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Dispersion relations for third-degree nonlinear systems
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A time-independent casual system is considered, in which the effect depends cubically on the cause. The
system's response function depends on three time variables and its transform on three frequency

variables. It is shown that there is an analog of the Kramers-Kronig dispersion relations, so that the

real part of the transform can be obtained from the imaginary part by integrating over the observed

frequency in a certain way, and vice versa. It is shown how the transform function is determined by

the effects produced by causes built up from pure frequencies. Also it is shown how the real and

imaginary parts of the transform can be separately found by time averaging the product of
pure-frequency responses with the cubes of the causes.

I. INTRODUCTION

Consider a time-independent system in which an
effect E(t) depends in a third-degree way on a cause
C(t) so that

linear problem is

where the Green's function is causal

G "'(t) = 0 if t & 0.

The perturbation is here found to be

(Unless otherwise specified, integrals range from
—~ to + ~. ) Here C(t) and E(t) are real functions
so the response function G(t„t2, t3) also is real.
Evidently only symmetric response functions

where

x F(t')F(t")F(t"'),

G(tl 8 t28 t3) G(t28 t18 t3) G(t18 t38 t2)

need be considered. Suppose further that the sys-
tem is causal, the effect at a certain time depend-
ing only on the cause at earlier times; that is,

G(t„t2, t3) =0 if t, &0 or t2&0 or t3&0. (3)

We will show that Kramers-Kronig-type dispersion
relations exist for such a system and we will devel-
op the physical interpretation of the transform

a( „„,)= at, 84fd48'" '" ''
x G(t„ t2, t3)

of the response function.
As an elementary example of how this type of re-

sponse occurs, consider a one-dimensional forced
oscillator with first-degree damping, in which the
particle vibrates about a center of symmetry. Sup-
pose also that the first nonlinear effect can be
treated as a perturbation

X+ VX+ (OnX —QX = E
where o marks the order of the perturbation. Let
the solution of the problem be written as

x(t) = "'(t)+ ax")(t) .
As is well known, the solution of the unperturbed

0 '(t„t„tl=fdt G",'( )G"'(t, — )

xGO)(t r)G n)(t )

Here x"' is the effect, depending in a third-degree
way on the cause F(t). The response function G

is causal in the sense of Eq. (3), as follows im-
mediately from E(l. (t).

As is discussed in detail below, the function
g(~„(d2, u&3) in general only needs to be specified
inside a certain 60' semi-infinite wedge. The re-
sponse of the system to pure-frequency input tones
is derived in Sec. IV. These responses in prin-
ciple provide a way to measure g((a)„(a)2, (d3). There
are several different types of response, corre-
sponding to different edges, surfaces, and volumes
of the wedge. Also it is shown that the real and
imaginary parts of g((d„&u„&e3) can be found by
making time averages of the effects of pure fre-
quencies times the cubes of the causes.

The dispersion relations apply to the functions

Ã1((a'ai(a)ai(t)tt) = ~3g((dai(dai(a), )+ zg((038(diat(t)a)8

(10)

g2(Mai K at Ktt) = 3 tg(&at Kt 8 Att) —
3 1g(&at K))i Ka) 8
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where g is related to g by

g((d, (d I, (d„)= g((d I, (d 2, (dp ) (12)

known argument, that g((d) satisfies the Kramers-
Kronig dispersion relations

and these new frequency variables are defined by
2

" d(d' (d'Img((d')
Reg (d) = P— i2 2

W p (d —(2)
(19a)

(d S
=

y + COP + (d3,

&u= 2 3 ~

(13a)

(13b)

(13c)

Except for the parametric dependence on ~t and ~„,
the equations are identical to the Kramers-Kronig
relations

2 t "d(d,'(d', Img, ((d,', (d„pI„)
iz 2~s

(14a)
" d(d,'(d,'ImgI ((d,', (d„(d„)

II p (d ~

(14b)

Here g,- denotes either g& or g~ and g, =Reg, +i Img, .
Contributions to the understanding of dispersion

relations for quadratic nonlinear systems were
made by Kogan, ' Price, and Caspers. Especially
Price introduced appropriate frequency variables
and found the general Kram'ers-Kronig-type dis-
persion relations for the quadratic system. How-
ever the third-degree system has not been treated
in detail previously.

Before starting on the third-degree problems,
we will quote the well-known results for the linea. r
system (Sec. II) and give our discussion of the
quadratic system (Sec. III). These problems are
much simpler than the third-degree problem but
they show the basic ideas and type of reasoning
needed in the more complicated- ca,se.

2(d
" d(d' Reg((d')

Img (d = — P-
7T p Cd —(d

(19b)

In principle, g((d) can be determined by observing
the response to a pure tone. That is, if

C,(t) =A, cos( (dt —II,), (20)

(E.(t)C.(t)) = —.
' A.' Reg(~.),

( C, (t) = —,'(d,A', Img((d, ) .dE, (t)

(22a)

(22b)

III. QUADRATIC SYSTEM

In this case we consider a cause and an effect
related by

E(t) fdt f dt G=(t t f t")C(t —)C'(t, . —)"(22)'",
where

where (d, is positive, then Eq. (15) implies that

E,(t)=A, lgl c os( (dt —I},—8), (21)

where Igl and 8 are the amplitude and phase of
g((d, ) according to

g(~.) =
I gl e" .

This response determines g for positive co and the
crossing relation then fixes it for negative ~. Also,
in principle, the real and imaginary parts of g((d)
can be determined by making time averages of
products of cause and effects of pure tones:

II. LINEAR SYSTEM

Here the cause and effect are related by

E(t) = dt' G(t —t')C(t'),

where

G(t) = 0 if t & 0.

The transform

(15)

(16)

G(tI, t2) = G(tp, t,),
G(t„t2)=0 if t„&0 or t2&0.

(24)

(25)

An alternate way of writing this relation, which is
close to Kogan's starting point, ' is

t t'
E(t)=2f dt fdt"G(t —t', 2'—t")C(t ic(t") . '

The transform of the response function is defined
by

E( ) fdt ' 'G(t), =

in consequence of the reality of G, satisfies the
crossing relation

E(, ) fdtfdt e'' " ' ,' 'G(=t, t )

It has the symmetries

(26)

g*(~)=g(- ~). (18)

Since t actually ranges only over positive values
in Eq. (17), g((d) is well defined and analytic for
complex co in the upper half plane.

As long as no subtractions are needed, the ana-
lyticity and crossing relations imply, by a well-

g((dI, (d p) =g((d2, (dI),

g*((dI, (da) =g( —(dI, - (dp).

(27)

(28)

QP S
= 47) + CO 2 y (29a)

As emphasized by Price, it is important to in-
troduce new frequency variables
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(u, = (uq —(O2

and a new transform function

g({dt ~ {dt) =g({d1~ {d2) ~

The symmetries of g are

g({d„{dt)=g({d„-{dt),

g*(~., ~t) =g(-~., ~t).

Consequently only the range

(29b)

(3o)

(3 la)

(3 lb)

2
Img({d„{dt) = ——{d,

"d{d',Reg({d,', {dt)
(aab}

CO'2 —(O2s s

C, (t) = A, cos({d,t —t},), (34)

The values of g({d„{d2)along a line of unit slope in
the ~, &0, ~, & 0 region contribute in the integra-
tion, as indicated in Fig. 1.

Consider next the interpretation of g({d„{d2)as
the response to pure applied frequencies. For a
cause that is a pure tone, say

~,&0, ~,&0

needs to be considered in specifying g({d„{dt).
This range is indicated in Fig. 1 as the unshaded
quarter plane.

In terms of the original response function, g is
given by

g({d {d ) df df eiu {t1+tt2)/2el"'t{tl t2 /2Q(f f )g CO ylang 1 2 1e 2 ~

0 0

(32)
For fixed {d„since (t, +f2) is always positive, this
equation serves to define g({d» {dt) as an analytic
function of a complex variable ~, in the upper half
plane. Also, for fixed „g has crossing symme-
try in ~„so it satisfies Kramers-Kronig-type dis-
persion relations

2 " d{d', {d,' Img({d'„{d,)
0 COS -(OS

FIG. 1. The fundamental region of the cu&, cu2 plane,
in which the functions g(~~, ~2) and g(~s, ~q) may be de-
fined, is shown unshaded. The dispersion relations ap-
ply to the values of g along a line of unit slope, such as
the ray from A to B to infinity. The values of g along
AB determine difference-frequency responses, at con-
stant sum frequency, and the values along the rest of the
ray determine sum-frequency responses, at constant
difference frequency, according to Kq. (40).

Equations (23) and (26) give the effect

E,(t ) = E({d„{d,) + E({d„—{d,), (38)

where the first term gives the double-frequency
response

E({d„{d,) = —2' A,' i g({d„{d,) i
cos [2{d,t —2t},—e({d„{d,)]

(38)
and the second term is the constant

E({d, , —{d,) = —,'A~~({d„—{d,) . (37}

For a cause that is a superposition of two frequen-
cies

C, ~2(t)=A, cso( {dt —t},)+Atcos({dtf —t}2), (38)

where our convention is that ~, &su~&0, the effect
is

E„„,(t) = E({d„{d,) + E({d„—{d,) + E({d„{d,)
-i E({d2, —{d2)+ E({dt,{d2) + E({dz, —{d2) .

(3S)
The two new terms here are the sum and difference
responses,

E({dt, k {dt) = A+2
~
g({dz, 4 {dt)

~

X COS[({d k{dt)f —'g + t}& —e({dt, 2 {dt)]

(4O)

It is clear that all values of g({d„{d2}can in prin-
ciple be found this way and that no other types of
response occur, even when the cause includes
more than two frequencies.

The different types of response correspond to
the boundaries and sub-areas of the fundamental
region of the ~&, ~2 plane. Thus, in Fig. 1, the
values of g(co„co,) for the double-frequency re-
sponse occur along the upper boundary, the values
g({d„—{d,) for the constant occur along the lower
boundary, the values g({d„{dt)for the sum-fre-
quency response are in the upper half of the region,
and the values g({d„—{dt) for the difference-fre-
quency response are in the lower half.

In the dispersion relations of Eq. (33} the inte-
gration extends along a line of unit slope in the
~2, co, plane at constant ~, = ~, —~2. In the differ-
ence-frequency region this is at constant ~, +w, = co,
whereas in the sum-frequency region it is at con-
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stant ~, —~, = ~, as indicated in Fig. 2. At first
glance one might think these two types of response
would be unrelated but it is seen that, when the sys-
tem is causal, they just give two parts of one smooth
function.

The real and imaginary parts of the transform of
the response function come in separately when
certain time averages are taken. The results are

(E((d„(d,)[C,(t)]') = —,
' A3 Reg((d„&o, ), (4la)

(E(u&„—(d, )[C,(t)]}= —,
'

A,'g((d„—(d, ), (41b)

(E(ur„+ (u, ) [C, 3 3(t)]') = —,'A2A', Reg((d„s (u, ),
(41c)

where the angular brackets indicate an average over
an indefinitely longtime. One notes that g((E)„—(d), )
itself is real. The same equations apply with
S(&u„(d2) replaced by dL(~„(d2)/dt and Re g((d„(d2)
replaced by ((d, + ~2} Img(ur» &u2).

ob

0 (a)

IV. THIRD DEGREE SYSTEM

Here cause and effect are related by

E(t)= dt ddt f'dt"'C("t —t t —t , t —',t ")"'
(48)

where

G(t1, t2, t3}= G(t2, t„t3) = G(t1, t3, t2),

G(t1, t2) t3) = 0 if t1 & 0.
The transform of the response function,

(48)

(44)

d( .. . ) fdt, f dt fdt =G(t„tt),
exP[i ((d1t1+ (d2t2+ (d3t3)] (45)

has the symmetries

g(%1 t K2 t K3) g(%2 t &1 t K3) g(%1 d K3 ~ K2) t (46)

(~1 ~2) ~)3) g( ~1) +2 ~ ~3)' (47)

These symmetries lead to a fundamental region in
which g may be defined and to a canonical set of
frequency variables. The property g((d, , (d2, (d3)
=g((d2)(d»(d3) means that, in the space ((d»(d2, ru3)
the function has reflection symmetry in a plane
through the vg axis and midway between the & and
(d& axes. There are three such symmetry planes,
as indicated in Fig. 3, which intersect in the ray
(i+ j+k) that makes equal angles with all three axes.
These planes define six 60' wedges and the sym-
metry means that the function only needs to be de-
fined inside any one of them. We choose to use the
wedge with {d, &co~ and co2 & erg as indicated. Fur-
thermore, the crossing symmetry of Eq. (4V) im-
plies that only half of the wedge is needed, on one
side only of the plane through the origin and per-
pendicular to i+ j+k. We choose to use the half

FIG. 2. The applied frequencies ~, and ~& needed to
determine the values of the transform function g((d&, co2)

=g(co„co&) that occur in the dispersion relations, Eqs.
(33). The variable (d~ ranges from zero to infinity, (d&

remains constant, as indicated by the line extending
from A to B to infinity in Fig. 1. Figure (a) above ap-
plies to the AB segment. At (d~=0, point A, one has
(d, =~&———,

'
~& and both co, and co& are at the dotted line.

As (d, increases ~, and ~& vary as indicated by the ar-
rows. In this region ~,=~d, -~& and {d&=co,+co&, the
fixed value. At ~, =(d&, point B, one has cd, =~t, the
dashed line, and (db=0. Figure (b) applies to the rest of
the ray, past point B. There cos= co~+ ~~ and cd& = (d~ —co&,

the fixed value, so co, and ~& increase with ~„keeping
constant distance between, as indicated by the arrows.

s = i+ 2+ g y

4)g = (dg —COpy

COg = (dp —(dg,

(48a)

(48b)

(48c)

The boundaries of the wedge are ~,=0, ~, =0, and
~„=0 and these variables remain positive through-
out this fundamental volume, forming a nonorthog-
onal set of coordinates.

In terms of these variables a new function is de-
fined by

g()d1E) ((add (dtt) =g((d)1)(d)2t (d)3)

and Eq. (45) leads to

(49)

on the same side as the coordinate axes. It is not
important which half-infinite wedge you choose to
work with. A different choice at this point would
lead to different labels at intermediate steps, es-
pecially Eqs. (48) below, but not to any different
ideas or final results.

This fundamental region suggests what frequency
variables to use in the problem:
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TABLE I. Regions that correspond to different types
of response to two input frequencies ~, and ~b, where
(d &(db&0.

Eo and b(t ) = E(&d, (d, (d&) + E(ld, (d, —~&)

+ E((d~, —(d~, &dg) + E((d g~ (dg, (d~)

Output
frequency

2(da+ (db

2(da

2(da+ (da

2COb —(d a

(da —2(db

Parametric description
of the region

(da = (da+ (da

~t=0

(da = 2(da —(db

(dt= 0

(dft = 'da+ 'da

(da = (db

tdt =('da-(da

2(ob+C a

('d t = (da - (da

(d =0

(da = 2(a)a —(da

(dt=0

(dft = Q)a+ (db

(da = Ma —2('db

GOt = (da+ (db

(d„= 0

Location
in Fig. 4

OAB

OBC

OCE

OGA

OCD

OGF

OGC

+ E((db, Gay, —&d~) + E((de, —(dy, (d~)

+ E,(t) + E,(t). (59)

E((d (dz~ +(dy) = 4 A+~ Ig((0+~(dz~ k(d~)I

xcos[(2&v, ~ ur, )t —2q, + g,

(80)—8(~u~~m~ +~a)l ~

E(a„—~„~y)=kA+ylg(~a~ ~a~~n) I

xcos[&u&t —
q&

—e(&u &u &u&)l

(8i)
and other equations that are the same except with
subscripts a and b interchanged. Each type of
output frequency occurs on a plane in or on the
fundamental region, given conveniently by using
~, and coa as parameters. Table I gives the equa-
tions of the planes and their locations in Fig. 4.
In determining these results one must give special
consideration to the cos[(2', —ur, )t-phase] term;
in case 2~b &~, this is a frequency 2~b —co, re-
sponse, in case 2~b & co, it is a frequency cu, —2~a.

Finally, we consider a cause which includes
three frequencies

TABLE II. Regions that correspond to different types
of response to three input frequencies (d„(da, and cuc,

Where (da (db (dc

Here the new types of terms that come in are given
by

(dt = COa —(da

(dft = 2coa
Output

frequency

(da+ (db+ Gdc

Parametric description
of the region

(da —Gda+ Q'b+ (dc

Location
in Fig. 4

OAGB

and the second term is the response at the original
frequency

E((g„(u„—(o,) = —,
' A Ig(~ ~a& ~e) I

xcos [or,t —g, —e(~„~„—C'd ,)] .
a+ (da COC

u= (db ~c

(d = (d + (da —Cda c

(dt (da (db

(dft = (db+ (dc

OGBC

In general, each type of response invo'ves the
transform g(u„sr~, &us) in or on some part of the
fundamental volume. For the triple-frequency re-
sponse the values of g along the line co, = ~„~3=~„
ur, = u&, or ~, = 3~„ur, = 0, ~„=0 (u&, considered as
parameter) contribute. This is the edge of the
wedge, ray OA in Fig. 4. For the single-frequency
response the values of g along the line co, = ~„~t
=0, ~„=2', contribute. This is ray OC in Fig. 4.

The cause which includes two frequencies

C, ~„(t)=A, cos(ar, t-q, )+A~cos(erg —g, ) (58)

(where &u, & u&, &0) produces this effect:

a (da+ (dc

a (da (dc

fda+ (dc —(da

EOa = (da —(db+ (dc

(dt = ~a (dc

Cue= ada+ (dc

(d = (d —(db —(ds a c

(dt = M + (d

(dft = (db —(dc

Cd = (da+ (d —GOS c a

(dt —(db —(dc

a= ~a+ (dc

OGCE

OGI E

OEDC
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FIG. 5. System for varying the

applied frequencies to determine
the responses contributing in a
dispersion relation. The three
applied frequencies ~„~&, ~,
are indicated by solid lines in
each diagram, where e, & ~b & v~
&0. Column (a) applies when

vt &~„, column (b) when ~&=&„,
and column (c) when ~&& ~„. There
are different diagrams for the
different regions shown in Fig. 4
as indicated. The direction in
which the frequencies change as
v~ increases, ~t and ~„remain-
ing constant, is indicated by ar-
rows. The dotted lines show
where the frequencies start at the
lower boundaries of the regions,
the dashed lines show where the
frequencies are at the upper
boundaries. The starting values,
at co, =0, are (a) ~,=3(2~&+ ~„),
b)C 5&dc+2(ds}' (dc= 3(Id' —(dJ; (h)
(d = Mg, Lob = Goy~ toe= 0; (c) Gdo

= c(~, +2(u„), ruc= c(2z, + ~J, (uc
= 3'(~„-~t}. The values used for
~~ and ~„ in (a) were used for ~„
and u& in (c). Conjugate pairs
like this are needed to determine

A andi

C, , „(t)=A,COS(&u, t-I),)+A, COS(&oct-I), )

+ A, cos((u, t —I),), (62)

where ~, & ~, & ~, & 0. The effect produced is

E„c,„(tc)= E((u„&uc, (o,) + E((o„(oc, —(u, )

+ E((u„u)„-(o, ) +E((o„(o„—(o,) +. ~ ~

where the dots indicate responses to single-frequen-
cy and two-frequency causes as already discussed
and where these new types of response are given
by

E(~c~~c~ +~c) = IAAcAclg(~c~~I~ +~c)l

&COS[(Q)c+ COgk(dc)t 7)c l)C T I)c

—8(lOc~ (dC, k (dc)] (64)

and other equations with the subscripts inter-
changed. Here each type of output frequency occurs
in a certain subvolume of the fundamental region,
given conveniently by using co„~„and ~, as pa-
rameters, see Table II. Special consideration
must be given to the cos[(&re+&a, —ra, )t-phase] term;

giv eq e cy a++c-& or 47 -(ob-vcde-
pending on whether ur~+ co, is greater than or less
than v, .

In the dispersion relations of Eqs. (53) the inte-
gration extends along a line parallel to the ~. axis

at fixed values of co, and ~„. Three cases must be
distinguished, depending on where the integration
starts in the ur, =0 plane (Fig. 4). If &o, &&a„so the
integration starts in area OFE it goes through re-
gion OGFE and three others. If v, = ~„ it starts
on line OE and goes through three regions only. In
this case g=g, and the dispersion relations apply
to the function g((u„&u„m„) directly. Finally, if
~, &(u„ the integration starts in area OED, and goes
through region OEDC and the three higher. To ob-
serve the values of g(v„v~, u&, ) that contribute in
a dispersion relation one must vary co„v, , ~, in a
special way, different in each subvolume, as illus-
trated in Fig. 5.

As in the linear and quadratic cases, the real
and imaginary parts of g can be found separately if
certain types of time averages can be made. The
formal results are

(E((o„(o„(u,)[C,(t)]3) =~3,ASReg((o„(u„~,), (65a)

(E(&u„u)„—(o,)[C,(t)] ) =~2A~c Reg(&u„(u„—u), ),
(65b)

(E(~ &g, +&g )[C (t)]) =~A A Reg((a), (o, +(dc),

(65c)

(l((o„-u&„&oc)[C,~cc(t)] ) =QA~sc Reg((u„- (u„&u~),

(65d)



10 DISPERSION RELATIONS FOR THIRD-DEGREE NONLINEAR. . . 4987

(E(~„~„+&u, )[C, , ~,(t)]') =+A,'AQ,
x Reg((u„(u„+ (u, ),

(65e)
and similar equations with the subscripts inter-
changed. The same equations apply with E(&o„v~, &u, )
repla. ced by dE(&o„&o„~,)/dt and Reg(e„&uz, v, )

replaced by (~, + &u, + u&, ) Img(&u„ez, &o,).
To actually use these time averages to determine

g((0$ (02 (03), a possible procedure is to apply the
various causes, select the response E(&u~, a&2, &u, )

by its frequency, and then make the time average.
However, there is a minor difficulty in carrying
out this program in certain special cases when
different terms in Eqs. (59) or (63)occur at the
same output frequency. As a first example,
C„,~,(t) produces effects at frequency u&, in the
single-frequency response E(u~, &u~, —u~) and also

in the two-frequency response E(&u„—u&„&u,) so
these responses cannot be separated by their fre-
quencies. This is not a major difficulty because it
only involves values of g on the inner surfaces OCE
and OGC of Fig. 4 but does not prevent this type of
determination of g elsewhere in the fundamental
volume. There is a similar occurrence at (d, .
This first type of difficulty occurs whenever a re-
sponse at an output frequency which is the same as
one of several input frequencies is measured. As
a second example, C, ~ „d,(t) produces effects at
frequency 2~, + ~, in the two-frequency response
E(u&~, or~, ur, ) and also in the three-frequency re-
sponse E(&o„v~, —u, ) when ar, =u~+2&u, . There are
several occurrences of this second type but again
they only affect determination of g on certain in-
ternal planes in the fundamental volume.
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