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The electronic energy-band structure of molybdenum has been calculated by means of the relativistic

augmented-plane-eave method applied to the overlapping charge-density model. Full Slater exchange

was employed. Calculations of extremal calipers, extremal cross-sectional areas, and cyclotron eAective

masses for the magnetic field along symmetry directions are reported and compared with experimental

data where available. Comparison of the theoretical and experimental cyclotron-mass data indicate an

anisotropic electron-phonon mass enhancement of approximately 0.33, which is smaller than the

McMillan value of 0.41.

1. INTRODUCTION

The electronic structure of the chromium-group
metals (Cr, Mo, W) has continued to be of interest
to research workers. Severa1. years ago Lomer'
introduced a model for the Fermi surface of these
elements based on the augmented-plane-wave
(APW) band-structure calculations on iron per-
formed by Wood. ~ This surface consists of four
sheets: (i) The largest surface, which arises from
the fourth band, is the electron jack centered at
the point I' of the Brillouin zone (BZ); (ii) the next
largest surface is the third-band hole octahedron
at H; (iii) the six nearly ellipsoidal third-band hole
surfaces at the N points; (iv} the smallest surfaces
which are the six electron fifth-band lenses located
on the 4 line. The Fermi surface of molybdenum
has been studied experimentally by the de Haas-van
Alphen (dHvA) effect, m ~ radio-frequency size ef-
fect (RFSE), ' magnetoacoustic geometric reso-
nance (FR), ' ' ' and cyclotron resonance (CR). '

The results of these investigations are in qualitative
agreement with the Lomer model. First-principles
APW band-structure calculations for molybdenum
were performed by Loucks" and Mattheiss. ' More
recently, Kim and Buyers' and separately Iverson
and Hodges' performed calculations using inter-
polating schemes; Petroff a.nd Viswanathan carried
out AP% calculations and Christensen did a rela-
tivistic APW (RAPW) calculation. ' The Fermi
surface of Mo was recently parameterized" by
fitting the dHvA data of Hoekstra and Stanford to
a nonspherical muffin-tin model for the potential
using a relativistic generalization of the Green s-
function formalism of John, Lehmann, and
Ziesche. ~o

What remains to be understood in the electronic
structure of molybdenum (and many other transi-
tion metals) are those properties in which the wave
functions play a significant role. Except for cal-

culations of the photoemission spectrum by Petroff
and Viswanathan' and the Compton profiles by Kim
and Buyers' little has yet been attempted in this
direction for transition metals, primarily due to
computational costs. Two areas which we feel de-
serve special attention are the weQ-known phonon-
anomalies of the Mo-Nb system~' together with the
related superconducting transition temperature
T, , and the use of molybdenum as a host to study

impurity and defect structures (the latter will be
the subject of a future publicationa'). The multi-

plicity of Fermi-surface sheets, the high-percen-
tage d-1.ike character, and low density of states at
the Fermi energy makes such studies in molybdenum
especially attractive; molybdenum is one of the few
transition met*is with an electronic-specific-heat
coefficient comparable to noble or simple metals.

In this paper we consider the electronic band
structure of molybdenum by means of RAPW cal-
culations. Before embarking on elaborate calcu-
lations of these properties requiring wave functions,
it was felt that a detailed comparison of the band-
structure results with the empirical Fermi-surface
data was essential. Moreover, recent RFSE caliper
data of Boiko et al. and Cleveland and Stanford
and the dHvA data of Hoekstra and Stanford6 were
substantially more complete than previous work.
In addition, the approximately 5% differences (far
greater than the combined experimental errors re-
ported} between the two sets of caliper measure-
ments required theoretical examination; especially
important was the larger gap reported between
the jack and octahedron, since this implied a spin-
orbit splitting some three times larger than the 4d
atomic value for molybdenum. Other workers~
had found that such spin-orbit splittings, at least
in the calculations, rather closely follow the atomic
values.

The plan of this paper is as follows: Sec. II
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briefly reviews the HAPW method; Sec. III presents
and discusses our results; and Sec. IV draws our
conclusions.

TABLE I. Parameters for HAP% calculation.

5. 9468 a. u. lattice constant

4d'5s' assumed atomic configuration
II. RELATIVISTIC-AUGMENTED-PLANE-%AVE

METHOD

The APW method, as conceived by Slater in
1937, has been extended to include relativistic ef-
fects by a number of workers. In this form the
method has been successfully applied to the elec-
tronic structure of noble, transition, and actinide
metals and compounds. The periodic potential is
factorized within a unit cell into two regions: in-
side and outside a sphere whose radius w'as com-
parable to, but less than, a Wigner-8eitz radius-
the so-called "muffin-tin radius. " Outside the
sphere the potential was averaged and then assumed
constant; inside it was assumed to be spherically
symmetric. Because of its shape, this approxima-
tion has been called the "muffin-tin" (MT) approxi-
mation by Ziman, and because of its simplicity and
high accuracy, it has been almost universally uti-
lized. One of the advantages of the RAP% method
compared with the Korringa-Rohn-Rostoker or
Green's-function band-structure technique~' is the
ease with which the corrections to the muffin-tin
form may be included in the secular equation —the
so-called warped-muffin-tin (WMT) approximation.
(It involves exactly the same operations to include
the nonspherical potential terms inside the
spheres. ) Basically the "outside" potential is ex-
panded in a Fourier series

V,„,(r) =Q V(K)e'"' ~

$ band 0. 0073 Ry band spin orbit = 3 (r„-r„)
1 V[000] —1.78 mRy

2 V[220] —1.33 mRy

3 V[400] + 7. 95 mRy

4 V[422] +0. 12 mRy

5 V[440] —1.45 mHy

6 V[620] —3. 65 mRy

7 V[444] —1.81 mRy

8 V[6421 +1 88 mRy

9 V[8001 +4. 21 mRy

10 V[6601 +0.69 mRy

small difference between the two spin-orbit-split
radial wave functions was made approximately self-
consistent. Table I shows that if we represent the
splitting at I' approximately as a tight-binding de-
rived spin-orbit splitting, ~9 then the value of g is
similar to an atomic spin-orbit splitting. As An-
dersen has discussed, 'o this splitting (viewed this
way) is also k-dependent. At no place in the BZ
would the tight-binding spin-orbit approximation
be greatly in error.

III. RESULTS AND DISCUSSION

2. 5551 a. u. muffin-tin radius

$ atomic 0. 0072 Ry atomic spin-orbit splitting (4d)
=2[E(l+2) -E(l —2)]/(2l+1)

where V,„, is constructed to be zero inside the muf-
fin-tin spheres. Because the RAPW's are simply
plane waves in the external or interstitial part of
the cell, the matrix elements are readily found~'

to be

Table I lists the first 10 matrix elements V(E)(or-'
dered by length). Generally the matrix elements
of higher K are small (of the order of or less than
1 mRy), except for those associated with the
"large" [100] direction.

The potential chosen was derived from the usual
overlapping charge-density model, and a 4d 5s'
configuration was assumed. Because of the im-
portance of the spin-orbit effect on the Fermi sur-
face of molybdenum the d portion of the potential
was constructed from a mixed-spin orbital: Two
states were assumed to be 4d, - three were 4d
and, finally, one state was 5s' . In this way the

The HAPW method and the potential of the last
section were used to find the energy bands along
the principal symmetry directions. The results
for the lowest six bands are given in Fig. 1 and
are qualitatively similar to previously published
work with a relatively broad and free electron like
s-P band intersecting and hybridizing with a d-band
complex. The small shifts due to the MT potential
compared with the WMT potential were too small
to be seen clearly on this scale and so are not pre-
sented. The Fermi energy (discussed below) in-
tersects the band structure sever@, l times along the
symmetry directions, but, counting from the low-
est level I'6, , does not intersect bands 1 or 2 at
al', bands 3-5 comprise the Fermi surface.

In addition to the points along the symmetry di-
rections, the lowest six energy bands were found
on a v/4a mesh and at an additional set of k points
at body-centered sites near the Fermi surface, so
that a total of 94 independent points in P~ of the BZ
were found. These were then fit with a Foorier
series of the form
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FIG. 1. Relativistic-augmented-plane-wave energy
bands of molybdenum along high-symmetry directions
calculated for the warped-muffin-tin approximation to the
overlapping atomic-charge-density model.

E (k}=g C"-e'x'
R

(3)

using a least-squares matrix-inversion proce-
dure. ' All the C's of a given star of R are equal,
and the sets are ordered by the length of R. The
truncation of (3) at 58 stars gave rms errors of
1.8, 2. 5, 3.5, 2.9, 3.2, and 9.0 mRy for bands
1-6, respectively. Band 6 has the largest error,
primarily because of the slow convergence of the
Fourier series in the vicinity of the points B and

P. This reflects the rapid variation of the sixth
band in these regions and also the fact that the
sixth band is much wider than bands 2-5. The
quality of the fit of the important bands 3 and 4 in
the vicinity of the Fermi energy is gratifying but
not too important; the relevant quantity (for Fermi-
surface work) is the fractional error &&&k/k, where,
if we assume E ~ k, hk/k =

2 EE/E. If E is the
bandwidth, about 0.4 Ry, then EE should be of or-
der or less than 2-4 mRy, so that hk/k is of or-
der (1-2}%. This is consistent with our truncation
of (3). Left out of this analysis is the poorness of
the fit near points of discontinuous first derivative,
such as crossing points along symmetry lines. We
argue that the amount of phase space where such
considerations are important is, with 58 stars,
rather microscopic (a volume of essentially the
inverse of the cube of the shortest "wavelength"
employed), and can be neglected in determining
the density of states and Fermi energy. Such
crossing points could produce systematic errors
in determining the Fermi surface, however.

The Fourier series was then used to calculate
the density of states by QUAD-LINEAR, aprogram simi-
lar to the one discussed by Cooke and Wood. ' A

quadratic approximation was made to the Fourier
representation over a cubic cell of size (2»/a)/
(2m+1), where m was a parameter. The quadratic
fit was then approximated by linear sections
(planes) oyer subregions, the size of which was

TABLE II. Convergence of QUAD-LINEAR density of
states with MESH parameter for critical structure (worst
case) of the two lowest bands. Units of energy are ryd-
bergs and units of density of states are (states)/Ry atom.

Time
(sec)

Band
El -= 0.433 E2 = 0. 473

Band 2

E3 =O. J08 E4 = 0. 533

J
7
9

11
13
15
17
19
21

353
353
353
353
;&58

367
369
;»80

400

19.338
17.5JO
19.374
19.380
19.379
19.154
18. 896
18.776
18.809

20. 107
17, 703
19.508
18.227
18.649
18.606
18.438
19.019
18.347

13. 813
12. 853
12. 168
I l. 390
11.511
11.026
10.908
11.140
11.195

39.416
:&4.776
32. 018
32.405
.'l l. 336
31.265
30. 748
:&0.730
30. 787

governed by the criterion that either the quadratic
error of the linear approximation be less than one
third a histogram width or the number of subre-
gions be less than 15 in any one (small) cubic cell.
In order to establish a convergence criterion two

types of critical structures were examined: peaks
in the density of states such as those occuring at
0.433 and 0.508 Ry in bands 1 and 2, respectively,
and shoulders (places of large first derivative)
such as 0.473 and 0.533 Ry. Table II lists these
as a function of the quadratic subdivision param-
eter w. High accuracy requires that this param-
eter be at least 19 (21 was used in the results be-
low). The time listed is the total CPU (central
processing unit) time on the IBM 360/75/195 in the
Applied Mathematics Division of Argonne National
Laboratory, including compilation and the determi-
nation of the Fourier coefficients (both short). The
long and constant times for low MEsH (at first glance,
paradoxical) are caused by the automatic choice of
the size of the linearization region, as discussed
above. The final choice of m =19 is similar to, but
somewhat more stringent than, that discussed by
Janak. In any event we regard 400 sec as being
acceptably small for a density of states accurate
(we estimate) to better than 0.1% near the critical
points (worst case) on an energy grid of 2. 5-mRy
spacing. The m =21 density of states is plotted in
Fig. 2 and is similar to those of Mattheiss'; Pe-
troff and Viswananthan, ' and Gupta and Sinha,
but with somewhat sharper structure.

The Fermi energy was found from either the
criterion that the total number of st*tes should be
six electrons per atom or the criterion that the
electron and hole volumes should be equal (Mo is
a compensated metal). It is important to note, be-
cause there seems to be some confusion about the
point in the literature, that in the absence of nu-
merical error these criteria are identical. We de-
note the volume of the occupied part of the nth band
by e„and of the unoccupied part of the band by h„.
For convenience we suppress the energy argument.
By including the phase-space density factor these
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FIG. 2. Density of states of molybdenum for the low-
est six bands.

volumes can be put in units of the states per atom
enclosed by a surface, so

(4)

Then the integrated density of states criterion is

e1 +eg +e3 +e4+e5 +e6 6 (5)

But, as bands 1 and 2 are full (e, =e~ =2) and band
6 is empty (e8=0}, this becomes

e, +e4=2 —e, =h5

which is the volume-compensation result. The
equivalence of the two techniques is seen when it
is observed that the density of states is normally
c*lculated by determining e„(E) and using the re-
sult

The only place where the precision might be differ-
ent between the two methods is if one were to per-
form the derivative in Eq. (7) and then integrate
back to the e„.

Table III lists these volume results. The actual
Fermi energy was found by fitting a quadratic form
(Vr =A+BE+ CE ) to the four points closest to a
volume of two electrons per atom and solving
V~(E) =6 for E =Er . Of course, this Fermi energy

0.7465 Ry gave compensation as well. The total
density of states and that of each subband was found
from n(E) = (dV/dE)s. z = B+2CEr . This proce-
dure, since it averages over several neighboring
values, is more accurate than a simple linear in-
terpolation. Surprising is the large density of
states [0.91 (states)/(atom) Ry) for the rather
small [0.0095 (electron)/(atom) ] fifth-band-lens
sheet. This merely emphasizes the low overall
density of states of sheets 3 and 4 rather than the
especially high density of states of sheet 5.

The Fermi surface was found from solutions to
E„(k)=Er, where, because of the possibility of
systematic crossing errors in the Fourier series
discussed above, the HAP% Hamiltonian itself was
used to compute the dHvA orbits, using orbit-trac-
ing routines designed to obtain the dHv+ areas by
Simpson's-rule integration. 35 For the four-ball
(H ~~ [100])and two-ball (H tl [110])jack orbits, the
Fermi radius vector is multivalued for some di-
rections in the plane of the orbit. In such cases
the standard Simpson's-rule integration technique
(using the angular increment d8) is not feasible and
one must resort to the slightly less accurate trap-
ezoidal rule with constant arc length. The orbit-
tracing routines were extended to handle the mul-
tivalued case. To permit the analytical computa-
tion of Vf E (necessary for orbit tracing and com-
puting the cyclotron mass using the Hellmann-
Feynman technique"), the analytical derivatives
of the elements of the RAP% secular matrix were
calculated. Figure 3 plots our results for the
(100}and (110) cross sections of the Fermi surface
of Mo. The areas and effective masses for the
magnetic field along symmetry directions are listed
in Table V. Typically, one orbital area required
one to two minutes of CPU time on the Argonne
IBM 360/75/195, depending on the grid (usually
-2-,")and the angular range required by symmetry.

TABLE III. Volume and density of states by band at
the Fermi energy.

Band

3 (all hole contributions)
4 (jatk)
5 (lenses)
4+ 3 (electron contribution)
(3+ 4+~) (total)

Volume
[(states)/(unit) cell]

—0. 2023
0. 1928
0. 0095
0. 2023
0

Density
[(states)/Qy atom}

2. 78
4. 99
0. 91
4. 90
8. 68 FIG. 3. Cross sections of the Fermi surface of molyb-

denum in the (1, 0, 0) and (1,1,0) planes.
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TABLE IV. Fermi-surface caliper dimensions (in A '). To obtain dimensions in

27(/a units divide entries in table by 1.9966.

Band 3

Direction This work Loucks~ RFSE" RFSEc d HvA~

Octahedron
(hole)

N -ellipsoid
(hole)

[100]
[110]
[111]
[112]

NP
NF
NH

0. 81
0. 60
0. 50
0. 54

0.40
0. 36
0.22

0. 84
0. 63
0. 53

0. 37
0. 27
0. 19

0. 79
0. 60
0. 51
0. 54

0. 38
0. 29
0. 22

0.75
0. 58
0. 48
0 ~ 51

0.35
0.32
0. 20

0.81
0.61
0.49
0. 52

0.37
0. 33
0. 22

Band 4

Jack (electron) [100]
[110]
[111]
[112]

1.15
0, 52
0.46
0. 50

1.15
0. 49
0. 44

1. 16
0. 52
0. 47
0.49

1.10

0.44

Band 5

b, -lens (electron)
(diam)

[100]
[110]

0. 26
0. 35

0. 31 0.24

Jack-octahedron separation

[100] 0. 04 0 05+0 04 ~ ~ ~ 0. 050

See Ref. 13.
See Ref. 8.

cSee Ref. 8.
See Ref. 9.

The Fermi-surface calipers along high-symme-
try directions are listed in Table IV and compared
with Loucks's calculations (now some 10 years old)
and with several sets of experimental data. ' The
overall agreement between all sources, considering
the diversity of results and techniques represented
here, must be considered remarkable. (Although
we have not made any use of the technique in this
paper, it is clear that the a.greement of Table IV
provides substantial justification for the use of an
ab initio technique such as the RAPW method to
represent the Fermi surface in terms of a few pa-
rameters such as phase shifts. '9) We have included
in Table IV the derived caliper dimensions of
Hoekstra and Stanford for the easily inverted cen-
trosymmetric sheets, but not for the more difficult
jack. (We prefer to consider the dHvA data by it-
self below. ) Our conclusion regarding the jack-
octahedron separation is, nevertheless, the same
as Hoekstra and Stanford and, separately, Iverson
and Hodges' (namely, about 2% of the I'-H dis-
tance), in agreement with the conclusion of Boiko
et al. Thus the RAPW calculations presented
here support the idea that this gap is spin-orbit
controlled and that this spin-orbit splitting is con-
sistent with the atomic 4d spin-orbit splitting of
molybdenum (see Table 1). Because of the paral-
lelism of the bands observed a,long the [001j direc-

tion, this conclusion is not governed by, for ex-
ample, the accuracy of the placement of the Fermi
level itself.

In Table V we consider the orbital-area. data of
Hoekstra and Stanford9 (in atomic units) compared
with RAPW calculations. The agreement between
the calculated and experimental areas of about
1.2% is gratifying and strongly supports the as-
sumption that one can accurately predict Fermi-
surface dimensions using the single-particle ap-
proximation. Although we do not present the re-
sults here, we have also performed these calcula-
tions in the muffin-tin approximation. The result-
ing areas agreed equally well with the experimen-
tal areas. Based on this criterion alone, one
would conclude that the two models were indistin-
guishable. This is not surprising, based on the
evidence that it is the nonsphericd. l contributions
to the potential inside the spheres which are a ma-
jor correction to the muffin-tin approximation for
the bcc transition metals. The WMT masses,
however, are (1-5)% larger for the electron jack,
4/g larger for the lenses, 1.5% larger for hole
octahedron, and (1-3)% smaller for the hole el-
lipsoids. Thus the inclusion of the non-muffin-tin
terms in the interstitial region has had an effect.
The nonspherical terms inside the muffin-tin
spheres would have a comparable effect. This ef-
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Extremal areas (a. u. ), cyclotron effective masses, and enhancement factors.

10

Orbit
F ield

direction Origin
Experimental

area

Calculated
area

(z„=o. v465 Ry)

Calculated Experi me ntal Enhanceme nt

mass mass factor X

Jack
Jack
Jack
Jack neck
Ball

[001]
[111]
[110]
[100]
[1oo]

(o, o, o)
(o, o, o)
(o, o, o)

0. 6174a
0.2264~
O. 4223L
0. 0313+
0. O846'

0. 6282
0. 2254
0. 4313
0. 0370
0. 0914

2. 781
0.779
1.738
0.409
0. 639

3.85d

O. 99'
2. 55
0 541c

0. 39
0.26
0. 47
0.33

Lens

Octahedron

Octahedron

Octahedron

Ellipsoid

Ell.ipsoid
Ellipsoid

rms error'

[11o]

[oo1]

[110]

[111]

[001]

[110]
[110]

(0, 0, 1)

(0, 0, 1)

(0, 0, 1)

(-,', —,', o)

0.4023a

0. 3031K

0.2767a

0. 0607

0. 0703~
0. 0974

(0, 0, 0. 3) 0. 0137K 0. 0170

0.4110

0. 3085

0. 2823

0. 0685

0. 0804
0. 1166

1.2%

0. 253

—0. 925

—0. 661

—0. 555

—0. 304

—0, 363
—0.432

0.29"

l. 22c

1.2V'

O. 88
O. 9O'
0 72c

O. 396
O. 3V'
O. 43'
0 57c
0. 52~

0. 15

0. 32
0.37
0. 33
0. 36
0. 30

0. 30
0.22
0. 18
0. 32
0.20

aHoekstra and Stanford, Ref. 6.
Lever and Myers, Ref. 5.

'Arko, Ref. 7.

Herman (Ref. 12) or Herman and Kruger (Ref. 12).
~

z zns sr z pz d sf ztttupp eznptpyed is g (/texpt ~cate) 2}t/ 2/ (y (/texpt) 2 )z / 2

Ball and neck orbits of the jack are not included.

feet, however, is, on the aver@, ge, too small to
seriously affect the derived mass enhancements
considered below.

The fact that the over-all error is relatively
small in our unadjusted calculation is again a
strong support for the validity of the band ap-
proach. As Christensen' has pointed out, the
success may be based on the low density of states
of molybdenum near the Fermi level. We could
slightly improve the agreement by adjusting the
density-of-states derived Fermi level by 1 mRy
or so, for example. Because the bands used in the
Fourier interpolation scheme had inaccuracies of
the order 2-3 mRy, the density-of-states derived
Fermi energy could be inaccurate by 1 mRy. We
have not done this because the spirit of the present
investigation was to test the validity of an unpa-
rametrized band model rather tha. n to provide a
best fit to the experimental Fermi-surface data.
(In addition, it is not clear that the small shifts
would be physically significant. )

The calculated cyclotron effective masses are
listed in Table V; also included are the experimen-
tal masses measured by Leaver and Myers, '
Arko, ' and Hermann and Kruger. ' Because of the
variations in the reported experimental masses, it
is not possible to make a precise statement con-
cerning the magnitude and anisotropy of the elec-
tron-phonon mass enhancement factor ~; the or-
bital average of this quantity is defined such that
(1+)z ) m»=m*. A value of )t —=0.35 seems to be

indicated for the larger sheets [jack (0. 33) and

octahedron (0.38)]; smaller values are found for
the lens (0.15) and ellipsoid (0.24) sheets. The
average value of ~ over the entire Fermi surface
may be determined from our calculated total den-
sity of states N(E~) =8.68 (states)/(atom} Ry and
the measured electronic specific heat. ' Roser,
Onn, and Meyer obtain the value 1.83 mJ/mole
K, which corresponds to an enhanced total density
of states N„=10.55 (states)/(atom) Ry. If we de-
fine the Fermi-surface average of ~ such that
(1+X~)N(EF) =N„we obtain a value )zr =0.22. This
value of ~~ is much smaller than that found from
the McMillan theory. ' According to this theory,

1 .04 + )z» ln(8/1 .45 T,)
(1 —0.62 )z* ln(8/1. 45T,}—1.04 (8)

where p,*, the Coulomb pseudopotential parameter,
is defined as

(1 —2zz}z/a

ln(8/1. 45T,) ' (8)

for molybdenum, the transition temperature T,
=0.92 K the characteristic phonon frequency e
=460 K, and the isotope-shift parameter e = 0.37
~0.04 lead to p,*=0.09 and ~=0.41.

We do not believe that the anisotropy we find be-
tween the sheets is a severe criticism of the sin-
gle-parameter (&) theory of McMillan. As Allen
and Cohen~ have discussed, it is perfectly feasible
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that some regions of phase space will have a larger
and some a smaller electron-phonon coupling. The
transition temperature, as a bulk thermodynamic

quantity, would still depend on an average ~; to the
extent that the ~ anisotropy is small, this param-
eter is an electron-phonon coupling; if large it is
just another representation of the transition tern-
perature.

More puzzling is the over-all difference of 0. 41
compared with 0.22. Because of the logarithmic
dependences, the value of ~ in the McMillan formula
does not depend sensitively on e or p, . For exam-
ple p.*=0. 13 was used in deriving the value of 0.41
(Table III of Ref. 41); replacing this by p, =0.09
(Table II of Ref. 41-the isotope value} reduce. . the
~ to 0.35. The strong-coupling correction
(1+0.623)/(I+&), which is approximately 0.9 for
~-0.3, was neglected by McMillan in making his
estimate of p.*, but also does not change a p.

* de-
rived self-consistently by much (p,*=0.086). Thus
the difference between the enhancement of the spe-
cific heat y and the orbital masses is larger than
our estimate of the intrinsic accuracy of the
McMillan X (about 0.1}. The close relation be-
tween the bcc electronic structure of niobium (used
to derive the McMillan equation) and molybdenum,
and the general overall and historical success of
the theory make it unlikely that the McMillan ~ of
0.41 is very inaccurate.

The electronic density of states and the values
quoted in Table III can be imprecise for several
reasons: misplacement of the Fermi energy; error
in the model potential; error introduced by the
muffin-tin or warped muffin tin approximation; er-
ror in the shape of the bands in the vicinity of the
Fermi energy due to the inadequacy of the Fourier-
series representation; and inaccuracy of the QUAD-

LINEAR integration scheme due to the quadratic-lin-
ear approximation. This last error we estimate
at 0.1% at most. This misplacement error we be-
lieve is small both because the minimal shape in
the total density of states is rather independent of
the number of Fourier terms (a much less accurate
density of states based on fewer expansion coeffi-
cients gave 8.0 states per Ry and a similar mini-
mal shape) and because of the extrinsi~ accuracy
of the bands as shown by the comparison given in
Table IV. In order to reduce the band density of
states to a value consistent with 10.5/1. 4 = 7. 5
states per Ry, the Fermi energy would need to be
lowered by some 25 mRy, destroying the agree-
ment of the bands with the areas in Table IV. The
model-potential error should not be large owing to
the observed insensitivity at the Fermi energy.
And the changes caused by including the %MT ap-
proximation indicate that the muffin-tin approxima-
tion causes errors too small and of the wrong sign
to account for the effect. The error in the model

potential we estimate from the change in the band-

width of niobium43 between two calculations: full
Slater exchange, e =1, non-self-consistent (0.755);
Kohn-Sham-Gaspar, a = —',, self-consistent (0.678).
This yields a change of about 12%. If we assume
that Mo is similar to Nb and that the density of
states varies as the inverse bandwidth, then this
range of variation is too small to explain the ~ dis-
crepancies above. Additional corroborating evi-
dence for the correctness of the bandwidth of pres-
ent calculations is given in the good agreement with

optical properties in Ref. 44.
The other element is the cited" y value of 1.83.

An examination of the original paper by Hoser et
al . shows that this value is lower than a cluster of
historical values around 2. 1 mJ/mole K . The
value of Roser et a/. is now accepted because they
showed that the y value is quite sensitive to the
purity of the sample; a specimen with a residual
resistance ratio (RRR) of &1600 had y=1.81, while
a sample whose RRR was 313 had y=1. 89. This
sensitivity can be understood if the impurity has a
virtual state near the Fermi level with a width suf-
ficiently broad to sample the higher density of
states on both sides of the narrow minimum seen
in the single-particle density of states shown in
Fig. 2. Of course the alloy has a higher y than
pure Mo in this model.

The cyclotron effective-mass data definitely fav-
or a ~ value greater than 0.22. For the electron
jack and hole octahedron the microwave cyclotron
resonance measurements of Herrmann and Krueger
yield enhancement factors as large as 0.47 and
0.37, respectively. The majority of the density
of states is contributed by these two sheets of the
surface. A simple weighted. average over all
sheets yields a cyclotron-mass derived ~ of about
0.33.

IV. CONCLUSIONS

The band model has been shown to provide an
accurate representation of the Fermi surface of
molybdenum. Puzzling is the disagreement found

here between the McMillan & of 0.41, the band and
specific-heat derived value of 0.22, and the cyclo-
tron "average" of 0. 33. %e believe that it is crit-
ical to remeasure the electronic specific heat of
molybdenum on extremely pure samples whose re-
sistivity ratio is greater than -5000 (easily avail-
able nowadays) and on Mo with controlled amounts
of dilute interstitial impurities (0, C, N, and B).
The historical y values of about 2. 1 mJ/mole K'
remove the discrepancy. The previous conclu-
sion ' that the jack-octahedron gap is approxi-
mately 2. 7% of the 1"-to-H distance and related to
an atomic spin-orbit splitting is supported by the
band calculations presented he e.
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