattice types, the

mean-value point, the set of generating wave vectors, and the sets of special points in the

two-dimensional Brillouin zone which are the most efficient in finding accurate averages of a periodic

function over the Brillouin zone.

I. INTRODUCTION

f(k}=fo+ Q fA (")
m=1

where

A (k}= + e'", m =1, 2, . . . ,
I R

I
=c (2)

and where k and R are the two-dimensional wave vec-
tor and lattice vector, respectively. The sum in
Eq. (2) is over all lattice vectors of equal magni-

Many calculations involving crystal surfaces
require averaging a periodic function of wave
vector parallel to the surface over the two-dimen-
sional Brillouin zone. Examples include calcula-
tions of the charge density, the self-consistent
potential, the surface mean-square displacement,
and the surface Debye-Wailer factor. Usually,
these averages are determined by sampling the
function at a discrete set of points and summing
with an appropriate weight for each point.

Recently, an important method has been intro-
duced by Baldereschi' and developed by Chadi and
Cohen" for determining special sets of wave-
vector points in three-dimensional Brillouin zones
which are the most efficient in finding these
averages. By "efficient" we mean determining
the average of a function to an arbitrary degree of
accuracy with the least number of sampled wave-
vector points. Attaining this efficiency is ex-
tremely important for two-dimensional Brillouin-
zone calculations because evaluating the desired
periodic function for a surface for a single wave-
vector point can be several orders of magnitude
more expensive than for the three-dimensional
counterpart. In this note, we follow the discussion
of Chadi and Cohen' and present the special point
sets for the two-dimensional Brillouin zones as-
sociated with each of the five two-dimensional lat-
tice types.

We briefly present the essential ingredients of
the argument (modified for two dimensions) given
by Chadi and Cohen. ' A periodic function f(k) can
be expanded as

g n, A (k;) =0, m=1, 2, . . . , N, (3)

(4)

where N is the number of functions A (k) for which
Eq. (3) is satisfied. By using Eq. (3) and (4) in
Eq. (1), we find

f,=Qn; f(k;) — Q f„Qn;A (k;) . (5)
i m)N i

If f(k) is sufficiently smooth, then the coefficients
f will decrease in magnitude as m increases.
Consequently, the second term in Eq. (5), which
only contributes for m &N, can be made small by
choosing the sets {k;}and {n,.}for which N is
large.

In addition to the above, Chadi and Cohen' have
presented an important theorem. If A„(k, ) =0 for
several values of m belonging to the set {N,}, and
if A (k, ) =0 for values of m in set {Nj, then Eq.
(3}can be satisfied for m in both sets {N,}and

tude, i.e., those lattice vectors directed to lattice
points on a ring about the origin. The terms
A (k) are ordered in m so that increasing m cor-
responds to increasing magnitude of R. There is
a slight difference between the sum in Eq. (2) and
the sum over only equivalent lattice vectors which
are related to each other by the set {T,}of two-
dimensional point symmetry operations of the lat-
tice. The distinction arises because it is possible
for nonequivalent lattice points to be an equal dis-
tance from the origin. In practice, this distinction
is unimportant since the only effect is to some-
times take a single function A (k} from Eq. (2) and

split it into two parts.
The exact average over the. two-dimensional

Brillouin zone of the function in Eq. (1) is equal to

fo since the second term vanishes. The question
we want to answer then is as follows: What is the
best set of points {k,}and weighting factors
{n;}which can result in an accurate approximation
to fo'?

To answer this question, we impose the follow-
ing conditions on {k;}and {n;}:
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{N,j for the set of points

kg =k, + T;k, i =1, 2, . . . , n~,

where i ranges over all the symmetry operations
in the point group. The weighting factor a; is
I/nr where nr is the number of elements in the
point gr' oup. Repeating this procedure gives ad-
ditional points. If A (k, ) =0 for m in the set {N,j,
then

size can be generated. How this works in practice
will be shown below for each of the five two-di-
mensional lattice types.

A. Oblique lattice

A general oblique lattice can be defined by the
primitive translation vectors

a, =a(1, 0), a, =a(6, P),

k, =k,. +T,. k3, i, j=1,2, . . . , nz,

o. , = (1/nr)' .
(&)

(6)

where ~6( & ~ and P&1. Any arbitrary lattice point
is given by

In this manner, the set of special points can be
obtained from knowledge of the "generating" wave
vectors k„k„k„.. . .

It is important to note that the mean-value point
(the best choice of a single wave-vector point) de-
fined by Baldereschi' may or may not be one of
the generating wave vectors. This is because the
choice of generating wave vectors is dictated by
finding the wave vectors for which the number of
functions A (k) =0 is large. On the other hand,
the mean-value point is determined by finding the
single wave-vector point for which the first few
functions A (k, ) = 0, and the first nonzero function
is minimized. This distinction is important for
the cases of the oblique lattice and the hexagonal
lattice as we shall see in the following results.

Therefore, in this paper we are distinguishing
between three types of wave vector points. The
first type is the mean value point k,. The second
type is the set of generating vectors k„k„.. .
The third type is the set of special points {k;)
which are used in calculating the average over the
Brillouin zone. The generating wave vectors,
which are few in number, uniquely determine the
special points, which may be rather large in num-
ber, by repeated use of Eq. (6}.

R = I a, + na, = a(l + n6, nP), (10)

where l and n are integers. The primitive re-
ciprocal-lattice vectors are

(a) 1iky

X
k

(b)
, )ky (c) )sky

6, = (2v/a)(1, —6/P), b, = (2v/a)(0, I/P) . (11)

In Fig. 1(a) we show the Brillouin zone for the
oblique lattice for the arbitrary choice of 5 =0.1
and P=0.8.

Every function A (k) for the oblique lattice has
the following form:

A (k) =2cos[k, (l+n6)+k, n46]a . (12)

For P& ~, the functions A, (k) and A, (k), correspond-
ing to (l, n) equal to (0, 1}and (1, 0), respectively,
are zeroed by the unique value

k. = (v/u)(l, (I - 6)/2P} .

II. RESULTS

In each of the following cases, the generating
wave vectors are chosen in the following manner.
First, we determine the wave vector that zeroes
A, (k) (the first ring) and as many other functions
A (k) as possible. We label this wave vector k, .
The idea is to choose k, such that the set {N,) is as
large as possible and includes the first ring. The
second step is to determine the first function
A (k) which is not zeroed by k, . We then choose
k, to zero this function and as many others as pos-
sible. Third, we generate the set of points {E;jby
applying Eq. (6). Finally, we repeat the second
and third step, each time finding the first nonzero
function A (k) and choosing the wave vector that
makes it, and as many other functions as possible,
zero. In this way, sets of special points of any

kx

ky
~(ky

Xk kx

FIG. 1. Two-dimensional Brillouin zones and their
irreducible segments (shaded) for the five two-dimension-
al lattice types. (a) Oblique (5 =0.1, P =0.8), (b)
centered-rectangular (P =0.75), (c) primitive- rectangu-
lar (P =0.8), (d) square, and (e) hexagonal.
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This, then is the mean-value point.
The mean-value point k, is not a good choice for

the generating vector. This is because very few
functions A (k,}are zero. The best choice is

k, = (n/a)(0, 1/2P), (14}

since this wave vector zeroes all functions given

by Eq. (12) for which n is an odd integer.
The first nonzero function is A2(k) corresponding

to the second ring which contains the lattice point
R =a(1, 0). The second generating vector is Lattice:

Generating
vector

(units 7I/a)

Number First non — Ring
of zero R number

points (units a) m

TABLE I. First few generating wave vectors (column
2) for each of the five two-dimensional lattice types. In
column 3 is the number of wave vectors that will appear
in the set of special wave-vector points after the appli-
cation of the generating wave vector. Column 4 gives
the coordinates of the lattice point in the ring of the first
nonzero functionA (k). Column 5 is the approximate
value of m (ring number) for the coordinate in column 4.

k = (v/a)(-,', 1/2p); k = (v/a)(-, 1/2p) . (16)

The two points are equally weighted with the value
1

The position of the lattice point which is now in
the ring of the first nonzero function A (k) is R
=a(25, 2P). This corresponds roughly to a value
m = 5 (the fifth ring). The designation of ring num-
ber is only approximate for the oblique lattice
since the ordering depends on the sizes of the
arbitrary length parameters 5 and P. The best
choice for the third generating wave vector is

k, = (w/a)(0, 1/4P) .

k, = (v/a)(-,', 0),
which zeroes all functions for which L ig odd and
n=0.

The point group for the oblique lattice contains
only two operations-the identity operation and the
v-rotation operation. Thus, application of Eq. (6)
leads to two wave vector points which form the set
of special points (k;). They are

Oblique

Centered-
rectangular

Primitive
rectangular

Square

Hexagonal

ki = (0, 1/2 P )

1-2= —,, 0

k, = (O, 1/4P)

K, =(-,', , o)

1~)
——(0, 1/SP )

k)=(), 1/4P)

I&&=(4, 1/8P)

ki =(), 1/2 P)

k =(—,, 1/4P)

k =(—„,1/SP)

ki = (q, 2/2t)

l- = —0

kp ——(f, 2/ot)

16

16

10

(1, 0)

(2&, 2P)

{2,0)

(4&, 4p)

(4, o)

(1,o)

(2, o)

(4, o)

(o, 2P)

{0,4P )

(0, 8P)

(2, o)

(4, 0)

(s, o)

(o, t )

(3, o)

(o, 3t )

(9. 0)

29

Application of Eq. (I) [the iterated form of Eq. (6)]
leads to four wave vectors in the special set. This
is summarized in Tables I and II.

In Table I we present the first five generating
wave vectors for the oblique lattice in column 2.
In column 3 we give the number of points that will
be in the special set of wave vectors after each
generating wave vector is applied. Column 4 gives
the position of the lattice point which is in the ring
of the first nonzero function A (k). The systematic
behavior in each of these columns is apparent and
the results for any number of points can be easily
obtained. In column 4 we give an estimate of the
number of the first nonzero ring. We see that with
a set of 16 points in the special set, Eq. (3) is
satisfied out to roughly the 30th neighbor.

In Table II we present the mean value point, the
set of four special wave vectors, and the set of 16
special wave vectors with their respective weights
for the oblique lattice.

In Fig 2(a) we sho. w the location of the 16 special
wave-vector points in the irreducible segment of
the Brillouin zone for the oblique lattice. It is pos-

sible that for some values of 5 and P, the de-
signated set may contain a point that falls outside
the irreducible segment. If this occurs, it is al-
ways possible to translate the point by a reciprocal
lattice vector or rotate by an operation in the point
symmetry group to obtain the equivalent wave vec-
tor point within the irreducible segment.

B. Centered-rectangular lat tice

The centered-rectangular lattice is the special
case of the oblique lattice where 5 = —,'. The primi-
tive translation vectors are

a, =a(1, 0), a, =a(-,', —.'P),
where we can always choose our axes such that
P&1. An arbitrary lattice point is given by

R = /a, +na, = a(l+ 2n, 2nP),

and the reciprocal-lattice vectors are

b, = (2v/a)(1, 1/P), b, = (2'/a)(0, 2/P) . (20)

For the choice of P= &, the Brillouin zone appears
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TABLE II. Mean-value point and two of the first few sets of special wave-vector points for
each of the five two-dimensiona1 lattice types. Wave vectors are in units of m/a. The weight-
ing factor n is also given.

Oblique

j-, , (I-5)/2P]
n=a

(, I/4p)

(-', 3/4P)

(--', , I/4P)

(--', , 3/4P)

(--,', I/8Pj

(-—„,I/8P)

(-', , I/8P)

(—,I/8P)

(--,', 3/8P)

(--', , 3/8P)

(-,', 3/8P)

(q, 3/8P)

(--', , 5/8P)

(- g, 5/8P)

(-', , 5/8P)

(-, , 5/8P)

(--, , 7/8P )

(—t, 7/8P)

((,7/8P)

(1,7/8P)

Centered-rectangular

g. , 1/2P)
n=1

(-, I/4t)
(-', . I/4P)

(-', , 3/4P)

(-„', 5/4p)

(4, I/8P)

(-,', I/8P)

(-,', I/8P)

(-,', I/8P)

(-„', 3/8P)

(-,', 3/8P)

(—, , 3/8P)

(-', , 3/8P)

(-', , 5/8P)

(-', , 5/8P)

(-', , 5/8P)

(-, 7/8P)

(4, 7/8P)

(-,', 9/8P)

(-,', 9/8P)

(-', , 11/8P)

n i6

Primitive rectangular

(—, , I/2P)
n=1

(-,', I/4P)

(—,3/4P)

(-„', I/4P)

(-'„, 3/4P)

(, I/8P)

(g, I/8P)

(j, I/8P)

(—', I/8P)

(-,', 3/8P)

(—,3/8P)

(,3/8P)

(t, 3/8P)

(-', . 5/8P)

(-,', 5/8P)

(-,', 5/8P)

(-,', 5/8P)

(-,', 7/8P)

(8, 7/8p)

(-,', 7/8P)

(, 7/8P)

Square

(-' I)
n=1

1
i, 2 4

i
n8=2

n i-4- i6
in 5-i0 8

Hexagonal

(0.76, 0)
n =1

(-", 2/3t)

(-', , o)

(-'» o)

(„'-,2/9.)

(9, 4/9 t)

(~0, 8/9 t)

(q, 2/9 t)

(-', , 4/9t)

(9, 2/9 t)

2
n4-6 9

as in Fig. 1(b).
For this lattice, the mean value point and the

first generating vector are the same. They are
given by

ko =k, = (7t/a)(1, 1/2p) . (21)

This point zeroes the functions A„(k) for any ring
containing a lattice point with n odd or &n odd in-
teger (all values of l). This includes the first two
rings, but not the third with the lattice point R
=a(1, 0). The second generating vector is

k, = (v/a)(-', I/4P) . (22)

The point group for the centered-rectangular lat-
tice contains four operations. As a consequence,
from Eq. (6) we find that the first two generating
vectors result in a set of four special wave-vector
points, each having a weight of n = —,'.

In Table I we present the three generating wave
vectors needed to obtain the sixteen-point set of
special wave vectors. These points satisfy Eq. (2)
out to roughly the 38th neighbor. The generaliza-
tion to larger numbers of generating vectors is
obvious from the table.

In Table II we present the mean-value point, the
four-point and sixteen-point sets of special wave
vectors, along with the corresponding weights.
The sixteen-point set is shown in Fig. 2(b). Again,
points that may fall outside the irreducible seg-
ment of the Brillouin zone can always be moved to
fall within it.

C. Primitive rectangu'. ar lattice

The primitive translation vectors, lattice vector,
and reciprocal lattice vectors for the primitive
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sky
I

i( Ify
P

I

2P

-I -0.5 0.5

(b) )Iky

2
=kx

I

2P ~ ~ 0 ~

This point zeroes all functions A (k} for any ring
containing a lattice point with either l or n odd.
This includes the first three rings but not the
fourth which passes through the position vector
R = a(0, 2p). The second generating vector is

k = (w/a)( —', 1/4P}, (2~)

which zeroes all functions A (k) related to a lattice
point where either —,'L or —,'n is an odd integer.
These vectors, along with the third generating
vector, are given in Table I. As in the previous
case, three generating vectors result in a set of
16 wave vectors in the special set. Again, be-
cause P is arbitrary (P(1}, the value of m desig-
nating the ring number of the first nonzero function
A (k) is only approximate Th. e values in Table 1

are for a value of P-O. '75.

In Table II we present the coordinates of the
mean-value point, the four- and sixteen-point
special wave-vector sets and their respective
weights, for the primitive rectangular lattice. The
sixteen-point set is shown in Fig. 2(c). The gen-
eralization to larger numbers of points is straight-
forward.

2P (c) Os

I I I

0.5
kx 0 0.5

(e)
y

kx

rectangular lattice are given, respectively, by

FIG. 2. Irreducible segments of the five two-dimen-
sional Brillouin zones showing one of the sets of special
wave vector points. (a) Sixteen-point set for the oblique
lattice, (b) sixteen-point set for the centered-rectangu-
lar lattice, (c) sixteen-point set for the primitive-
rectangular lattice, (d) ten-point set for the square
lattice, {e) six-point set (dots) and eighteen point set
(crosses) for the hexagonal lattice.

D. Square lattice

The square-lattice results can be obtained di-
rectly from the primitive rectangular-lattice re-
sults by setting the parameter IS=1. There is one
difference, however. The irreducible segment of
the square lattice is smaller than what one would
obtain merely by setting P=1 for the rectangular
lattice. Consequently, many of the points in the
primitive rectangular set for P =1 are equivalent
to each other through operations of the square-
lattice point group. This results ina reduced num-
ber of wave vectors in the special sets and a dis-
tinction, heretofore not needed, in the weights of
each point. In Table II these reduced sets are
presented along with the various weights for each
point. We see that the wave vector points that fall
on the diagonal of the square Brillouin zone have
half of the weight of the other points. The ten-
point set is shown in Fig. 2(d). Another distinc-
tion, since the square lattice is unique, is that
the values of m in Table I are no longer approxi-
mate.

a, =a(1, 0}, a, = a(0, p}, R = a(L, np),
(23). E. Hexagonal lattice

k =k, =(w/a)(-', 1/2P) . (24)

bq ——(2w/a}(1, 0), b, = (2w/a)(0, 1/p) .
As in the case of the centered-rectangular lattice,
the mean-value point and the first generating wave
vector are the same. They are given by

a, = a(1, 0), a, = a(w, ~ t),
where t= v 3 is introduced for notational con-
venience. The reciprocal-lattice vectors are

(26)

The primitive translation vectors for the hexag-
onal lattice are
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b, = (2w/a)(1, ,-t)-, b, =(2v/a}(0, -', t) . (27)

The Brillouin zone and the irreducible segment
are shown in Fig. 1(e).

The hexagonal lattice is unique among the five
two-dimensional lattices because it is not possible
to find a single wave-vector point which zeroes
the function A (k) for the first two rings. These
two functions are

A, (k) = 2 cosk,a+4 cos-,'k, a cos~tk, a

A, (k) = 2 costk, a+4 cos-,'k„a cos ,'tk, a—. (28)

cosk, a=1 —t . (30)

The mean value point k, is not a good choice for
the first generating vector since only a few func-
tions A„(k) are zeroed.

The first four generating wave vectors are shown
in Table I. Generalization to more is obvious.
We see that the set of 18 wave vectors, which re-
sults from applying the four generating vectors,
satisfies Eq. (3) out to the 31st neighbor. The co-
ordinates of the mean value point and the three-
and six-point sets of special wave vectors are
given in Table II. As in the case of the square
lattice, the weights of each point are not the
same; those points on the boundary of the ir-
reducible segment are weighted exactly half as
much as the points within the irreducible seg-
ment.

In Fig. 2(e) we show the positions of the wave
vectors in the six-point set (dots) along with the
positions of the wave vectors in the eighteen-point
set (crosses).

Recently, Appelbaum and Hamann' performed a
calculation of the surface of silicon which requires
a sum over the hexagonal two-dimensional
Brillouin zone. They performed the sum by choos-
ing two wave vector points, the I' point at the
zone center [k, = (0, 0)] and the J point at the center
of the zone edge [k = (1, I/t)w/a] (also ca.lied the
M point). With this choice, Eq. (3) can be satis-
fied for the first two rings (m =1, 2) by setting n,
=-,' and u, = —,

' [see Eqs. (28)]. Equation (3) is not
satisfied for m = 3.

A better choice for the two-wave-vector point
sample and weights would be

k, = (w/a}(-,', 1/2t), a, = —,
'

k, = (s/a)(1, 0), n, = ~ . (31)

To obtain the mean value point, we want to find the
wave vector ko for which A, (ko) =0 and for which

~A, (k, )~ is minimum. The result is

ko = (x/a)(0. 't614, 0), (2~)

where the numerical factor is obtained from the
solution of the equation

This sample satisfies Eq. (3) for both the first
and second ring. The reason this sample is better
than that used by Applebaum and Hamann (all other
considerations being equal') is that the size of the
first nonzero term (m =3) is smaller. For this
term, the sum in Eq. (3) is equal to 6 for the

sample points used by Appelbaum and Hamann,
whereas the sum is equal to -2 for the sample
points in Eqs. (31). This is also true for the sixth
ring (m =6) which is the second nonzero term in
the set. Thus, the error in the average due to
choosing the two wave-vector points in Eqs. (31)
is approximately one-third the error due to choos-
ing Applebaum and Hamann's sample. Incidentally,
neither of these sets will be determined by the
systematic method presented in this paper.

III. DISCUSSION

We have applied the method of Chadi and Cohen'
to the determination of sets of special wave vec-
tors (the points which are the most efficient in
averaging a periodic function over the Brillouin
zone) for each of the five two-dimensional lattice
types. For each lattice we have found the mean-
value point, as defined by Baldereschi, ' and a few
of the smallest sets of special wave-vector points.
The generalization to larger sets is a trivial ex-
tension of the results presented here. These sets
of special wave-vector points are very important
in calculations concerning surface properties
where, for some cases, considerations of nu-
merical efficiency are the determining factors in
performing the calculation.

The accuracy with which any set of points gives
the average of a periodic function is determined
by the "smoothness" of the function in reciprocal
space. A discussion of accuracy is given by Chadi
and Cohen. ' Basically, the smoother the periodic
function, the faster is the decay in magnitude of
the expansion coefficients f . In favorable cases,
the use of the mean-value point alone can give ac-
curate results for the averages over the Brillouin
zone.

If the analytic dependence on wave vector k of
the periodic function f(k) is not known (as is usual-
ly the case}, then the accuracy of the averaging
process can only be determined by successive cal-
culations using two different wave vector samples.
If this test of the accuracy is not performed, then
the results of the calculation will always be open
to criticism. For example, Applebaum and
Hamann' have argued that the two-wave-vector
point sample for their silicon calculation4 is
adequate due to the tight-binding nature of silicon
and to the fact that the charge distribution is
localized. However, they also claim that the sur-
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face state band is only partially filled. If this is
true then the periodic function f(k) cannot be
smooth but must have a discontinuity at the wave-
vector point where the surface-state band crosses
the Fermi energy. This implies that the two-point
sample may be too small to give accurate results.
The only way to resolve this question of accuracy
is to repeat the calculation with a different sample
of wave-vector points, and examine the differences
in the results.

For the primitive rectangular lattice and the
square lattice, the sets of wave-vector points and
weights are the same as those one obtains from a

displaced" mesh. By this we mean the following:
Starting from the origin, generate the mesh of
points in the Brilkouin zone where each point is
separated by 1/M (M is an integer) of the distance
to the zone boundary. Then displace each point in
the mesh in the direction of the zone diagonal by
half the distance to the next point. The points in
Figs. 2(c}and 2(d) are displaced meshes for the

value M=4. The set of points in Figs. 2(a) and

2(b) are similar (but not equivalent) to a displaced
mesh. The set of points for the hexagonal lattice
[Fig. 2(e)], is totally unrelated to a displaced
mesh.

Finally, whereas there are many sets of points
of various sizes generated by the scheme presented
in this paper, there are other possible sets which
will not be found. For example, a displaced mesh
with the value M =3 and appropriate weights can
satisfy Eqs. (3) and (4} for both the square a.nd

rectangular lattice. It is possible to obtain this
set from generating vectors, but the generating
vectors would not be found by the systematic
scheme presented in this paper. The important
advantage of the method in this paper is that once
a set of points of a certain size is obtained, we
know that it is the optimum set of that size for ef-
ficiently finding the average over the Brillouin
zone.
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Another consideration which may influence the choice
of sample is the difficulty in calculating the function
f(k) for various wave-vector points. For high-symme-
try points, f (k) may be easier to calculate, and this
fact may dictate which sample is used. A third possible
choice of two wave-vectors which is also better than
the choice of Appelbaum and Hamann is k& = {7t/a)(3, 0)
and k2=(&/a)(3, 0) with && =4 and n2 ——4. This choice
is not as good as Eqs. (31).


