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We describe the relation between the observed behavior of photoemission energy distributions vs

frequency, angle, etc. , and the quantum theory of photoemission as recently set forth formally by Caroli

et al. We derive a Fermi's Golden-Rule formula for the angle- and energy-resolved photocurrent from

an independent electron solid, and show in detail the approximations which render this formula

equivalent to that of the familiar three-step model of bulk photoemission. In terms of the Golden-Rule

formula, we account for the direct-transition band-structure regime generally observed at low photon

energies (h v & 20-30 eV) and the "photoemission density of states", or x-ray-photoemission-

spectroscopy regime, observed at higher energies. We also propose an explanation of Feuerbacher

et al. 's observation of "direct photoemission into the vacuum" from single-crystal tungsten surfaces.

Finally, we discuss the criteria which determine the relative magnitudes of photocurrents from a

surface adsorbate layer and an underlying substrate.

I. INTRODUCTION

Photoemission is an experiment which is in prin-
ciple rich in information; the independent param-
eters against which photocurrents can be measured
include the frequency, polarization, and angle of in-
cidence of the photons, the crystal face and surface
structure of the target, and the energy, exit angle,
and spin polarization of the electrons. Recently,
there has been considerable interest in expanding
one's knowledge of the behavior of photocurrents
in this multidimensional space of parameters. ~ i~

As a result, one has observed several important
trends which lend insight into the question of what
photoemission measures. For example, consider
the variation with photon frequency v of angle-in-
tegrated photoemission energy distributions (PED's)
from polycrystalline targets. ~ In many cases (see,
e. g. , Fig. 1 for Au) one sees the following: (a)
At low frequencies (typically hv ( 20 eV) there are
many features in the PED's which change in posi-
tion and shape as a function of v. (b) At higher
frequencies, features in the PED's are pretty much
independent of hv, and seem to correspond to fea-
tures in the target's occupied bulk density of states.

Also, there are sometimes peaks at low frequen-
cies which do not move with v but which can be
identified with emission from "intrinsic, " (i. e. ,
clean-surface ) or "extrinsic" (i. e. , adsorbate-
induced) surface states.

Recent measurements of PED's versus electron
exit angle have added at least one further possibil-
ity to this catalogue of PED peak behaviors.
Feuerbacher et al. 'i have obtained PED's for
electrons emerging along the normal to a W(110)

surface, following excitation by photons with 7. 7

eV&hv(11. 7 eV. In this energy range, a band-
structure calculation indicates that there are no
available Bloch states for the outgoing electron.
At the same time, the measured PED's show a
peak (at —1.4 eV below Er) which does not move
with hv, and which is apparently not a surface
peak. Feuerbacher and Christensen have identi-
fied this peak with a peak in the W d-band density
of states and have suggested, in view of the absence
of an available outgoing Bloch state, that the elec-
trons in this case have undergone "surface photo-
emission. " We discuss this special case of "band-
gap" photoemission below.

In general, in this article we hope to show how

the qualitative description of PED's, given above,
can be understood from the theoretical point of
view. Our starting point is the recent work of
Caroli et a/. , who have given an exact many-body
formulation of photoemission including a recipe for
the perturbative evaluation of the effects of elec-
tron-electron interaction to any order. In Sec. II
we show how the lowest-order diagram of Caroli
et al. , which corresponds to photoemission from
an independent- (but not necessarily "nearly-free-")
electron solid, can be converted in general to a
Fermi's Golden-Rule formula in which the final-
state electron's wave function is identical to the
wave function one would use to describe a low-en-
ergy-electron-diffraction (LEED) experiment with
the incident LEED beam velocity v taken to equal
minus the velocity of the photoelectrons being col-
lected (see Fig. 2). This result, which was origi-
nally demonstrated by Adawi, has been somewhat
obscured in later theoretical work, ' and, except
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P

x iI d xi d xz G"(R, xi; E)

Xi

x O(x~)G'(x~, x2, E -h&o) O(xz)G (x2, R'; E) .
(2)

(a) (b)

In Eq. (2), the vector R is given by

R=RR, (3)

FIG. 3. (a) Lowest-order (independent-particle model)
diagram for photoemission (after Ref. 15). The wavy
lines represent photons, the heavy arrow represents the
current of electrons at the detector. (b) Same diagram
as in (a) drawn in such a way as to show that it represents
a photoabsorption event in which a photoexcited elec-
tron is distinguished by being observed at a detector:
If the arrow were removed from this diagram, it would
look just like the lowest-order diagram for photoabsorp-
tion.

Although Mahan's and Schaich and Ashcroft's
procedures for evaluating photocurrents from sol-
ids are in principle capable of accounting for many-
body effects, it is only very recently that a straight-
forward perturbation theory of photoemission has
been developed. Using the Keldysh perturbation
theory for nonequilibrium many-body problems,
Caroli et al. have set forth a formal diagramma-
tic expansion for photoemission from a solid. The
lowest-order diagram (see Fig. 3) represents the
photoemission process within the independent-elec-
tron picture. The higher-order terms describe
many-body effects, such as the interaction of the
photoelectron with the hole left behind, hole relaxa-
tion effects, the production of secondary electrons,
etc.

In what follows, we focus exclusively on the low-
est-order diagram. We show, independently of
any assumption regarding the spatial form of the
crystal potential, that the algebraic expression
to which this diagram corresponds ean be reduced
to the Fermi's Golden-Rule formula originally de-
rived by Adawi. '

Thus, let us consider the irradiation of an inde-
pendent-electron solid with light corresponding to
the vector potential

A(x, t) =A(x) cosset, (I)
and the measurement [cf. Fig. 2(a)] of the steady
radial current j„(R, E) of electrons emerging from
the solid along the observation direction, R, with
energies between E and E+dE. For sufficiently
low-intensity light, j„ is linear in the light inten-
sity (quadratic in A), and, using the method of
Caroli et al. , can be shown to be given by

where the unit vector R points in the direction of
the detector. The operator O(x) is defined by

O(x) = ~ [A(x) ~ p+ p ~ A(x)] . (4)

The functions G'(x, x'; E) and G (x, x'; E), in Eq.
(2), are, respectively, the ordinary retarded and
advanced Green's functions for the solid, and
G'(x, x'; E) is the nonlocal occupied density of
states. The retarded Green's function satisfies
the Dyson equation

G"(x, x'; E) = Go(x —x'; E)

Both G' and G' are functions which may be trivially
evaluated once G" is known. The advanced Green's
function G' is related to G" by

G'(x, x'; E)= [G"(x, x'; E)]*,
while the function G' is given by

G'(x, x'; E) = —2i8(-4 —E) ImG"(x, x'; E), (8)

where 4 is the solid's work function, and 8(x) is
the ordinary step function. If the damping of holes
is neglected, i.e. , if the crystal potential is as-
sumed to be real for energies below -4, where the
zero of energy is the vacuum level, then G' takes
the form

G'(x, x', E) = 2' P 5(E —E&}P&(x)P)'(x'),
occuyied J

where the sum on j includes all the occupied eigen-
states of the Schrodinger equation

(
h v'

+ V(x) —E, gq(x) = 0 .2m

This result, of course, follows directly from the
spectral representation of G".

In order to put the expression for j„(R; E), Eq.
(2), into a useful form, one would like to be able

+ d iGo(x-x„E)'U(x, )G"(x„x';E),
(5)

in which 'U(x) is the crystal potential and Go(x -x;
E) is the free-particle outgoing-wave Green's func-
tion given by

m exp[iIx —x'I (2mE/g Pl ]
i x -x'I
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One thereby obtains the asymptotic formula for
G'(R, x'; E},

G"(H, x'; E) — (m/27(h ) (e' ' ~ ' /R)
R

xP&(x'; R; E),
where the wave function ft}& is given by

(12)

to evaluate the R and R' derivatives and the limits

as R -R and R-~ explicitly, without first having

to solve Eq. (5) for G"(x, x'; E) T. his goal, as was
first pointed out by Adawi, ' can be achieved be-
cause the asymptotic form of G", as x or x' is taken
far outside the sample solid, can be exhibited in

closed form.
One makes use of the fact that in the x, integra-

tionof Eq. (5), the vector x, is confined to the sam-
ple volume by the fact that v(x, ) =0 outside the sam-
ple. 8 Thus if R is a vector near the detector [cf.
Fig. 2(a)], arbitrarily far from the sample, and if
x' is a vector in the sample, then one has for both
Go's in Eq. (5) that

m exp[i(2mE/}i )"~ (R —R x'+. ~ ~ )]
Go(R —x; E)=2 &q

x Q 5 (E —k&u —E;)
occupied j

2

x d xfII)»*x;R EOxgjx . J7

In Eqs. (16) and (17) the quantity v is the outgoing-
electron velocity, equal to (2E/m)'~; the over-all
factor 2 in these equations arises from spin sum-
mation.

Equation (17), which is identical in content to
Adawi's Eq. (2. 13b), provides us with a useful
recipe for calculating a photocurrent via a Fermi's
Golden-Rale formula. ' Specifically, it tells us
that in the matrix elements governing the intensity
of photoemission, the final electron state must be
represented by the "incoming" wave function, '
(f(&(x; R; E). This wave function is, infect, identi-
cal to the wave function one would use to describe
a LEED experiment in which electrons of energy E
impinge on the sample along the direction —R, a
result which we now demonstrate.

Note first that asymptotically as I
x'

I
—~, ac-

cording to Eq. (13), Q&(x'; R; E) is a linear com-
bine, tion of e' " and outgoing waves [G'(R, , x'; E)
being purely outgoing as I

x'
I
—~]. Moreover,

satisfies the Schrodinger equation

(t()(x'; R; E) =e'"' + cPxge'"' ~ V(x, )G"(x, , x', E),
(13)

+w(x) —E (t()(x; R;E) =0, (18)

G"(x, x', E) = G"(x', x; E), (15)

one may straightforwardly evaluate the R deriva-
tives and the limits in Eq. (2). One finds that

x d xg cPxg $&)(xg ' R; E)
4

xO(x)) . G (xg, xa, E —K(&)
2m'

x O(xz)@&(xa, R; E), (16)

or using Eq. (9), for the case in which hole damp-
ing may be neglected,

((j,(R;e)=2e ( ) ( )

with

k-=—(2mE/I ) R . (14)

The unit vector R points out of the sample at the
detector (Fig. 2a). Therefore [cf. Fig. 2(b)] the
wave vector k points into the sample along the di-
rection of observation.

Using Eq. (12), as well as the symmetry relation

as can be seen from the symmetry relation, Eq.
(15), together with the fact that

(19)

which follows from Eqs. (5) and (6). Thus Q& satis-
fies both the correct equation of motion and the
correct boundary conditions to be a LEED wave
function, which was to be proven. Of course in
photoemission, as Mahan has pointed out, it is the
components of P& which are transmitted into the
solid that determine the observed results (since the
g~(x)'s fall rapidly to zero outside the sample},
while in I.EED it; is, rather, the reflected compo-
nents that represent what is measured.

Notice that in deriving Eq. (17) for the photocur-
rent, no specific spatial dependence of '0(x) had to
be assumed. In particular, the assumption that
u(x) = 'U(z), which Mahan used in proving the formu-
la analogous to Eq. (17) for a free-electron solid,
has been entirely avoided and therefore Eq. (17)
is valid for the general case in which the lattice
periodicity of M(x) cannot be neglected.

Indeed, let us assume that the target under con-
sideration is a semi-infinite crystal with an ideal
(i.e. , two-dimensionally periodic) surface. In this
case, the wave functions P& and $j behave as Bloch
functions of the coordinates x and y along the sur-
face, and the matrix elements in Eq. (17}there-
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fore contain two-dimensiona1. -crystal-momentum-
conserving 6 functions. This fact permits us to re-
duce Eq. (17) to a useful, more explicit form. The
remainder of this section is devoted to that reduc-
tion.

Assuming then that our target has two-dimen-
sional lattice periodicity, the wave function Q& may
be written in the form

.„(y')

Q&(x; R; E) =e'"" ' U(p, z; R; E) . (20)

O„(x)=-,'[X„(x) p+p X„(x)], (23)

In Eq. (20), p-=(x, y), and U(p, z; R, E)isperiodic
as a function of p, with the two-dimensional pe-
riodicityof thetarget surface; i.e. , for any p, and
for an arbitrary two-dimensional-lattice transla-
tion vector v, one has

U( p, z; R; E) = U( p+ v, z; R; E) . (21)

The vector k,',"', in Eq. (20), is defined as follows:
Let k„equal the projection of k [cf. Eq. (14)] in
the plane of the surface. Then k,',

"' is the vector ob-
tained by translating k„ to the first two-dimensional
Brillouin zone.

In a similar fashion, the wave function P~(x) may
be written

$&(x)-Pa"„'~ (X}=e'~ ~'' V&"„'~ (p, z), (22)

where V&"„',~ ( p, z) is a function having the perio-
dicity of the target surface, ' and where, in the re-
duced zone scheme, the implicit index j is re-
placed by p(, a wave vector in the first two-di-
mensional Brillouin zone, n, a three-dimensional
band index, and P„, a wave vector normal to the
surface. '4

In order to complete our reduction of Eq. (17) it
remains for us to describe the spatial behavior of
the vector potential, X(x). Within the context of a
calculation of photoemission based entirely on the
diagram of Fig. 1, the variation of X(x) with x is
the same inside the target as outside. This feature
of the single diagram calculation is in error,
especially at lower frequencies (5 20 eV); that is,
a theory which failed to take account of the dielec-
tric response of the target would in many instances
be manifestly incapable of predicting photoyields,
because the dielectric response can cause a sub-
stantial (polarization dependent) fraction of the in-
cident photons to be reflected. Thus in order to be
able to discuss photoemission for the entire range
of frequencies, 4 & hen~ 500 eV, one must supple-
ment the diagram of Fig. 3 by those diagrams
(shown in Fig. 4) which account for the screening
of the incident electromagnetic field.

The net effect of including these additional dia-
grams is to replace the operator O(x), which appears
in Eqs. (16) and (17), by the operator O„(x),

FIG. 4. (a) Diagram in which reflection and refrac-
tion of the photon beam by the sample has been taken into
account. (b) Random-phase-approximation equation for
the dressed photon propagator (represented by a double
wavy line).

X„(x)= ca(x)+ 6X(x), (24)

where e and a(x) are, respectively, the polarization
vector and the magnitude of the Maxwell-equation
screened vector potential inside the target, and
6X(x} is a "local-field" correction to i a(x) whose
effects may be ignored to a first approximation.

This neglect of 6X(x} is evidently exact only in
the limit that the target is spatially homogeneous,
or in other words, in the limit that it is an infinite
(i.e. , surfaceless), free-electron solid. Thus,
any contribution to 6X(x) for an actual target may
be attributed either: (a} to the lattice periodicity
of the target's charge density, or (b) to the pres-
ence of a surface. Local-field effects due to lat-
tice periodicity are thought to be small for a wide
class of materials. Those due to the surface,
which are conveniently thought of as refraction and
reflection effects, have been studied theoretically
within a number of simple models. ' However,
little is known about them experimentally. Clear-
ly, if one wishes to use photoemission as a probe
of surface chemistry, one will have to make a
serious effort to evaluate surface-local-field ef-
fects. ' In what follows, however, as in previous
work, we ignore 6X(x} entirely.

Let us assume, for simplicity, that @v~200 eV.
Then the spatial dependence of a(x) can be ne-
glected, and we obtain the expression

where, in the simplest microscopic approximation
(illustrated in Fig. 4), the difference between the
screened vector potential X„(x)and the externally
applied X(x) is accounted for in terms of the solid's
random-phase-approximation (RPA) dielectric ten-
sor. Even in this simple approximation, however,
it is not trivial to solve for X„(x), and therefore,
rather than attempting to solve for it, one generally
replaces the microscopic X„(x), in photoemission"
calculations, by the macroscopic, Maxwell-equa-
tion-based approximation to it. That is, one
imagines the exact screened vector potential to take
the form
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O„(x}= —zhaz ~ (25)

d x(t)&* x; R;E O„x g, x

therefore reduces to the form

where a is the spatially constant magnitude of the
screened vector potential inside the target. The
photoexcitation matrix element

tice vectors. Substituting these expansion formulas
into Eq. (28), one obtains the somewhat simpler
expression for j,(A; E),

aaz (ATE)'
R j„(R;E)=2 8'S

I I (h )

(n)
x g 6(E —hm —Ef&~) ~ )

nzPn
occuyied

(2z) 5' '(k,',"' -p„) l~
d p ll

dz U*(p, z; R; E)ha
+ 02

x E„~ k,',"'+—. E ~ V V-"', z (27)

x g
~

dza~, (z; R; E)
CII

2
( ) 1 8 (n)

z

where E,
~
is the projection of & in the plane of the

surface, and where the p integration is over the
volume, 02, of the surface two-dimensional unit
cell. ~ Substituting this result into Eq. (17) and,
in the usual manner, interpreting [(2z) 5' '(k,',"'

-p„)] as the target surface area S times (2z) 5' '

x (g"' —p„), one finds finally that

aaz ((RE) ~

R j„(R;E)= 2e8'S
( }z

x g 5(E —h&@ —E'-"&'~& )
nzPn n

I~

x d p d Wz(p, z;8;E)
~02

'2
(n)

x (p ~ ki" + —. E ~ V Vf&~) p (py z)
n

(28)

V(p, z; R; E)=g e'""a- (z; &; E) (30)

and

where the g„are two-dimensional reciprocal-lat-

In Eq. (28}, the quantities n, az, 8,, and y are,
respectively, the fine-structure constant, the Bohr
radius, the Rydberg, and the flux of electromag-
netic energy per unit area per unit time, inside
the target. The latter is given by the expression

(29)

and is equal to the incident flux times one minus the
target's ref lectivity. The quantity I E„l is, of
course, equal to the cosine of the angle of refrac-
tion of the photons.

One final reduction of our expression for j„(R;E)
can be made by expressing the functions V(p, z;
R, E) and VZ"„',~„(p, z) in the two-dimensional plane-
wave representation. That is, the periodicity of
these functions with p permits us to write

(32 )

in which E, is the component of q along the normal
to the surface.

Note, in conclusion, that Eq. (28) [or equally,
Eq. (32)] answers the often posed question of how

photoemission data, taken by detecting electrons
that are excited near a sample's surface [i.e. ,
within an inelastic mean free path of it], can sup-
ply information regarding the sample's bulk density
of states. The point is that, except for surface

(n)
state energies, the Ep«) ~ which appear in Eq.
(28) for a semi-infinite sample are essentially
equal to the allowed energies of an electron in an
infinite sample of the same material. Thus ac-
cording to Eq. (28), j„(R; E) represents the sum of
our sample's bulk and surface densities of states,
each modulated by appropriate transition matrix
elements squared; and moreover, all of the infor-
mation regarding the magnitude of photoelectron
escape depths is contained in these matrix ele-
ments. Consequently, in the event that the modula-
tion due to photoemission matrix elements is weak,
structure observed in j„(R; E) can be attributed to
the sum of our semi-infinite sample's bulk and sur-
face densities of states.

III. BULK BAND-STRUCTURE EFFECTS:
RECOVERY OF THE THREE STEP MODEL

The discussioninthis and the following section is
aimed at showing how PED's should vary with Fi~,
according to our quantum theory of photoemission.
In the present section we are concerned with the
effect on this variation of photoelectron momentum
broadening, particularly in the limit that this
broadening is small (i.e. , where the photoelectron
escape depths are long). In this limit we demon-
strate the correspondence between our Fermi's
Golden-Rule formula, Eq. (28), and the semiclassi-
cal three-step model, 20 which is widely used to in-
terpret photoemission data. (The derivation which
follows is quite similar to that used by Mahan in
recovering the three-step model for the case of a
nearly-free-electron s'olid. )
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Generally, one plots a series of photoemission

spectra for different photon frequencies (see, e. g. ,
Fig. I}on a. graph whose ordinate

(33)

is the binding energy of the electrons which have

been photoexcited. Thus, of the two factors which,

according to Eq. (28), ean give rise to structure in

a, photoemission spectrum, namely, (a) the spatial
distribution and interference of electron and hole

wave functions, via the photoexcitation matrix
elements

K(p„, n; R, E+ Ii«&) =
~

dz
~

d p U('(p, z; R, E+g~)
0 2

I r. ~ (n)
zg ~ k„+—. 0 ~ V V„-(n) p (p, z),~n

(34)

and (b) the occupied density of states, via the ener-
gy-conserving 5 function

5(E —Eg~&r) q ), (38)

only the former can give rise to structure which

moves with Ii&u (Thi.s result is self-evident, the

argument of the 6 function is &u independent. )
Therefore, we focus our attention on the II(P„,

n; R, E+E&))}, and in order to establish the corre-
spondence between Eq. (28) and the usual three-
step model, we extract from the 5R's the remnant
they contain of crystal-momentum conservation
normal to the surface. For this purpose, we turn
to the determination of the forms of the U(p, z; R,
E+ h&))) and Vf~(r)~ ( p, z) which enter Eq. (34).

We begin by making use of the fact that asample's
crystal potential, '0(p, z), may generally be as-
sumed only to differ from its bulk form in the sam-
ple's outermost atomic layer [or possibly two or
three layers, in the case of impurity adsorption
or surface rearrangement]. Thus let us choose
our origin of coordinates to a layer or so below
the sample surface, and assume that for z &0,
'U(p, z) has completely "healed" to its bulk form.

Then for any z &~ 0,

'0(p, z) = V(p+ c„,z + c,),
where the lattice translation vector c—= (c„, c,) con-
nects any point (p, z) to the nearest equivalent
point in a deeper layer of the lattice, and the
wave functions U(p, z; R; E+h&&)) and V~&r&, ~ (p, z),
which enter Eq. (34), may be expressed as linear
combinations of propagating and evanescent Bloch
functions of z. For example U takes the form,

U(p, z; R;E+hu) =P T„"(kt,"'; E+hm)

xg„', (p, z;g"), Zg,

while for surface states, one has

(38)

in the reduced zone scheme, where n" is a three-
dimensional band index, and where f„. ( p, z; k,',"';
E+hu) is a periodic function of p and z [in the

same sense as is '0(p, z}, cf. Eq. (36)], with the

periodicity of the semi-infinite crystal lattice.
Since U is a wave function representing a beam of

electrons incident on the sample from the vacuum

side, the Bloch functions in Eq. (37) are necessari-
ly "outgoing" at z = «, and therefore the wave vec-
tors k„which are in general complex, have non-
negative real and imaginary parts. If the crystal
potential is assumed to be real, then certain of the

k, in Eq. (37) may be pure real, corresponding to
the transmission of the incident electron beam into
the sample in bulk Bloch wave band states. For
these k„ the corresponding constants T„., (k(r),

E+Iiur) represent transmission amplitudes. If none

of the k, in Eq. (37) are real [still assuming

g(p, z) to be nonabsorptive], then the incident
electron beam's energy and momentum along the
surface correspond to a band gap in the solid's E
vs k relation, and the beam suffers total exter-
nal reflection. If more realistically, u(p, z) is
assumed to have an absorptive (i.e. , imaginary)
part, representing inelastic electron scattering,
then all of the k, in Eq. (37) will be complex. The
constants T„,.(P„"), E+I&o), we note, can be eval-
uated by matching at the plane z = 0. [Before leav-
ing the U's we wish to emphasize the fact that
these wave functions are identical to those which
one calculates in the multiple scattering theory of
LEED. Thus large computer programs for calcu-
lating the U's are available atpresent. The modifica-
tion of such programs for the calculation of the
V'""s should not present any particular difficulty,
except that an accurate calculation of them will
probably require the use of a self-consistent
'0(p, z). ' Evaluations of the self-consistent
'U(p, z) together with the corresponding V'"' have
recently been carried out, for a few materials:
Si, "Al,

"and the alkali metals. '
]

The form of the expression analogous to Eq. (37)
(n)

for the occupied state wave functions, Vf(r& &, (p, z),
is different depending on whether V„-&r) ~ (p zI is
supposed to represent a bulk-band state or a sur-
face state. For bulk bands, one has~

(n) «(r)
V (r) (p z) e &Pp(zt~ )gg f&(p z k(r&E )

—-(r)
+ g (k(r) E~e&0„(EII(,

&

) s
nn'

nl I

(r)xe'~" '""'" +'" f„., (p, z;k,',"';E+k ),
Vf~(r) (p, z) = g C„„,(k(r&, E)

II n'

(r)xe~)'"' ' " '~g (p z'k„"' E) . (39)
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In Eqs. (38) and (39), the reduced zone scheme
is used, n and n' are three-dimensional band in-
dices, and the g'„(p, z, k,',"', E) are periodic func-
tions of p and z having the periodicity of the semi-
infinite crystal lattice. ' The amplitudes C„„.(k,',"',
E)are determined by matching at z=0.

Recall that in reducing the spectral function
G'(x1, Xz, E) of Eq. (16) to the form

2((i Q 5(E E,)(—)),(x, ))t),*(xz)
cecuyfed f

in Eq. (17), we made explicit use of the assump-
tion that the crystal potential M(p, z}be real. Thus
although we may assume '0(p, z) to have an energy-
dependent imaginary part which is large enough at
energy E+hu to account for the inelastic scatter-
ing of outgoing photoelectrons, this imaginary part

of U must also be assumed to vanish at the energies
E of the occupied states. This latter assumption
implies that the wave vectors P„,(E, k,',"') in Eq. (38}
are either pure real (and by convention positive),
or complex and of positive imaginary part. The
wave vector p„(E, k,',"') is evidently one of the pure-
ly real p's. At energies E such that no real p„.(E,
F„")exist, one is in a band gap, and one searches
for surface states, whose wave functions for z & 0
are as in Eq. (39).

We now make use of Eqs. (37) and (38) to extract
the factor in the photoemission matrix element
K(P„, n; R, E+h&u) [Eq. (34)] which represents the
remnant of crystal-momentum conservation nor-
mal to the sample surface. Substituting Eqs. (37)
and (38) into Eq. (34), we find for photoemission
from a bulk band state,

K(P„, n; R, E+ fi(L)) =K, (P„, n; R, E+ jim) + Q T„"(k,',";E+ ff(()) 6„„„(kI",E, ff(())M „„„(kI~"',E& fi(() )
n''

+P Cg (Pj~ y
E}i)+ (kI[ ~ Ey fl (())M & & (k y Ey fi(())

n'
(40)

In Eq. (40), K, represents the contribution to K(P„, n; R, E+h(()) from the integration of z between —«and
0 [cf. Eq. (34)]. The factors M'„„„,(k',"', E, k'&u) are given by

( Cl
«(y)M'„„,(k("), Z, k(u}=- (fz (f'pe '"' '""'"~~ '"""f~ (p z F"'Z+fi(u)

"P "0

E igll'k + E ~ V e " ' " „p z'k 'E
Z

(41)

and represent intralayer contributions to the photoexcitation matrix element. Finally, the factors 4'„" „.
in Eq. (40) are defined by

(kI( E 5(d) = (1 —exp (ic, [+p„, (E kI( ) kg (E + ff(() k~~ )1 )]J) (42)

they represent the interference of the contributions
to;)K from the different layers of the sample.

Note that if

c, Imk, (E + fi&g, k,',"', n")« I, (43}

then 6„'„„,(k(,"), E, fi(()) is sharply peaked whenever
E and k', "' are such that the equation

p (Z k~jj )=Rek((E+fi(u kI( n ) (44)

is satisfied. Equation (44) is, of course, the equa-
tion representing crystal-momentum conservation
in the z direction. Thus the factors 4'„" „. in Eq.
(40) represent the remnant of this conservation law
in photoemission from a semiinfinite sample. For
each set of n" and n', it is clear that the values of
Z and k,',"' at which Eq. (44) is satisfied depend on
hu. Thus the peaks in 3R(p„, n; R, E+hv) contrib-
uted by the 4'„" „.(k,',"', E, h&u) will move with K&u.

[These peaks should give rise to the most impor-
tant co-dependent structure in PED's. Therefore
one should be able to use the observed co dependence

of PED peak position, heights, and widths in con-
junction with model-band calculations to determine
the energy-band dispersion relations of the corre-
sponding sample. ]

We focus first on the case that Eq. (43) is well
satisfied by one or more of the k, (E+hm, k,',"', n")
In this case, among the various contributions to

IK(P„, n; R, E+fiu))l, the largest are from terms
which involve I &„'" „,(k,',"', E, K&u)l, since 6'„.~ „,
and its complex conjugate blow up simultaneously.
Therefore, let us ignore cross terms [those in-
volving hp „...o.'„,. „., n'")(n'] and see how the
familiar semiclassical model of photoemission can
be recovered from Eq. (28), our Fermi's Golden
Rule. '

From Eq. (42), we obtain the expression,

Iz'".. (k'"', E, k~)i'=((I —8 "" '" ')'
+4e-era] (n" ) sinz(i(c [k(1) (

—P„(E,k,',"')]]}', (45)



PETER J. FEIBELMAN AND D. E. EASTMAN 10

in which k,'"(n") and k,' '(n"') are, respectively, the

real and imaginary parts of k, (E+ h&u, k,',"', n"),
and, of course, p„.(E, k,',"') is one of the set of p's
which are real (and positive). However, we are
only interested in the contributions of the peaks of

Therefore we reduce Eq. (45} to the
approximate form,

x 5(k,'"(n") —p„, (Z, k,',"')) .
(47)

We now substitute Eq. (40) into Eq. (28), ignore
all cross terms and terms involving 5R, or 6„„„,
make use of Eq. (47), and finally, we take advan-
tage of the theorem

1~ [k'"(n")]'+[k'" (n") P;+,-kIi" )]

(46)

oc:t:uyi ed

dE.(„)
(n' )

&+n'

&Pn'

(48)

in which the heights and half-widths of the peaks
are seen to equal [c,k,' ~(n")] and k,' '(n"), re-
spectively. In the limit that k,'@(n") approaches
zero, Eq. (46) may be written

which is a consequence of current conservation and
the principle of detailed balance, ' for values of n'

such that p„.(E, g,"') is real. We thereby arrive at
the approximate expression for the photocurrent,

na (R E+k&u

(n' ) w1

x2, &,& „5(k,'"(n "}—p„.(Z, 8„")) f,',"'.~„.
~

M'„„,„,(2„"',Z, n~)
~

',
„. c',k,'" n"

uPn'

(49)

in which the sum on n' is restricted to values such that p„.(Z, k,',") is real, and the sum on n" includes only
those values for which Eq. (43) is well satisfied.

Since we have already assumed k,'@(n") to be small in evaluating the contribution of I
h„'. , „.I to Eq. (49),

it would seem reasonable to neglect it as well in evaluating M'„, . „,(k',", E, hu) [via Eq. (41)]. In this ap-
proximation, however, M„„„, is just the integral over a unit cell of (1/i)& ~ V sandwiched between initial
and final Bloch wave functions, which carry no information regarding the existence of a surface.

Thus only [k,' '(n")] and I T„"(k,',"', E+kv) I carry surface information in the small-k, ' '(n") approxima-
tion. The photoelectron escape depth is represented by [k,' '(n")] ~ itself; that is, (k,'@) ' equals the aver-
age depth from which a photoelectron can travel to the sample surface without suffering an inelastic colli-
sion. The probability that an electron which arrives at the surface will be transmitted into the vacuum is
represented by I T„"(kp, E+If&u)l, in Eq. (49). [Although I T„., I' is actually a coefficient for transmission
of an electron into the solid from the vacuum, the law of detailed balance relates such a coefficient to one
for transmission in the other direction (cf. Eq. (51) below). ]

We see, therefore, that Eq. (49) represents photoemission as a three-step process: photoexcitation
treated as a bulk process, transport to the surface without energy loss of electrons that were photoexcited
within an average depth [k& '(n")] ~ below it, and transmission into the vacuum. Equation (49) is, there-
fore, precisely a "three-step model" formula for the angle-resolved photocurrent, j„(R, E+Iiv).

From Eq. (49) it is straightforward to obtain the corresponding formula for the angle-integrated current,
J„(E+h~). One has

6 [(2m/5 ') (Z+ k(u) —k'„]
X

I
d k„[(2 / ) (Z ) k ]' z '„R, 8+k(d (50)

For the sake of comparison with the usual three-step model, we make use of the relation between the
I T„"(k,',"', E+kru)l and the probability, P(n", k'"', E+R~-k„, E+hu), for a Bloch electron arriving at the
surface with quantum numbers n", k,',"', E+5~ to be transmitted into the vacuum in the plane-wave state

exp(i k„~ p —i[(2m/k' ) (E+h~) —kz]'~ zz].

According to the law of detailed balance, this relation is given as'
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where v~ is
dE'"

dy&1) (nr I)

vp(kII y
E+5(d)

(51)

(52}

and represents the Bloch wave group velocity along the surface normal, where vo(k~) E+If(d) is defined by

vo(kg &
E+5(d) = [(2/m) (E+h&d) —(IIk,/m)']"', (53)

-=l dK5(8-E'&„)) )B(~K),
&-(r& )7II y K

%K

we find the expression for J„(E+If&d),
2 4

R ~&e e, ) +4es=, ', ~ g e a, e(„'„&e+e, ) -a„',)J. n' ',n™

and represents the normal velocity associated with the plane wave. Substituting Eqs. (51) and (49) into Eq.
(50) and recalling the identity

II 'I

(54)dK

dKB(K) &g), „) P(n", k,',"', E+h«)-R, E+h&d)
kj (n"

)& 5(E+If&d —E " ') 5(E —E'&„) ) l

M„'„„.(k'"', E, if&d)l
II

The B (xK) in Eq. (54) is necessary in order that we satisfy the 5 function for only one sign of K.
We convert Eq. (55) into its final form by making use of the equivalence,

(55)

~

d'k, ~
i

d'k, ',"'
GII 2D az

Substituting Eq. (56) into Eq. (55}, we obtain the formula

2 4
Rd. (E+@&d)=«&S - —~s Z g d'u&, ")dK

I III I A(d CZ „~ ~ „~ G ~gZ j'2
II

(56)

x5(E+g~-E.'&.I' )5(E E'„"')l~„.-, „,(k,',"', E, @m)l'.
, K X„,K

Apart from the sum on G„, Eq. (57) is identical11
to the usual semiclassical three-step model formu-
la for J„(E+h&d). The sum on G„represents the
fact that since momentum parallel to the surface is
only conserved to within a two-dimensional recipro-
cal lattice vector, a Bloch wave of crystal momen-
tum k,',"' can be transmitted into the vacuum in any
of a number of beams, i. e. , those with k„equal to
k,',"'+G„. In the usual semiclassical formulation
one ignores this possibility, but only for the sake
of convenience. If one took it into account, the
semiclassical formula and Eq. (57) would agree
exactly.

Let us turn, finally, to the question of actual
calculations of photocurrents using the formulas we
have derived. First, we notice that momentum
conservation structure is much sharper and more

pronounced in the angle-resolved photocurrent
j„(R, E+h&))) [where, cf. , Eq. (49), it is 5-function-
like] than in the angle-integrated current J„(E+Il&d)
[where, cf. Eq. (5V), it is of the form of critical-
point singularities in the energy distribution of joint
density of states"' ]. The reason for this differ-
ence is clear; if one observes at fixed R, two more
selection rules, conservation of each of the compo-
nents of R,',"', can prevent one from seeing a photo-
electron than if one observes at all angles. We
therefore conclude the following: (a) ln order to use
photoemission spectra to determine a sample's
bulk density of states, one should measure angle-
integrated photocurrents which are less strongly
modulated by momentum-conservation structure.
(b) Conversely, in order to obtain detailed band-
structure information it will be useful to observe
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photoemission as a function of R (assuming specu-
lar surfaces can be achieved). (c) In the case that
one sees sharp well-separated peaks in angle-re-
solved PED's, one should be able to deduce from
their widths, the electron inelastic mean free paths,
[k,'@(u")], which are not otherwise easily mea-
surable. This result follows if one uses the more
realistic expression for the I b„'.. „.(k,',"', E, II~)l,
Eq. (46), rather than that of Eq. (47) to obtain a
formula for j„(R, E+8&u).

In the important energy range 20 eV» E+hw
which is less than a few 10 eV, for most materi-
als, electron mean free paths are known ' ' to be
quite short. In this regime, therefore, it is
altogether inappropriate to make use of the approx-
imation that the k,' '(n")=0. In order to calculate
photocurrents for these energies one must return
to Eq. (40), for K(P„, n; R, E+5td}, and substitute
it into Eq. (28). In such a calculation, surface ef-
fects become important. These effects are quali-
tatively discussed in Sec. IV.

IV. QUALITATIVE DESCRIPTION OF PHOTOEMISSION
FOR SEVERAL REGIMES

(a) BULK
CASE

(b)
CASE

(c
CASE

PHOTOEMISSION EXAMPLES

VACUUM, SOLID

In this section, we describe the trend from the
ultraviolet photoemission (or "band structure")
regime described in Sec. III to the x-ray photo-
emission (or "density-of-states") regime In a.n
independent-particle description, this gradual
transition depends on (a) the k-dependent escape
depths of the emerging photoelectrons, (b) the co-
herence lengths of the holes which are created, and
(c) the increasing number of final-state energy
bands at higher electron energies. We also describe
the "band gap" case of directional photoemission
in which the final-state LEED wave function has no

propagating Bloch-like component in the solid but
only rapidly decaying evanescent ones. In this
case, the surface contribution to the photocurrent
becomes enhanced relative to that of the "bulk. "
Photoemission from localized intrinsic and ex-
trinsic (e. g. , adsorbate) surface states are also
briefly described.

A. "Bulk" ultraviolet photoemission spectroscopy (UPS) and
x-ray photoemission spectroscopy (XPS) limits

In Sec. III, conservation of crystal momentum
was shown to depend on the existence of sufficient-
ly weak damping [Eq. (43)], i. e. , a sufficiently large
attenuation depth (k,'@) ~. In this case, which is of-
ten satisfied in the ultraviolet photoemission re-
gime at low photon energies, h&-dependent struc-
ture is observed in the PED's which reflects struc-
ture in the energy distribution of the joint density
of states (EDJDOS). This "direct interband tran-
sition" case is schematically shown in Fig. 5(a}.
However, the existence of weak damping [Eq. (43)]

FIG. 5. (a) Schematic diagram of the initial-state wave
function 4& and final-state wave function @& involved in
direct interband transitions for the care of 'bulk" photo-
emission from a semi-infinite solid. (b) Schematic dia-
gram for the band-gap case in which the final-state wave
function f]I)& corresponds to a band gap in the solid and
thus within the solid consists only of rapidly decaying
surface evanescent waves. (c) Schematic diagram of 4'&

and @& for the case of an adsorbate with localized initial-
state wavefunctions +&.

is a necessary but not sufficient condition for PED's
to reflect structure in the EDJDOS. That is, it is
well known that XPS primarily measures structure
in the single-particle density of states (DOS) rather
than the EDJDOS, even though the weak-damping
condition [Eq. (43)] is well satisfied. I The latter
occurs because the density of available final states
which conserve both energy and momentum becomes
sufficiently large, relative to the momentum broad-
ening k,' ', that all initial states can be excited.

To show this trend from the UPS to the XPS re-
gime qualitatively, we consider a nearly-free-
electron (NFE) model. For this model the density
of final states per unit volume varies as p(E)
= l. 5E ~ /Ez~z and the average band width of each
band (reduced-zone scheme) is W= (2k E/m} k».
Here k» is the Brillouin-zone momentum and we
have normalized to one state for E=Ezz=h ksz/
2m. Thus the number of bands Ns(E) at energy E
is N~(E)= p(E)W=3E/Ezz. Since each band passes
through one k, point for each k„, the average sepa-
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ration 5k, of available k, states at an energy E is

5k~= ksz /NB =EBzksz ~3E . (58)

A criterion for the XPS limit is the existence of
a "quasicontinuum" of final states such that all
initial states can be excited, that is,

&k, - k,' '(E+h(u, R,',"', n"), (59)

A-t

0.4 I-

0.3

0.2

'T 1 T 1 ~ T

ENERGY-DEPENDENT MOMENTUM BROADENING It ~i

I

~TYPICAL RANGE OF

namely, if the average separation 6k, of available
k, states at energy E=E+Su is less than the
broadening k,' ', then all initial states at energy E
(any k, ) are excited with equal probability so far
as phase space is concerned. The above criterion
is valid for the case of polycrystalline samples,
and possibly for the case of angle-integrated photo-
emission from single crystals at moderate-to-high
energies. The available final-state phase space
becomes smaller (i. e. , 5k, becomes larger) for
the case of photoemission from single crystals
at low energies, especially of course, for angle-
resolved photoemission.

In Fig. 6, we show the typical range of values
of k,' '(E) for most materials, where k,'~~(E) = ).,,'
for electrons emitted normal to the surface. Also
shown in Fig. (6) is 5k, (E}for a NFE model. Here
we have used a = 4 A and an inner potential Vo
—8 eV. As shown in Fig. 6, the XPS limit [Eq.
(59)] is typically reached for K~~ 20 to 40 eV, the
exact value depending on the electron escape depth
&«= (k,' ' cose), crystal structure, etc (here. cosa
is the direction cosine of the electron momentum
relative to the surface normal). This result is con-
sistent with photoemission measurements for poly-

crystalline Au ~0'" (Fig. 1) as well as for many
other materials that have been studied. While
structures in PED's tend to have invariant binding
energies in the XPS limit, relative peak heights
and peak shapes are often frequency dependent due
to characteristic frequency-dependent dipole ma-
trix elements [Eq. (40)], for various s, p, d, and

f states. These frequency dependences are often
large in the 15 $(d 100-eV range and can some-
times be used to identify the character of various
valence states, as well as the partial densities
of states.

Returning now to the UPS band-structure regime,
an additional criterion for PED's to reflect struc-
ture in the EDJDOS is that the initial hole state
have a sufficiently long coherence length, i.e. , a
sufficiently small momentum broadening ~p, . On
dimensional grounds, it is clear that the criterion
for hole states to be well defined is of the form

cd, ( Ek'"', n') «1 .
Typically, this criterion is well satisfied for ex-
tended hole states near the top of the valence band
but can be violated for strongly damped hole states
such as the lowest valence s-band states in covalent
semiconductors (e. g. , Si, Ge). Hole states which
are localized by virtue of a narrow bandwidth also
violate this criterion.

We can now summarize criteria for the XPS and
"band-structure" regimes. The main criterion for
the XPS regime, i. e. , for PED's to reflect struc-
ture in the DOS (weighted by transition probabil-
ities), is given by Eq. (59) for the case of poly-
crystalline specimens. In this regime, well-de-
fined k-conserving transitions [Eq. (43)] usually
occur for h~~ 50 eV. The criteria for the "band
structure" regime, e. g. , for PED's to reflect
structure in the EDJDOS are more stringent and

are given by

(a) c,nP, (E, P„"',n"}«1, (60)
0 I

0.08 6

0.06-
(b) k' '(E+h(u, k,',"', n")& 5k, , (61)

0.04;

0.02-

O.OI-
I IO IOO

ELECTRON ENERGY (eV}

j
IOOO

FIG. 6. Illustration of the trend from the band-struc-
ture photoemission regime (with direct interband transi-
tions) at low electron energies to the XPS or photoemis-
sion-density-of-states regime, at high photon energies.
These regimes are defined by k~ & 6k~ and k~ & t5k~, re-
spectively. Here k~ is the electron momentum broaden-
ing normal to the surface (k~ =~« for electrons emitted
normal to the surface) and 6k~ is the average momentum

separation normal to the surface of available k~ states at
an energy E for polycrystalline samples. The shaded re-
gion shows the typical range of k~ =&~ for most
materials (Refs. 59 and 60).

where k,'@ = (A.„cose) ' and 5k, is crudely given by
Eq. (58). [Note that Eq. (61) automatically im-
plies the satisfaction of Eq. (43), the final state
condition for the existence of direct interband tran-
sitions. ]

While discussing the "band-structure" regime,
it is worthwhile to point out that the damping con-
stant k'@(E+5&u, P„"', n") depends on the band

structure, as has been previously noted. ~' ' In

particular, in the "random-R' or "phase-space"
approximation, ~ the inelastic scattering length
X„=(k,'" cose) ' is

(E P„, „) (E+h ) 'BE„"(k)
( )88

where the lifetime r (see Ref. 66) is a slowly vary-
ing function of the electron energy E while the



4944 PETER J. FEIBELMAN AND D. E. EASTMAN 10

group velocity v=8 (sE/sk) is anisotropic and can
vary rapidly. The k dependence of k,' ' can signifi-
cantly modulate structure in the PED.

II
I),)f (A)

8. Direction "band-gap" photoelectron emission

An interesting special case is that of angular-re-
solved photoemission from a single crystal surface
with conditions such that the final-state LEED wave
function f& with energy E and parallel momentum
k,',"' corresponds to a band gap for all k, in the sol-
id. In this case, P& within the solid consists only
of surface evanescent waves which rapidly decay
into the solid [see Fig. 5(b)] with a decay length

For these conditions, only wave functions
within a small distance - X,~ of the surface contrib-
ute to the photocurrent, and the surface contribu-
tion (e. g. , emission from occupied "intrinsic"
surface states or adsorbate surface states) be-
comes greatly enhanced relative to the usual "bulk,"
contribution.

We wish to estimate crudely the decay length
~gzy of the evanescent wave, which corresponds
to a momentum broadening k,'~. For this purpose
we use a 2-orthogonalized-plane-wave model,
with a Brillouin-zone band gap E„,= 2VO centered
at Esz =h ksz/2m. For electron energies E in the
gap Esz —~0& E& Egz + Vo we obtain an evanescent
wave solution with a complex wave vecto~ k= k&z
+ ik' ' with

kz~(E) = (2m'/5 ) [(4EEsz+ Vo) —(E+EJ3z)]

(68)
As an illustrative example, we consider the W

(110) face studied by Feuerbacher et al. ,
't which

has a [110]-direction band gap extending from
about 6-11 eV above the Fermi energy EJ;. For our
crude model, we take Vo = —,'E,~ = 2. 5 eV and Esz
= 8. 5 eV. Equation (63) then yields k,'~(E) = 0. 51
[(84E+6.25)' —8. 5E]'~z A ' for energies (in eV)
in the gap 6& E& 11 eV. To lowest order, the mo-
mentum broadening due to inelastic electron-elec-
tron scattering k,' ' and to the evanescent wave de-
cay k,'~ are additive:

k,'„'(E)= k,' '(E)+kg'~(E) .

As is well known in LEED (and seen in Eq. (64)),
band gaps cease to exist for finite damping k,' ' & 0.
Rather, these energy regions correspond to regions
of enhanced electron reflection from the surface
with enhanced attenuation within the solid.

In Fig. 7, we estimate crudely the final-state
total attenuation length A.„,= (k,'z', ) ' for photo-
emitted electrons normal to the (110) surface of
W. We have used Eq. (64) and have assumed a
constant A,„=6A for 5 E 15 eV, which is only a

X „=6A
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rough guess based on experimental observations of
a very short mean free path ~« for W in general in
this energy range. Note in Fig. 7 that-even if the
damping due to electron-electron scattering is
large (e. g. , A.„-6 A), damping is significantly in-
creased in the gap region (A«, -—3 A at 8. 5 eV) due
to the evanescent wave decay. Thus the main con-
tribution to the photocurrent R j„(R, E) for E in the
gap is given by the outermost couple of layers at the
surface. It is worth noting the implication of this
result vis-5, -vis attempts to correlate photoemis-
sion data with a surface "local density of states. "
Since even in the center of the gap, A.„,=two lay-
ers, it appears as if such data will correlate with
the non-local density of states, (i. e. , G'(x„xz; E)
averaged properly over this distance [cf. Eq. (16)]
and not with the local state density [defined as
G'(x~, x„E)]. Stated another way, photoemission
samples all occupied states (surface and bulk for
the semi-infinite solid which conserve energy [see
Eq. (17)], with each state I (, ) being weighted by
its transition probability 1($&!0.5(A ~ P+P ~ A)
x I g))l

Quantitative calculations of band-gap emission
can be made using Eqs. (28) and (40) and appropri-
ate LEED-type band calculations. Such "band-gap"
photoemission studies are interesting in that the
surface sensitivity of photoemission spectroscopy
(PES) can be enhanced and it appears to be possi-
ble in favorable cases to sort out surface and bulk
states by varying her such that E passes through a
gap region for an initial state in question.

C. Photoemission from adsorbate surface states

We consider the case of localized adsorbate sur-
face states, as schematically shown in Fig. 5(c).

FIG. 7. Schematic diagram of the effective inelastic
mean free path Xyff for the band-gap case of photoemission.
A constant bulk X«=6 A has been assumed, with a 5-eV
band gap extending from 6 to 11 eV above the Fermi
energy Fz (see text).
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Examples of such states include inorganic (e. g. ,
0, CO) or organic (e. g. , C2Hv, , C6H6) adsorbates
on surfaces for the case when adsorbate energy
levels are not degenerate with substrate energy lev-
els. When the adsorbate wave function (or ad-
sorbate-induced "surface-molecule" wave function)
is largely confined to the adsorbate layer of thick-
ness d- 2ro, where ro = adsorbate radius, it has a
momentum spread 5k, -2v/d and we expect no strong
Itu-dependent changes in the corresponding ad-
sorbate-derived peak locations in the spectra.
Thus, to a first approximation, the spectral dis-
tribution of ionization energies for an adsorbate
surface state can be measured using photoemis-
sion.

However, an independent-particle picture is not
valid when the initial state is localized as we have
assumed; that is, significant many-electron relaxa-
tion effects can occur in the photoemission process
manifesting the breakdown of Koopmans's theorem.
Examples include initial- and final-state polariza-
tion effects, image-charge-screening effects,
shake-up processes, and multiplet-structure ef-
fects. For instance, polarization effects and final-
state image-charge screening reduce the ionization
energies of an adsorbed molecule relative to the
corresponding gas -phase ionization energies.
Also, significant final-state hole multiplet struc-
ture can occur for localized hole states, i. e. , the
hole state can be left in an excited electronic state
such as an excited angular-momentum state.
Thus, since photoemission never measures the
ground state directly but rather leaves the solid in
an excited state, it can never measure the local
density of states which one would calculate in an
independent electron approximation. (This state-
ment is equally true for surface levels, e. g. ,
those associated with an adatom, and for bulk
states, e. g. , ordinary core levels. )

Regarding the interpretation of photoemission
data for adsorbates, one must also consider the
effects of final-state interactions. In particular,
multiple-beam and final-state interference effects
(contained in &f&&) induced by the adsorbate can also

affect detailed line shapes and relative S(d-depen-
dent peak amplitudes. Limited experimental evi-
dence to date given by spectra taken with large
collection angles suggests that such effects are
small,

We turn, finally, from an interpretation of spec-
tral features associated with adsorbate levels to a
discussion of their amplitudes. Specifically, in
addition to its importance in determining the na-
ture of photoemission spectra, the electron dainping

length (k,' ') t, or effective mean free path, plays
an important role in determining the sensitivity of
photoemission spectroscopy as a surface tool. A
measure of surface sensitivity is I~/Is, the ratio
of surface -to-bulk emission intensities. For an
adsorbate layer of thickness d, we can roughly esti-
mate

IS/IB dkJ. +S (%)/+B (~) yl

where o~(u) and os(&u) are the absorption cross sec-
tions for surface and bulk excitations. As is obvi-
ous, surface sensitivity is further enhanced when
the adsorbate levels are nondegenerate with the bulk
levels. Equation (15) readily shows that surface
sensitivity is enhanced for large k,' ', i. e. , short
mean free paths, which typically occur for energies
of 15~ E~ 100 eV (Fig. 6). However, o~(r~) and
os(&u) often have energy-dependent variations which
are stronger than those of k,' '. In these cases the
energy range for optimum surface sensitivity may
be determined by these o(~)'s rather than by k,' '.
For example, many adsorbates of interest have s-
and p-derived valence orbitals while many sub-
strates of interest have valence d electrons. In
this case the ratio o~(ur)/os(&u) has a strong fre-
quency dependence and is often largest for low
energies h~ 20 eV, depending in detail on the na-
ture of the initial states I g, ) involved.
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