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This is the third paper in our current series on the electronic structure and properties of the
transition metals in the pseudopotential approximation. Here we review, reformulate, and generalize the

resonance model of s-d hybridization in one-electron energy bands so as to be applicable to scattering
processes at arbitrary energies different from the eigenvalues of the one-electron wave equation in a
crystal. This is achieved by formulating the resonance model in two ways, first in the framework of the
one-electron energy-band secular equation given by the Korringa-Kohn-Rostoker (KKR) method in

Ziman's "plane-wave representation, " and second as a scattering problem in terms of standard
partial-wave phase-shift analysis. The former leads to a real resonance energy, say E„, while the latter
leads to a complex resonance energy, say Ed +

2
iW where W is a measure of s-d interaction which also

determines the d bandwidth. To relate Ed and W, and hence determine W in the framework of the KKR
or any other valid transition-metal pseudopotential form factor, the scattering problem is reformulated

in complex angular momentum representation using the Regge-pole theory in nonrelativistic potential

scattering; the result, W ~ (dE/dl)& 2, is then interpreted in the context of the transition-metal-model-

potential form factor discussed in the first two papers of this series and the quantitative predictions are

compared with the results of augmented-plane-wave one-electron energy-band calculation and those of
the renormalized-atom method, and with recent photoemission data. The agreement between the various

results is systematically good for transition metals of the 3d, 4d, and 5d series, as far as the results are

known.

I. INTRODUCTION

In this (third) paper of our current series~' on
the electronic structure and properties of the tran-
sition metals in the pseudopotential approximation,
we shall review, reformulate, and generalize the
resonance model' ' of s-d hybridization in transi-
tion metals. The conceptual problem of relating
the parameters of the resonance model to the d-
band position (E~) and d bandwidth (4), which is
presently formulated in terms of the solutions of
the one-electron energy-band secular equation, will
be reformulated from the point of view of formal
scattering theory based on partial-wave analysis~
in complex angular momentum representation and
the concomitant Regge-pole theory. ' The
Regge-pole theory will elucidate the resonance
model by providing a model-independent relation
between the real and the imaginary parts of the
complex resonance energy E~+ &i%'defined by the
pole of the partial-wave amplitude for s-d scatter-
ing in the neighborhood of the l = 2 resonance, in the
complex energy plane. This model-independent re-
lation may be used to deduce the parameters of the
resonance model from any valid transition-metal
pseudopotential form factor, in particular, the
transition-metal-model-potential (TMMP) form
factor discussed in the first two papers' of this
series, which will provide a basis for the deter-
mination of the two parameters from the systemat-
ics of the atomic spectroscopic data.

In the context of the one-electron energy-band
secular equation given by the Korringa-Kohn-Ro-

stoker (KKR) method' or equivalently the aug-
mented-plane-wave (APW) method, "s-d hybrid-
izationis the terminology used to refer to the cross-
over of the nearly-free-electron (NFE) s band and
the tight-binding d-band complex in the transition
(including noble) metals. Heine (Ref. 4, Fig. 2)
has defined a hybridization matrix element, which
determines all two-center integrals proportional to
the d bandwidth &, as one-half the minimum separation
between the s-band and the d-band complex at the
crossover region. The d-band position E~ is lo-
cated at the center of the crossover region in the
d-,band complex, in such a way that 4 is an approxi-
mate measure of the gap that opens up at the cross-
over region as a result of s-d hybridizing interac-
tion. Ziman' was the first to suggest that this type
of hybridization would be produced by the lowest-
order secular equation in the KKR method, if the
l =2 partial-wave component of the KKR pseudo-
potential form factor [proportional to tan@2, defined
in Eq. (8)] is parameterized by a phase shift having
the resonance form, q2-— tan '[~W/(E~-E)], where

A brief review of Ziman's formulation of
the resonance model will be given in Sec. II A.

As in the orthogonalized-plane-wave (OPW)
pseudopotential method, ' the effective-potential
form factors associated with the KKR and the APW
methods are called phase-shift pseudopotentials, ' '
and the pseudopotential interpretation is introduced
with the objective of constructing detailed theories
of electron-phonon interaction, of electron-impurity
interaction, of cohesion, etc. , in the diffraction
model. ' For this reason, in the phase-shift pseudo-
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potential program, we are faced with the question".
how should we set about the extrapolation of the

phase shifts determined, for example, at the Fermi
surface, ' to arbitrary energies (appropriate to
scattering problems) which are no longer eigen-
values of the one-electron wave equation in a per-
iodic potential?

This brings us to the formulation of s-d hybrid-
ization as a scattering problem, which is discussed
in the framework of the KKR pseudopotential form
factor in Sec. IIB. The basic idea is to generalize
the relatively well-understood problem of a single
transition-metal impurity, such as a copper atom,
placed in a free-electron gas, to the realistic prob-
lem of scattering from a periodic lattice of transi-
tion-metal atoms sitting in a neutralizing back-
ground of the valence-electron gas. For a single
impurity, s-4 interaction is formulated so as to
answer the question: How does a single electron
prepared in the localized d state of the transition-
metal impurity atom leak out (into an s state of the
surrounding free-electron gas)? This is not an
eigenvalue problem, but a tunneling or scattering
problem. Consequently, the energy; say E~', of
the d state obtained by integrating the one-electron
Schrodinger equation subject to the boundary condi-
tion appropriate for a propagating exponentially
damped s wave far away from the impurity atom
need not be a real energy. ' In fact, E~" is a com-
plex energy: its imaginary part (W) is inversely
proportional to the lifetime of the d state (before it
decays into the s state) and therefore is a measure
of the strength of s-d interaction. The d bandwidth
(&) arises out of the interference of such resonances
on many sites and in simple models, b is propor-
tional to W'.

In Sec. III, the scattering point of view (developed
in Sec. II B}will be reformulated in the complex-
angular-momentum representation using the Regge-
pole theory, from which the relation between the
real and the imaginary parts of the complex reso-
nance energy will be deduced from the analytical
properties of the Regge trajectories. In Sec. IV,
this model-independent relation will be used to in-
terpret the resonance model in the framework of
any valid transition-metal form factor, in partic-
ular the TMMP form factor, and the predictions of
the TMMP method will be compared with results
derived from the APW method and the renormal-
ized-atom method. ' Comparison of results with
recent photoemission data'~ will be made in Sec. V
and the paper will be concluded in Sec. VI.

II. RESONANCE MODEL IN ENERGY BAND AND
SCATTERING THEORIES

We have two objectives in this section. The first
is to review the resonance model of s-d hybridiza-
tion in transition-metal energy bands; and the sec-

ond is to present a natural generalization of this
model to scattering problems in the frame-work of
the KKR or equivalently the APW or phase-shift
pseudopotential concept.

A. s-d hybridization and band theory

The original formulation of the resonance of s-d
hybridization by Ziman' was based on a rigorous
painstaking transformation of the KKR secular
equation into a "plane-wave representation. " The
result was subsequently derived more simply from
the familiar APW method by Morgan' whose ap-
proach we shall adopt in this review; and further
elucidation of the results was given by Heine4 and

others. ' The objective of the resonance model
was to relate the structure of the s-d band crossing
to the phase-shifts produced by the true muffin-tin
potential or the equivalent phase-shift pseudopoten-
tial: the true phase shifts will be denoted by g,
(I = 0, 1, 2, . . . ) and the effective (pseudo) phase
shifts will be denoted by p', . The resonance model
was formulated in terms of q, by Ziman' and in
terms of p', by Heine'; but irrespective of which
phase shift one uses, the essential point we wish
to emphasize is that the resonance model has been
introduced in an entirely ad hoc manner (by looking
at the answer); in fact, the existence of such a
resonance in the framework of a one-electron en-
ergy eigenvalue problem based on a Hermitian
Hamiltonian is pathological, as we shall see below
in Sec. IIB.

We start from the secular equation for one-elec-
tron energy bands in the APW method ' (in units
such that h=2m=1):

detll [(k-g„)' -E]5„„.+ V"~v g g k-g„,)(( = 0, (I)

where the APW pseudopotential form factor is de-
fined for arbitrary states, k and k by

v* (k, r)= ((E —k k')j, ()k —k')R)/)k —k')

+Q (2l+ l)P, (cos 8~.)j, (kR)j, (k'R) X,'(R, E)
X, R, E (2)

In these equations, X, (R, E}and X,'(R, E) = (dX, /dr)
are, respectively, the radial wave function and
its derivative (evaluated at r= R); j, is the spherical
Bessel function; P, (cos8~, ) is the Legendre's
polynomial with argument cose. , where 8+. is the
angle between k and k'; P is the radius of the muf-
fin-tin potential in the crystal; and + is the unit
cell volume, for a monoatomic crystal lattice.

The actual lattice potential appears implicitly in
the secular equation through the logarithmic de-
rivative of the radial wave function determined by
the radial-wave equation
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d adX, (jl(f+ 1)
~I, ~ ctr)) s, = Esr d~ dr

where V(r) is the muffin-tin potential associated
with a single lattice site in the crystal. By match-
ing X, to the corresponding free-space waves out-
side each muffin-tin sphere, the effect of V can be
simulated through the phase shifts g, -=g, (E) defined
by the standard relation

X, N, E) j,'( R) —ta g, ,'( R)
Xj(R, E) j,(KR) —tang, n , (K.R) '

where K =E, and j, , n, are, respectively, the
spherical Bessel and Neumann functions, with de-
rivatives, j,'(KR) =dj, /dr and n)(KR) =dn, /dr, eval-
uated at r=R.

Now, in an "empty lattice, " all phase shifts must
vanish. However, we observe that making all g,
=0 does not cause all coefficients

4''[V"'"(k-g. k-g. 1'=- [E-(k-g.) (k-g. ]" -"
00 j

~g (2)+ )}s',(coss„„.)j, (l(c —s„l R)j, (( s —L. (})) '( &))21

to vanish. Thus, the simple solution E(k) = k re-
quires detailed computation involving in principle
all values of l, g„, and g„, . For this reason, it
was not obvious when the APN method was first
used that simple metals, like Al and Pb should
have NFE energy bands.

If we make use of the relation

.
( )

dn(b')
( )

dj((K)
dx "' " dx x' '

then it may be verified that

Xj/X) =jjl) j —tang)/K(Rjj)

where

cotg,
' = cotg, —n, (KR)/j, (KR) .

(6)

(8)

Consequently, if we define the KKR form factor by
the relation

VKKR VAPW (VAPW)0

then we find Ziman's secular equation3 for the KKR
method

detll [(k —g„) —E]|)„~+V"" (k- g, , k —g„)ll = 0,
(10)

in which

V" (k, k ) = —
& P (2f+ 1) tang,

l=p

j,(nR)j,(e'R)
X

[
.

( )]0 Pj(COSears) .
The identity in Ec.. (8) shows that Ziman's form of
the KKR method does not involve any new approxi-
mation in the APW' method if the zero of the muffin-
tin potential is fixed by this identity in the two
methods.

On the basis of Eq. (8), Ziman has noted that one
the s-band in transition metals if one sets g„=g„.

=0 in Eq. (10) and

tang, = —.'W/(Z, —Z) . (12)

and from Eqs. (10) and (11),
20m I ~ 10mE = k — tan/2= k — g

pK pK

where

E =z ,W[n (KR)—/j—(KR)]

(14)

defines a shifted energy, corresponding to the point
where ga goes through —',w. When Eq. (13) is solved
for real k, the result would look as if a free-elec-
tron band had crossed a single d level and "hy-
bridized" with it. The form in Eq. (12) is just the
way the l = 2 partial-wave phase shift will behave
if the hybridization is pictured as a resonance of
a free-electron s wave with a localized d wave to
form a virtual bound state. For this reason,
Ziman's conjecture was christened the resonance
model and has subsequently been investigated
further by Heine and others. '

The d-band width (b, ) is given in this type of sim-
plified model of s-d hybridization by [cf. Eqs. (17)
and (18) of Ref. 16]

,'W(n'0(KR)/fa(KR) ——na(KR)/ja(KR)) . (i6)
This is proportional to S'.

In the APW method, the quantity frequently cal-
culated is not g', but the function P, related to gf
via Eqs. (4) and (8) by

n', (KR) —p, n, (KR) n, (KR)
j', («R) —P,j,(KR) j,(KR)

(17)

Thus, q', goes through ~w if p, becomes infinite at
some energy: this requires a node in the radial

For in this circumstance one then finds, from Eq. (8),

tang« = 0W/(Es —E);
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the effective scattering phase shifts 6', on the Fermi
surface (E =Er) may be neglected for all nonreso-
nant (l x 2) states, so that we may ignore the dif-
ferences between the V matrix of Eq. (11}and the
T matrix of Eq. (19), by taking the form factor to
be real as in Eq. (11). For the resonant (I =2)
state, we have to define tan z}z in Eq. (11) so that

tanqz = z W/(E~ —E) for energy bands

= z W/(Ez E+z-iW) for scattering .
(23}

For this reason, the most practical form of the
KKR form factor which emphasizes the analytical
structure of the resonance state in the calculation
of transition rates for scattering on the Fermi sur-
face is

V" "(k, k') =(4v/IIO) Q (2l+ I)T,P, (cos8-„I ),
(24}

where

,j,(kR)j,(k'R)' "' [j,(«)lz
and

~z W jz(kR)jz(k R)
E,' E+ z—i W -[jz(«)] ' (26)

III. COMPLEX-ANGULAR-MOMENTUM REPRESENTATION

Having shown in Sec. II that the KKR method leads
to a scattering T-matrix pseudopotential form fac-
tor at or near the l = 2 resonance in transition met-
als, it is now straightforward to relate E„' and 5'
through the analytical properties of the partial-
wave amplitude in the framework of formal scat-
tering theory. To this end, we shall work in the
complex -angular -momentum representation first
introduced by Regge in nonrelativistic potential
scattering theory. ' The general philosophy of the
Regge-pole theory is quite simple, and we shall

are the partial-wave amplitudes given by Eq. (11)
for l 4 2 and by Eq. (19}for l = 2.

There is no loss in generality in considering
V (k, k') rather than the V matrix or the T matrix.
The main advantage of V"""(k,k') will be realized
in practical applications (to be reported in Paper
IV of this series} in which the nonresonant (l x2)
contributions to the formal expansion in Eq. (24)
will be represented by a seal model potential form
factor. In this way the truncation errors that
necessarily arise in current applications of the
complete T-matrix form factor to calculation of
electronic properties'4 will be eliminated. From
this perspective, the lengthy analysis presented
in this section is seen to serve as the formal mathe-
matical framework underlying the transition-metal-
model-potential approximation.

begin by presenting the key results of the theory
before delving into the pertinent details.

Two basic steps are involved. The first is sim-
ply to express the partial-wave amplitude defined

by Eq. (26) in the form

yr
Ez —E+ ziW n(E) —l, z

'

Here n(E) is a complex-angular-momentum vari-
able —a function of the real energy parameter, E;
l is the usual real-angular-momentum quantum
number; and y, is to be determined. The net ef-
fect of the change to the complex-angular-momen-
tum representation is to transfer the pole at E =E„'
+ ~i%' in the complex energy plane to a pole at

Re n(E', ) = l -=2, (28)

in the complex angular momentum plane. The lat-
ter is called a "Regge pole"; and the function,
Re n(E) vs E, defines the corresponding "Regge
trajectory. "' No approximation is involved in

Eq. (27).
The second basic step, which goes beyond the

present status of Ziman's theory, is to relate E~
and 5' via the analytical properties of the Regge
trajectory by expanding a(E) about the energy E
=E,'. Then Eq. (27) becomes

z W/(E'z —E+ z iW) =yz/[(Ez —E) n'+ iIma],
(29)

where n' =(da/dE)~, and we have used Eq. (28} to
get n(Ez) —l = iIm n(E~). The right-hand side of
Eq. (29) may be rewritted exactly in the form

I

(30)
(Ez —E)n'+iIma Ez+ 4Ez —E+ ziW

where

tzE~=Imalmn'/[(Ren') +(Imn') ];
W = 2 Imn Ren ' / [(Ren ')z + (Ima ') ] . (31)

Imz' = 0, i.e. , Imz =const. (33)

Thus, we find that y~= 2(Ima) is a constant (inde-
pendent of energy}, and

W=y~(Ren ) —= y~
dE
dl, 2

(34)

This is the main result of the Regge-pole theory
in this paper. . It goes beyond the existing formula-
tions of the resonance model in so far as it ex-

Thus, by comparing the left-hand side of Eq. (29}
with the right-hand side of Eq. (30), the following
relations result:

y~ 2 Imn Re@'
n' (Ren')'+(Imn')z '

(32)
These are standard results (see, for example, Ref.
18, p. 9); and for the relations in Eq. (32) to be
consistent, we must set 4E~ = 0, so that
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2- pLANE

the relation

fg = K 'y, j,(kR) j,(k'R}/[ ja(xR }] (38)

I I

0 1 2 N(L)V

FIG. 2. Contour (C) in l plane used in Eq. (35) (after
Squires, Ref. 19, p. 5).

hibits for the first time, the dependence of %' on
the variation of E with the angular-momentum
quantum number l, in the neighborhood of l =2.

We may now delve more deeply into the founda-
tions of Eq. (27}, since this is of interest by it-
self. We apply the so-called Watson-Sommerfeld
transformation to the final form of the KKR
pseudopotential form factor in Eq. (24}:

N(, g j
V"" (k, k')= —Q (2l+1) T, P,(cos&ff.)

~O l=O

(2n 1) T
Qo „~ sinn@

(36)
where C is the contour in the complex l plane shown
in Fig. 2, and N(I. ) is the largest positive integer
less than or equal to some fixed angular-momentum
quantum number L. The integral in this equation
is equal to the sum of the residues of the poles
which arise from the zeroes of sinma at positive
integers greater than or equal to L.

Now, in simple metals, T does not have any
pole in the complex I plane. In this case, the in-
tegral in Eq. (35} reproduces the remaining terms
of the partial-wave expansion. But in transition
metals, there is an l =2 resonance and there will
be a contribution from such a resonance to the
total pseudopotential form factor. That is, Eq.
(35) takes the form

V"xa(k, k') = —g (2l+ 1) T,P, (cos&f f.)
O l/2

2vy~ /sin vn —= z W/(E~ —E + z i W), (37)

where y~ is defined in terms of the residue t„by

—(8v'/Qo}(2n + 1) f,
sinter l=2

(36)
where t~ is the residue of T at the pole of the 1=2
partial-wave amplitude. Thus, by comparing Eqs.
(26) and (36), we obtain the identity

Upon making the following approximation, which is
valid near the resonance energy E =E„'.

cscwn = w '[(E', —E) n'+ffmn] ', (39)

The result of the Regge-pole theory described in
Sec. III will now be interpreted in the framework
of the transition-metal-model-potential (TMMP)
method discussed in the first two papers'2 of this
series. As in Sec. II above, the TMMP form
factor (Ref. 1, Appendix A} for one-electron en-
ergy bands (Ref. 2, Sec. 1) is expected to be dif-
ferent from the form factor for scattering at arbi-
trary energies in the crystal, and the difference
is exhibited by the TMMP parameter, Az(E), for
the l = 2 angular momentum state [see Fig. 1(b)].

Before we write down the forms of Az(E), a, few
words about notation are in order. In the TMMP
method, the analog of E~ is denoted by S„~ (n = 3,
4, 5 for the respective 3d, 4d, and 5d series of
transition metals), and the analog of W will be de-
noted by S'„~: it is not necessary to assume that
E~ —=S„q and W-=W„~, but we hope to provide suf-
ficient reasons below to justify their identification.
The shifted energy 8„,has been defined (for arbi-
trary angular momentum state) in Eq. (6) of Ref.
1 in terms of the true spectroscopic term values
E„,via the generalized (empirical} quantum defect
law:

8„,= —zz/(n —6„,)~ = E„,—6„, , (4o)

where &„, , a„, are fixed (independent of z) for
fixed radial and angular-momentum quantum num-
bers (n, f} and z is the chemical valence of the
pertinent transition-metal ion in an isoelectroaic
sequence, such as

Sc', Ti' V~', Cr' (41)

i.e. , elements characterized by the same inert-
gas core configuration along a row of the Periodic
Table. The significance of Eq. (40) is exhibited
in Fig. 3(a) for n = 4 (l = 0, 1, 2, 3) levels of the 3d
transition series: it would have been more per-

Eq. (37) reduces to Eq. (29), as desired.
lt should be stressed that the result in Eq. (34)

is model independent because it has been derived
from a T-matrix form factor, rather than an
ordinary pseudopotential form factor. This means
that it can be interpreted quantitatively in the con-
text of any valid transition-metal pseudopotential
form factor, that is any pseudopotential form fac-
tor exhibiting the T-matrix structure for the l =2
partial-wave amplitude for scattering.

IV. INTERPRETATION IN THE TRANSITION-MODEL-
POTENTIAL METHOD
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40—

8

6
Lal

I

(a)

which may be looked up from the slope of E vs E„,
for the pertinent term values.

In the absence of spectroscopic data, Eqs. (40)
and (43) may be used to make qualitative predic-
tion about the variation of W„~ with chemical va-
lence (z) in an isoelectronic sequence, such as the
sequence in Eq. (41}, as follows. We substitute

E„, from Eq. (40) into Eq. (43) to find

&n~ =ye(and z +you)
Z

20 4Q

22

60 where

d —1 db, „)
'

"«=dT (n-5 }z ' '"'=
di

(45)

Since y, in Eq. (44) is independent of energy, (and
hence independent of z), it follows that W„~ vs z'
is linear in an isoelectronic sequence (see Fig. 4).

Now, because W„~ vs z as well as E„~ vs z are
linear, it follows that in Eq. (42), for values of E
close to the spectroscopic term values

(8« E)/2 W„,—= coty&(E) (46)

0 2 4
-F iRyi

4tj
8 10

is practically independent of z in an isoelectronic
sequence. Therefore, the d-band width (4), de-
termined as in Eq. (18) by the relation

A —= 8« —Eo ——& Wnucotqz(Eo) ~ (4V)
FIG. 3. (a) Spectroscopic term values E„& as function

of the square (z ) of the chemical valence for group-B
elements of the 3d series in the Periodic Table, illustrat-
ing the generalized quantum defect law in Eq. (40) (for
more details, see Ref. 1). (b) The same term values
E„& plotted as functions of the angular momentum l de-
fining the spectroscopic Regge trajectories. [Note that
the Rydberg series E„& —=—z /n gives for n=4, E&~=E+
=E&=E& and therefore leads to trajectories parallel to
the l axis; the deviation of the actual trajectories from
being parallel to the l axis provides, therefore, a mea-
sure of intra-atomic electron-electron interaction effects).

derives its z dependence from that of W„„and ac-
cordingly 4 vs z~ will be linear in an isoelectronic
sequence. This prediction is seen in Fig. 4 to be
in agreement with the results derived from the
APW and renormalized atom methods. ' For this
reason, we are encouraged to say that the TMMP
method agrees, or can be made to agree, with the
APW method in detail, both with regard to the posi-

Az(E) ~ W«(&nu E)'—for energy bands

2 W„„($„, E+ z iW«) ' for scatteri—ng

tinent to consider the term values for n = 3 but, un-
fortunately, these are not available, except for
n =3, l = 2 which has been displayed in Fig. 4 of
Ref. 1. Furthermore, the spectroscopic Regge
trajectories, l vs E„, are shown in Fig. 3(b) for the
same n=4 (l=0, 1, 2, 3) of Fig. 3(a): the trajec-
tories are linear for fixed n.

With these preliminaries, the resonance model
is given in the TMMP method by the relations

K 0.6

02

0.6
&I

Cu

~Ag+
0

I

20

Z

I

30
I

40

(42}
where b'„, is determined semiempirically [as in
Fig. 1(b)] from the singularity in Az(E) vs E; and
W„, is given [as in Eq. (34)] by

(43}

FIG. 4. Straight lines represent the relation b vs z
of Eqs. (44) and (46), between the d-band width (b,) and
the chemical valence (z); the points are the results of
APW and/or renormalized atom methods given in Fig. 8
of Ref. 16; the squares are results of recent photoemis-
sion studies obtained by Smith and Traum (Ref. 17).
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tion of the d band [cf. Figs. 1(a} and 1(b)] and with
regard to the d-band width (Fig. 4). This agree-
ment will be put on a more quantitative basis in
Paper IV.

It is also of interest to find an expression for the
hybridization gap y, which is defined in such a way
that Eq. (14) reduces to

(E —lP)(E —E'„)=y2,

i.e. , in the KKR method

(48}

y = (10+/0 z )1/2 W~/z (49)

Similarly, in the TMMP method, y is the coef-
ficent of (S„~ E) -in the matrix element (k'IAz
x 6(R„—x)Pz ik), of the screened TMMP, Pz being
the projection operator that picks out the l =2 com-
ponent of the plane wave Ik), and 8(x) = 1 (for
x~ 0) but zero otherwise. Thus, proceeding as in
Appendix A of Ref. 1, we find

~Rm

y ~ W„„ 20m I j~ kr j~ k'r r dr Qp 6 k -k'
+p

x z(3 cos'Bf „-. —1), (50)

where e( Ik —k' I) is the dielectric function of the
free electron gas. This leads to y ~ W„'„as in Eq.
(49). In transition metals, 2y and b turn out to be
numerically the same order of magnitude, but they
have different functional dependence on W„~.

V. COMPARISON OF NUMERICAL RESULTS WITH
EXPERIMENT

In this section we wish to compare the numerical
results shown in Fig. 4 with the only available ex-
perimental "test" of the resonance model provided
by recent photoemission data. '7 With the assign-
ment of chemical valence given in Fig. 4, which
agrees with the assignment proposed in Ref. 1
for all but Ni [taken to be Niz' in Ref. 1 but Ni'
here], the linear relation b vs z is quite well
satisfied for transition mentals of the respective
3d and 4d series, and there is fair agreement with
the results deduced from photoemission data by
Smith and Traum. 7

In assessing the significance of these results we
must first caution that our predictions strictly
apply to isoelectronic sequences, i.e. , Sc ', Ti ',
V", and Cre' but not Ni', Co ', Fe, and Cu' in
the 3d series; and Y', Zr ', Nb', and Mo ' but
not Pd +, Rh +, and Ag', in the 4d series. Thus,
agreement with the photoemission data on Cu, Ag,
Pd, and Rh is significant only in so far as the
present theory serves as a basis for correlating
the results in terms of a fundamental parameter,
such as the chemical valence. Secondly, the
photoemission data have been interpreted in the
framework of one-electron energy bands derived
from the interpolated scheme of Hodges, Ehren-

reich, and Lang; it is not clear what role many-
electron effects may play in determining the posi-
tion of the peaks in the raw data.

Another aspect of the comparison with the photo-
emission data is the structure of the higher (sP)
conduction bands deduced by fitting the photoemis-
sion spectrum with the one-electron energy bands
via the interpolation scheme, as recently discussed
by Smith a,nd Mattheiss ' and Smith. This will
be considered in Paper V of this series, where it
will be shown that the TMMP form factor captures
the essence of the interpolation scheme by providing
an interpretation of the empirical pseudopotential
matrix elements that characterize the conduction
bands in the interpolation scheme.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have reformulated the reso-
nance model of s-d hybridization in transition met-
als in terms of the analytical properties of transi-
tion-metal pseudo- or model-potential form factors,
so as to make the model consistent and useful not
only for interpreting the results of one-electron
energy band calculations, but also for studying
various scattering processes in the crystal. This
has been achieved by making use of the Regge-
pole theory in solid state physics; and as a result,
we have been able to relate the two parameters
of the resonance model to each other and hence
provide a basis for obtaining the parameters from
the systematics of the atomic spectroscoptic data.
New insight has been gained into the systematic
variation of the d-bandwidth with the chemical
valence along the 3d, 4d, and 5d transition series;
and more light has been shed on the connection be-
tween the practical aspects of the APW method and
those of the transition-metal model potential method.

Although we have not touched upon a number of
important problems, notably those associated with
the magnetic properties of the transition metals,
the results derived thus far from the transition-
metal model potential program encourage us to
draw a few firm conclusions. First, the transi-
tion-metal model potential method has shown signs
of succeeding in a number of areas —phonon spec-
tra, electron-phonon interaction, and the reso-
nance model of s-d hybridization —where other
available theories have had conceptual and compu-
tational difficulties. Second, the method has un-
covered a number of empirical results —atomic
spectroscopic data, systematic variation of Debye
(or better, jellium) temperature, superconducting
transition temperature, and the d bandwidth with
the chemical valence —which future models have to
incorporate or explain. Finally, it has affirmed
our basic belief that by judicious blending of rudi-
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mentary facts of atomic physics and new tools of
high-energy physics, (such as the atomic spectra
and the Regge pole theory respectively}, some-
thing useful could be learned about the electronic
structure and properties of solids.
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