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We have studied, both for the Kronig-Penney model and in general terms, the charge disturbance
induced in a filled band of electrons by a solid surface. The existence of surface-charge quantization in
a filled band is demonstrated and a division of energy bands into two types is made on this basis. The
complementary role that surface state and band charge disturbances play in minimizing the total charge
disturbance produced by the surface has been discussed and their respective dependence on bulk and
surface parameters illustrated. In this connection the special character of midgap surface states and
their relevance to self-consistent calculations has been established.

I. INTRODUCTION

The electron charge density in the vicinity of a
metal surface has been the subject of much recent
study.! Simple-model calculations for metal sur-
faces reveal the Friedel oscillations and asymptotic
behavior of the charge disturbance expected for
more realistic metals, ? and serve as guides for
calculations that attempt to derive fully self-con-
sistent metal-surface charge densities.

In comparison with the situation for metal sur-
faces, there has been considerably less study of
model calculations appropriate to semiconductors
and insulators.?

It is the purpose of this paper to study in detail
the charge disturbance in the vicinity of the surface
of a semi-infinite Kronig-Penney (KP) model. This
model has a venerable history* in the theory of sur-
face states but to the authors’s knowledge, no sys-
tematic study of the behavior of the surface charge
density in this model has been undertaken. A num-
ber of general conclusions can be drawn that imply
a considerably broader range of applicability of our
results than just the KP model. Finally, the impli-
cations of these results for self-consistent calcu-
lations will be touched upon.

The organization of the remainder of the paper
will be as follows. In Sec. II the KP-model notation
is defined and both band and surface-state solutions
to the Schrddinger equation obtained. In Sec. III
the behavior of the charge disturbance for a filled
band is analyzed for a general surface and bulk
potential and the more specific results for the KP
model discussed. Section IV contains the numer-
ical results on the KP model and discusses the im-
plications for self-consistent calculations.

II. KRONIG-PENNEY MODEL—ANALYTIC
SOLUTIONS

The model potential studied is shown in Fig. 1.
It is given by

V(x) = Vi: O0(x —na) +U6(d - x) .

n=1

(2.1)

As a preliminary to writing down the solution to the
semiinfinite KP model we list the solutions for the
infinite solid. The wave function (for V >0) is
given by

0u(X) = a (k) e ") 4 g (R)e ™™ pa<x=na+a,

(2.2)
where
o, =sin( 3 (k + K)a]y(k)e ixe/2 gikna (2. 3a)
B =sin[z (k - k)alu(k)eixe/2 gitna (2. 3b)
and
k=(2E)"%, (2.9)

The relation between energy and wave vector is

coska - coska = (Va/xa) sinka , (2.5)
while the normalization fixes v,
_ 1 Va .2 >-1
VA(k) = 2 ((Ka)z sin’ka +1 - coska coska) . (2.6)

The Bloch wave vector is denoted by %k, running
from - 7/a to 7/a.

From Eqgs. (2.2)—(2.6) the solutions to the semi-
infinite KP model are constructed. For the band
states

1/72) (@,e' + o*Xe @), x=d
wo (1/72) (¢, +@Re”), (2.7)
AeL(x-d)’ x=<d
where
T V(x)=VZ8(x-na) +uf(d-x)
od 1a 2a 30 4aq X-axis
FIG. 1. Potential is plotted vs distance x for a semi-

infinite abrupt junction KP model.
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L=[2(U-E)]Y2. (2.8)

The scattering phase shift w is determined from
continuity of the logarithmic derivative at x=d,

) sk %k
dm=fo2fy (2.9)
(2 L3 I
where
d
<PL=(7; P - (2.10)

Surface states, when they exist, are given by
Boy(x), x=d (2.11)
:{Ce”""", x=d (2.12)

where ¢, is given by (2.2) and % has the form
ak=ial +(%) (I >0) (2.13)

The necessary and sufficient condition for the

existence of a surface at an energy « = (2¢)!/? is that

k lie in a band gap of the bulk KP model and that
" the equality

(2U—-Kz)“2=—K[’canhl£+tan£gta ﬂ(ﬂ 1>]

2 2 25 \a ~
Ka la Kka (2d -1
X[tanz——-tanh —2— tan—é—<a—— ])]
(2.14)

be satisfied, where

Va .
coshal = | coska + o sinka

(2.15)

The constants B and C are fixed by continuity at x
=d and normalization and are not listed here for
brievity.

All the above equations are equally valid for V
attractive and £ >0. For E< 0, one can still use
(2.2)-(2.25), but k is now imaginary.

III. CHARGE DISTURBANCE—GENERAL
DISCUSSION

The electron density in a band is just
a r/a
pa0)=% [ arl w0, (3.1)
0

where a is the lattice constant normal to the sur-
face. For a surface state it is just

ps() = ¥, ()| * . (3.2)

These two quantities will be our main focus of at-
tention. We begin by summarizing the results of
our numerical studies on the KP model and placing
them in a more general context. Consider first

Ny(n) =f"“ pa(x)dx (3.3)

the total number of electrons per spin in a band to

the left of a delta function at x=na. For a filled
band this quantity is asymptotically quantized,

NB(n)—n"_—-;c , (3.4)

where ¢ is a constant. Our principal result is that
¢ must be integral or half-integral, independent of
details of the surface potential. This result is ex-
pected to hold for any completely filled band of
states which is separated from any other bands of
states by a finite energy gap.® A related electron
quantization rule has been proved by Heine?® for a
one-dimensional finite slab within the nearly free
electron approximation. A general proof we be-
lieve can be constructed from the work of Appel-
baum and Blount, ® inparticular from their Eq. (2. 30)
for the integrated charge density, if the stationary
nature of the wave functions in vicinity of band
edges is taken into account. In that case the phase
shifts are integral multiples of 37, from which
the charge quantization follows. The details of this
argument will be reserved for future publication.

We find that the type of quantization obeyed de-
pends on the energy band in question, some bands
having Ny —n—m + 3, and other Ny —n—m, m being
an integer. The latter type of behavior is the more
common in the KP model, occurring for all bands
in the repulsive delta function case (V >0) and all
save the lowest band for the case V<0.

The physical distinction between the two classes
of band is readily discerned. A band in the “half-
integral” class, which will be referred to as atom-
ic, is derived from atom states localized on the
attractive 0 functions. This is the conventional
band usually discussed in solid state textbooks.
There is only one such band in the 6-function KP
model for the obvious reason that a & function is
capable of binding only one state.

A band in the “integral” class, which we call mo-
lecular, has its origin in an adjacent pair of 6 func-
tions. In isolation, a pair of 6 functions will sup-
port resonant states, whether the & functions are
repulsive or attractive. It is from these resonant
states that the bulk bands derive. Those below the
vacuum level are contained within the solid by the
surface barrier in our model.

We are now in a position to understand the two
types of quantization that occur. Consider the case
for which V< 0. The lowest band is derived from
states located on the 6 functions. When we integrate
the band charge up to a 6 function we are including
a half-integral number of atomic states. For the
next band, derived from states located between 6
functions, we include an integral number of states
integrating to the & function. An integral number
are also contained in the “molecule” formed by the
end b function and the surface barrier. It is this
simple counting argument which accounts for the
difference between the bands.
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Having discussed the asymptotic limit of the
charge in a band, we consider the nature of the
charge disturbance near the surface, that is, the
small-»n behavior of Ny —n. In contradistinction to
a metal, the disturbance falls off exponentially rath-
er than as a simple power law. This result is quite
general and can be seen from an analytic analysis
of the integrand in (3.1).

A very similar analysis has recently been pub-
lished by Rehr and Kohn in the course of studying
the properties of Wannier functions defined for a
one-dimensional semi-infinite solid.® We refer the
reader to their paper for the details of the analysis,
whose key features we describe below.

The integration in (3.1) can be extended from
- (n/a) to (r/a), and the integration contour can sub-
sequently be deformed into the complex % plane.
Since the Bloch waves entering the scattering state
contain a exponential factor e’** the decay rate of
the disturbance is determined by the maximum value
of Imk towhich the contour canbe deformed. This is
limited by the analytic properties of the integrand
in (3.1). It is true in general that one-dimensional
Bloch states, considered as analytic functions of k&,
have branch points at finite values of Imk which de-
pend on the band in question. These branch points
correspond to real energies near the center of the
band gaps, and encircling the branch point takes
one to another Riemann sheet corresponding to the
next band.® This behavior can be shown in the case
of the KP model by examining the analytic behavior
of the transcendental equation (2. 5).

These branch points set the ultimate limit on the
rate at which the disturbance can heal. However,
it may not be possible to achieve this rate. If a
surface state occurs at an energy near the band
under consideration, the integrand in (3. 1) will have
a pole at a value of Imk corresponding to the decay
rate of the surface state. This pole then limits the
deformation of the integration contour, and a much
longer ranged disturbance may result.

It can be shown® that if instead of just the band
charge, one considers the disturbance in the sum
of the band charge plus surface state charge, the
pole in the integrand of (3. 1) is cancelled, and the
branch point determined by the bulk band structure
once again becomes the singularity setting the de-
cay rate.

The analysis of (3. 1) only determines the asymp-
totic rate of decay of the disturbance. It gives
neither the amplitude of the asymptotic term nor
the depth into the solid required to reach the as-
ymptotic form. For a band plus an adjacent sur-
face state, we find a general trend for the distur-
bance amplitude in the layers near the surface that
can be rationalized, if not proved, from the analyt-
ic picture. If the surface barrier potential is
changed continuously, the surface state can be
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swept across its gap, say from band 1 to band 2.
Its charge density, and that in both bands must
change continuously.® Near either edge of the gap,
the surface state charge can cancel the pole con-
tribution in the integral for the charge in the adja-
cent band. When it is precisely at the energy cor-
responding to the branch point-a situation in no way
physically pathological —we might expect it to be
shared, that is, for half its amplitude to cancel the
disturbance in band 1, and half to cancel the dis-
turbance in band 2. That this in fact occurs is
strikingly demonstrated by the numerical examples.
For other energies near the center of the gap, con-
tinuity leads us to expect that the surface state will
cancel the sum of the disturbances in bands 1 and
2, but that no simple fraction of the surface state
should cancel the disturbance in either band inde-
pendently. This observation is at variance with a
simple interpretation of the analysis in terms of
the singularities of the integrand in (3.1), which
suggests that the “ownership” of the surface state
changes discontinuously from band 1 to band 2 as
the surface state pole changes Riemann sheets.!®

Before proceeding to those numerical examples
we should like to comment upon the extension of the
above observations to three dimensions. In that
case it is convenient to decompose E, now a three-
dimensional vector, into k,, parallel to the sur-
face, and k, normal to the surface. For fixed E,, ,
we often have one-dimensional bands similar to
those studied in the model, that is, isolated bands
with monotonic E vs k. For these cases, the con-
clusions derived from our model should apply.

The charge quantization condition should thus be
satisfied on a k,-by-K, basis. Whether a particular
band has “integral” or “half-integral” quantization
can be determined by examining the spatial distri-
bution of the charge associated with the band in
question. If the charge is centered on atoms or
bonds that lie wholly between the set of planes par-
allel to the surface plane and separated by the nor-
mal projection of the primitive basis vectors, we
expect “integral” quantization. If these planes cut
the center of the charge distribution, we expect
“half -integral” quantization. For the Si (111) sur-
face, for example, we have observed half-integral
quantization for the valence band forming the bond
which is broken when the surface forms, and inte-
gral quantization for the other three.!°

The nature of the disturbance in the total charge
is complicated by the E,, integration. In general,
there should be a superposition of exponentials,
with the longest-range term set by the smallest
band gap. A surface state can exist in part of the
two-dimensional Brillouin zone and merge into a
band elsewhere. We expect that moving a surface
state into the band by gradual variation of the &,
band structure by the “parameter”—l;,, should be
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equivalent to doing so by varying the barrier poten-
tial for fixed &, band structure. Our results then
imply that the band plus surface state charge should
be a smooth function of E“ through this boundary of
surface state existence.

Situations may arise in a three-dimensional band
structure that do not have a one-dimensional analog,
even for fixed E,, . A band may have a nonmonotonic
E vs k,, or two bands may overlap. In either case,
there can be more than one reflected Bloch wave
for a given incident Bloch wave. We believe that
charge quantization will be obeyed on a band by
band basis in the first case, and for the sum of the
overlapping bands in the second.

IV. KP NUMERICAL RESULTS
We turn now to our numerical work. In present-
ing our results we shall work with dimensionless
parameters
k= ka,
d=d/a,
where the bar shall be implicit henceforth. Substi-
tuting the scattering-state wave function, Eq. (2.7),
in the band-charge density integral (3.1), we see
that the difference between the charge of a given

band in the infinite and semi-infinite KP model can
be written

D(x) =f' dkRe[e®“r p2(x)] .
0

K=ka, V=Va, U=Ud®

’ (4.1)

(4.2)

The integration over & in (4.2) was performed nu-
merically after the change of variables

" % dk
dk-—f dx —
fo . dr ’
where k, are the values of « for a given band at %

=0, m/a, respectively. In recognition of the 1/VE
singularities in the one-dimensional density of

(4.3)

TABLE I.

JOEL A. APPELBAUM AND D. R. HAMANN 10

states dk/dk—~ = at k = K, we have used the numerical
algorithm

4 da
J‘[__Ia—)%))_—%]‘—ﬁ Z Fa), (4.4)
yi=a;b+b2—a os(Zzn—lﬂ). 4.5)

It was found that this algorithm gave excellent re-
sults (1 part in 10°) for n~400.

In discussing our results we are faced with the
difficulty that we are dealing with a system that,
simple as it is, has four parameters: the barrier
strength, its position relative to the surface 6§ func-
tion, the strength of the bulk potential, and finally
the particular band of interest.

We first fix our surface parameters, d=0.2, and
U=25 (for a~ 6 this corresponds to a surface bar-
rier of ~19 eV), and vary the bulk parameters,
studying V=.5, 1.0, and 1.5 and the two lowest
bands. The third band extends above vacuum.

The first and most striking feature, in many re-
spects, is the quantization of surface charge for
all cases studied. Consistent with the molecular
nature of the bands the total charge to the left of a
point x=ma (m large) is just (m - 1). There is
no extra charge introduced by the region between
— and a over that in the infinite bulk to the right
of x=a. While there is no net charge associated
with this region there certainly is a charge distur-
bance. Charge leaks from the interior of the crys-
tal out into the surface region, creating a charge
deficit in the interior unit cells. We have tabulated
the integrated charge deficit

(n+1)a
D, =f dx D(x) ,
na

, 5 in Table I, for the two lowest bands

(4.6)

forn=1,...

Charge deficits per unit cell for the two lowest bands of three dif-

ferent crystal potentials V=0.5, 1.0, 1.5 are tabulated against unit-cell coordi-

nate m, where m labels the unit cell ma =x= (m+1)a.

An analogous tabulation

is also made for the charge density in the surface states that split from each of

the bands.

M 1 2 4 5
Band 1 —0.03851 —0.04604 —0.04928 —0.04946 —0.04790
S. state 0.08767 0.07917 0.07145 0.06451 0.05824 0.5
Band II —-0.05513 —0.04582 -0.03962 —0.03556 —0.03277 :
S. state 0.04612 0.04387 0.04173 0.03969 0.03776
Band I —-0.09744 —0.09640 -—0.08685 —0.07496 —0.06330
S. state 0.14790 0.12114 0.09923 0.08128 0.06657 1.0
Band I1 —-0.08432 —-0.06863 —0.06013 —0.05457 —-0.05021 :
S. state 0.08403 0.07614 0.06900 0.06252 0.05666
Band 1 —-0.14520 -0.12457 -0.09887 -—0.07602 -—0.05761
S. state 0.18873 0.14089 0.10517 0.07851 0.05861 1.5
Band II -0.10811 -—0.08823 -0.07675 ~—0.06785 ~—0.05998 :
S. state 0.11518 0.09956 0.08607 0.07440 0.06931
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TABLE II. Square root of the energy « =(2E)!/? at the
first four band edges are tabulated versus bulk potential
V along with the energy of the surface states split from
the bands by a surface barrier at d=0.2 and strength
U=25.

Band I S. state Band 1t S. state
K. Kq K. K,
0.96018  3.14159 3.15006  3.43101 6.28319 6.28722 V=0.5
1.30654 3.14159  3.15774 3.67319 6.28319 6.29101 Vv=1.0
1.54272  3.14159  3.16474 3.87948  6.28319 6.29459 V=1.5

and for all three V’s. Note that the disturbance is
not highly localized, that it decays most slowly for
V'=0.5 and most quickly for V=1.5, but that the
net deficit in the interior is greater for V=1.5 than
for V=0.5.

Each of these bands have surface states split off
from them. The energy of these surface states
are shown in Table II, along with the band edge en-
ergies. If these surface states were filled, they
would create a positive charge disturbance in the

D=.2 ( BAND)

_1x‘o"r 1x107!

b
-5x10'2‘— —Is5x1072

D =2 (BAND +S. STATE)

-1X10-2— —1x10-2

-5X10-3— -—J 5%410-3
D=.8
( BAND-
NO S. STATE)

CHARGE

-1 x1o-3J—

p1X10°3
V=15
-5X10"4]— U =25 5X10-4
]
BAND I
1 N [
1 2 3 4 5
UNIT CELL

FIG. 2. Charge per unit cell between ma and (m + 1)a,
is plotted vs m for m=1,...,5. Only the points are
meaningful. For the band the charge deficit is plotted,
and for the surface state contribution the total charge
of the surface state is included. Band I is the lowest
band with V=1, 5.

4
3
S. STATE
2 —
>
-
»
z
w
o
w o}
o
@
<
x
o
_1 —
-2
BAND . DEFICIT
U=25
-3 d=.
BAND I
V=15
-4 | [ | 1
1 2 3 4 5 6

(X/a)

FIG. 3. Charge deficit in band I (lowest band) for
V=1.5 is plotted vs distance x along with the charge den-
sity in the surface state split from the band by a surface
barrier whose parameters are U=25, d=0. 2.

interior which is also listed, unit cell by unit cell
in Table I. Note the excellent cancellation that
occurs between the band deficit and the excess con-
tributed by the surface states. This cancellation,
discussed in Sec. Ill, was also previously observed
by Baraff and Appelbaum for a case in which states
were split from the bottom of a partially filled
band. ?

The cancellation is clearly better the wider the
band gap and the narrower the band width. We have
plotted the charge deficit in band I, V=1, 5 versus
unit cell number on a semilog scale in Fig. 2.
When the surface state is added, this deficit is dra-
matically cancelled. The remaining disturbance
is of opposite sign, more than an order of magni-
tude smaller, and much more rapidly decaying. For
comparison, we have plotted on the same scale the
charge deficit present in the same band when the
surface barrier is moved outward to d=0.8. The
band has no surface state split from it in this case
and has a charge disturbance two orders of magni-
tude smaller than previously. Note that the fall off
rate for the charge disturbance of the band plus
surface state for the case d=0.2 and of the band
alone for d=0. 8 are numerically identical. This
rate is fixed by the critical point structure in « vs
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-1x107 BAND I —{1x10™
) 4
-5X1072 5X1072
—~1X10-2 )1 X1072
& 3 2
- - —{5X10~
b 5x10 R _BAND II +III+2 S.STATES
T S
Q ~
y
_mo-SL 1x10-3
_5,(,0-4[_ 5x10°4
4
| | |
1 2 3 4 5
UNIT CELL
FIG. 4. Charge per unit cell between ma and (m +1) a,

is plotted vs m for m=1,..., 5. Only the points are mean-
ingful. For the band the charge deficit is plotted, for the
surface state contribution the total charge for the surface
state is included. Bands I, II, and III labeled the three
lowest energy bands, in order of increasing band energy.

k, as already discussed.

The cancellation between the surface state charge
and the band charge deficit is also excellent point
by point, as can be seen from a study of Fig. 3.
The charge density of the surface state and the
charge deficit in the band are plotted vs x to the
right of the first 6 function.

The relationship between surface-state charge .
density and band charge need not always be so sim-
ple. If we study the case V=1.5, d=0.8, and U
=50, we find that the surface state splitfrombandII
does not cancel the charge-density deficit in that
band. What has happened is that the surface state
has moved close to band III, causing a charge dis-
turbance in both bands II and III. If we sum both
bands II and III and the two surface states split
from them the excellent cancellation we obtain in
the previous cases is recovered (see Fig. 4). In
this case, however, the cancellation of the charge
point by point is not nearly so good as that shown
in Fig. 2.

In all cases so far studied the net band charge
has been an integral number. For the case of at-
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tractive 6 functions one finds that the “atomic”
lowest band has half-integral charge. For barriers
at d=0.2 and d=0.5 the net band charge is n +3.
For a barrier at d=0. 8, the net band charge is »n

- 3. The atomic state localized on the surface b
function has been removed from the band by the
adjacent surface barrier. Similarly by moving the
surface barrier back (toward vacuum) one can in-
crease the net band surface charge. For V >0,
moving the surface barrier to x=0 allows the band
to acquire an extra charge, for d=-1, two extra
charges, and so on. Clearly, one can never change
the band charge in a nonintegral fashion for a fixed
band.

The final topic we wish to illustrate is the be-
havior of the charge disturbance as one varies the
surface barrier in such a way as to sweep a surface
state from one band through midgap toward the sec-
ond band. We demonstrate this using the lowest
band for V=0.5 and a surface barrier at d=0.5.
Three surface-barrier heights, U=6, 10.369, and
25 are studied. The charge deficits for these three

_.____:.'."‘_- -— E
-2 / -

-1X10 “— ® 1/2 5. STATE — 1x1072
§ -5X103% — 5%10-3
-] \
T \
© \

\
\
\
3 \ _
-1x1073 \ —{1x10-3
\\Cz)uz S. STATE
-5X107%— N —5x10-4
AN
N—
A Y
N
N
N
N
-
~
| | >
1 2 3 4 5
UNIT CELL
FIG. 5. Charge per unit cell for band I, V=0.5 is

plotted versus unit cell index for three different surface
barriers. The sum of charge per unit cell in a half-full
surface state lying in the gap above band I and the charge
in that band, is plotted vs unit-cell index.
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cases are shown in Fig. 5. They scale in a very
natural way, i.e., the stronger the surface barrier,
the less charge leakage and therefore the smaller
the long-range charge deficit. In each case, a sur-
face state lies in the gap above the band of interest,
at k=3.189, 3.286, 3.369, in order of increasing
surface barrier. The intermediate x value corre-
sponds closely to midgap and is such that it coin-
cides with the branch point that analytically joins
the band to the one above it in energy.

In all cases the charge in the surface state con-
siderably exceeds the band deficit, so the distur-
bance cancellation found previously will not occur.
If, rather than adding the surface state charge den-
sity, one adds only half of it to the band charge,
one finds a rather remarkable result, shown in
Fig. 5. For the surface state lying near the critical
gap energy, almost complete cancellation occurs
between the band and surface state disturbances.
For the two other cases, where surface states lie
on either side of the critical point, the same pro-
cedure results in a total charge disturbance of con-
siderable magnitude and range. There is a deficit
for the lower energy state and an excess for the
higher.

The underlying reason for this cancellation has
been suggested in Sec. III; we shall comment here
on a further physical implication of the behavior
discussed.

The band of states contains 3 a state less charge
(per spin) than the number of 5 functions present
to the left of x=ma, m large, counting the 6 func-
tion at the boundary as 3. If we were to think of
the 6 functions carrying charge, one would, for
“charge neutrality, ” half occupy the adjacent sur-
face state (one-electron counting spin degeneracy).
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With the barrier adjusted so that the surface state
lies above midgap, an electrostatic dipole is set up
that would tend to lower the barrier. For a barrier
adjusted to produce a surface state below midgap

a dipole that tends to increase the barrier and push
the surface state toward midgap occurs. Only for
the surface state near midgap does no long-range
charge disturbance in D, occur. One has the fol-
lowing interesting result: the self-consistent po-
tential tends to produce a midgap surface state.
This appears to be the case for the occupied part
of the surface-state band of Si (111). Of course, in
three dimensions such behavior need only be true
ina kﬂ averaged sense.

A final point of qualification should be made here
concerning the cancellation of the D, and the sur-
face-state charge. The charge deficit D(x) does
not cancel point by point with the surface state with
comparable efficiency to that D, achieves against
the analogous surface state quantity. A full dis-
cussion of this must await a more complete analy-
sis of the analytic behavior of the integrand in (4. 2).

In summary, we have studied the behavior of the
surface charge density—both for the KP model, as
well as in general terms. We have discussed and
illustrated the dependence of the charge density
disturbance in a band on surface and bulk param-
eters and shown how that the disturbance is influ-
enced by the presence of surface states. The ex-
istence of surface charge quantization in a filled
band and its dependence on band type has also been
discussed. Finally, the special character of a
midgap surface state and its relevance to self-con-
sistent calculations has been established.

We should like to acknowledge useful conversa-
tions with E. I. Blount, V. Heine, and L. Kleinman.
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