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Augmented-plane-wave calcu»tion of indirect-exchange matrix elements for gadolinium*
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The exchange matrix elements between a local 4f moment and the conduction electrons

{Ruderman-Kittel-Kasuya-Yosida exchange) have been calculated for paramagnetic gadolinium metal

using nonrelativistic augmented-plane-wave wave functions. The magnitude of the matrix elements is

found to be largest for d-like conduction electrons and is quite sensitive to their angular distribution.

Because of band crossings, which cause rapid changes in wave-function character, the matrix elements

cannot be well described as slowly varying functions of q = Q' —~.

I. INTRODUCTION

The exchange interaction between the localized
4f electrons and the conduction electrons is basic
for understanding the electric, magnetic, and op-
tical properties of the rare-earth metals' (and for
a variety of physical problems such as local mo-
ments in dilute alloys, Kondo effect, etc. ~). The
net spin from the open 4f-shell electrons plays an
essential role in promoting magnetic ordering
through the mechanism of indirect exchange be-
tween the localized and the conduction-band elec-
trons. This indirect-exchange mechanism produc-
es an effective 4f 4f couplin-g which is responsible
for the various observed magnetic properties. (The
direct-exchange interaction between 4f electrons
on different sites is too small to play a significant
role in accounting for the strong magnetic order-
ing observed because the 4f wave functions on dif-
ferent atomic sites have neglible overlap. ) First
proposed by Ruderman and Kittel' to explain the
effective long-range coupling between nuclear spins
interacting via the Fermi hyperfine interaction,
this mechanism was later extended by Kasuya' and
Yosida to treat local-moment-conduction-electron
interactions in magnetic materials and is now re-
ferred to as the Ruderman-Kittel-Kasuya- Yosida
(RKKY) interaction.

In the rare earths, the 4f electrons overlap the
conduction electrons and their net spin polarizes
the conduction electrons via the exchange interac-
tion. Unlike the Coulomb interaction which isperi-
odic and does not scatter the conduction electrons,
the nonlocal exchange interactions are not periodic
and do scatter the conduction electrons when the
spin directions of the open-shell electrons are dis-
turbed. This spin-disorder scattering gives rise
to the resistivity in first order. It is the second-

order process which is responsible for the effec-
tive spin-spin interaction between the open-shell
electrons and gives rise to the magnetic ordering
(i.e. , the resultant conduction-electron polariza-
tipn from a single ion is carried over to the vicinity
of other ions and will interact via the same ex-
change interaction with their 4f shells and produce
an alignment of the moments). In Gd the 4f elec-
trons have zero orbital angular momentum, and
the basic spin-dependent Hamiltonian between the
local moments and conduction electrons is well
known, '

X, , ,(R, )= ——E I„„.(k, k'}
n, n'

.
&g P7 ) ~ ~trI ~

& e' [(ar„.a r.„..—a r„-a z.„.)S*,

+E+ a|,„+a)„-~t+a(„-al-,.„.,~$]

where S& is the spin on the localized ion located at
Rt, and %is the number of unit cells in the crys-
tal. The a~ and a~ are the creation and annihi-
lation operators for an electron in the Bloch state
with wavevector k, band index n, and spin e.
I„„,(k, k ) is the matrix element for the exchange
coupling of local states with the conduction elec-
trons. This Hamiltonian is also approximately ap-
plicable to the other rare-earth metals if S is re-
placed by the de Gennes factor (g —l)J (Ref. 7};
however, the presence of the orbital contribution to
the localized moment can lead to anisotropic inter-
actions as shown by Kaplan and Lyons. ~ Estimates
of these anisotropic corrections for free electrons
indicate that they may be quite important. 8' In
this paper we will be concerned with only the iso-
tropic Hamiltonian which is valid for Gd and will
express our results for the matrix elements in
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terms of

j„,„.(k, k') = VI„,„(k,k')

where

(2)

+3

i..~(K&')=&Z I kr,.("i)+v,.( s)

x (2/rm)441 ~ (r&)g, „, (rp) d rq d r2. (3)
Since the seven unpaired 4f electrons of gadolinium
constitute a han-closed shell, the sum of their dis-
tributions is spherically symmetric and only the

same angular components of g and g. will be cou-
pled.

To describe the coupling of the 4f electrons lo-
cated at different sites the K, , &

interaction must

be taken to second order. The coupling may be
considered as the interaction of a local moment on

one site giving rise to the virtual excitation of an
electron pinto an empty state k' which then inter-
acts with a, local moment on another site. The ex-
change interaction between two spins located at lat-
tice sites i and j is given by

4 gg lf„.„.(k, k')I'e"" '"«~f..f(l-f~, i")
X~ „-„;„„, E„,(k'}-Z„(R)

(4)

where R,&
= R, —R& and f„,f and f~ I, are the Fermi

distribution functions.
The evaluation of the RKKY interaction has only

been possible by making some extreme approxima-
tions. The conduction-electron states have com-
monly been taken as plane waves and the free-elec-
tron Fermi surface used; however, augmented-
plane-wave (APW) energy-band calculations~'~0
have shown that these metals have transition-metal
band structures with strongly hybridized s-p and d
bands. More recent investigations have taken the
band structures into account, but they have not in-
cluded the actual matrix elements. ~'~~ These later
calculations have been primarily concerned with
relating the magnetic ordering to the "nesting fea-
tures" found on the complicated Fermi surfaces.
These calculations ignore the matrix elements in
Eg. (4) and rely on the assumption that the domi-
nant structure in the 4f 4f interaction is-caused
by the complicated energy dependence of the de-
nominator. While these calculations have been
successful in explaining the relationship of the
Fermi-surface geometry to the magnetic ordering,
they cannot supply the details of the interaction;
thus, experimental quantities like the magnon spec-
trum [the Fourier transform of Eq. (4) if the band
splitting is ignored] have not been obtained from
first-principles calculations. Basic to these cal-
culations are the exchange-matrix elements, Eq.
(3), which contain the details of the 4f-conduction-
electron interaction.

Many approximations for the matrix elements
have been made in order to facilitate calculations.
The assumption that j„~(k, k'}=j= const seemed
reasonable for the nuclear coupling problem orig-
inally considered by Ruderman and Kittel because
a 5- function interaction between a nucleus and
plane waves yields j= const. As a better approx-
imation, since the matrix elements depend sensi-
tively on

~
k -k '

~, it has been assumed that j(k, k')

depends only on k'-k= q. Overhauser assumed
that the Coulomb interaction in Eg. (3) was so
strongly shielded that it could be replaced by a 6

function. ~z With plane waves this results in a j (q)
which is simply the form factor (i.e. , the Fourier
transform) of the local-moment density.

Kaplan and Lyons pointed out that for the rare
earths j(q ) would not be well approximated by a
constant, even forylane waves, 8 while Kaplan sug-
gested that the (k, k') dependence may be impor-
tant. ~3 In several investigations, Watson and Free-
man calculated first '~' the behavior of j (k, k')
when assumed to be of the approximate form j(q)
and then the (k, k') dependence of j(k, k') for an in-
structive model. They found some important dif-
ferences between the two sets of results for j(k, k')
and for the induced conduction-electron spin polar-
ization. For their calculations, they used the il-
lustrative case of a spherical local moment which
consisted of the half-filled shell of Gd~'(4f ) and
conduction electrons which were represented by a
single plane wave orthogonalized to both the closed
shell and 4f electrons. Analytic atomic Hartree-
Fock wave functions were used for the Gd

' ion.
Their results showed that there was a strong (k, k')
dependence, that the even simpler RKXY and Over-
hauser approximations were too crude, and that
accurate calculations using energy-band wave func-
tions for the metals were required to determine
the true nature of j(k, k') . The importance of the
(k, k') dependence was also noted by Mahanti and
Das, who used a single orthogonalized-plane-
wave (OPW) approach based on real band structures
and found the (k, k') dependence of the hyperfine
matrix elements important for understanding ex-
perimental results for Rb and Cs.

This paper reports on a study of the exchange
interactions between the localized 4f electrons and
the conduction-band electrons in Gd metal. Both
diagonal and off-diagonal matrix elements j„,„.(k, k')



10 A UGME NT ED -P LANE -WA VE (:A LC ULA TION OF ~ ~ ~ 4851

have been determined using energy-band wave func-
tions determined from an augmented-plane-wave
calculation for the paramagnetic state of the metal.
Gadolinium was chosen for several reasons. It is
the simplest rare-earth metal to consider since
the ground-state 4f moment is spherically symmet-
ric (ES state) and is uncomplicated by orbital-mo-
ment contributions. Since the net spin of the gado-
linium 4f electrons is the largest of the rare
earths, the exchange interaction with the conduc-
tion electrons should yield the largest experimen-
tal consequences (e.g. band splitting). In addition,
the magnon dispersion curves of gadolinium have
been measured~~ [which gives essentially the Fou-
rier transform of J'(R,.~)], an accurate neutron mag-
netic form factor has been obtained'E [which has
given direct information about both the local mo-
ment and itinerant (conduciion) electron-spin dis-
tributionsko], and optical-absorption measurements"
may be used to compare with a special case of our
calculated results.

II. METHOD OF CALCULATION

All electronic energy-band structures which
have been reported for the rare-earth metals have
been obtained by the APW method; gadolinium
in particular has been studied in detail in both the
nonrelativistic ' ' and relativistic approxima-~ 1,22E22

tions. Recently we have reported on a detailed
study of the spin-polarized energy-band structure,
conduction-electron polarization and neutron mag-
netic form factor of ferromagnetic Gd metal. We
found that the conduction-electron spin density de-
termined from the APW wave functions is mostly
of d character and emphasized the possible role of
these electrons in the interactions responsible for
ferromagnetism in the metal.

In the present work we have used the APW method
to determine the energy-band structure and wave

.functions for the paramagnetic state. We are con-
cerned with obtaining normalized wave functions,
and have therefore employed the linearized form of
the APW method. Since the APW method is well
known, we give only those basic details necessary
for understanding the calculation of j„z(k, k,').
The crystal potential V(r) was obtained by using
the usual prescription of superposing atomic
charge densities from neighboring sites and using
the full Slater p' exchange. The atomic densities
were determined from a self-consistent Hartree-
Fock-Slater calculation with the assumed atomic
configuration 4f M'6s . Eigenvalues and eigenfunc-
tions for paramagnetic Gd metal were determined
at 125 points in the irreducible ~ of the Brillouin
zone. The points were located in five horizontal
planes at the positions shown in Fig. 1. The planes
were located in E/5c increments from E/10c to
9E/10c. The basis set used for a particular k

1FIG. 1. Irreducible 24 of the Brillouin zone for the Hex-
agonal lattice, and a horizontal plane showing the points
at which wave functions and matrix elements were evalu-
ated. For matrix elements with q=q~o0 there is no

reflection symmetry in the z = 0 plane so that wave func-
tions were actually evaluated on ten such planes and at
250 total points.

point in the Brillouin zone was determined by in-
cluding all those reciprocal lattice vectors k

&
that

satisfied the relation )k + k ~ I&MT~ 7. 0, where r„T
is the muffin-tin radius (3. 2080 a. u. ). This pro-
cedure results, typically, in VO to 80 basis func-
tions and a convergence of better than 2 mRy on
the eigenvalue. The APW wave-function conver-
gence has been discussed previously and will
not be repeated here.

In calculating the matrix elements we obtained
the 4f orbitals for the crystal potential and found
it convenient to expand the APW Bloch states in-
side the muffin-tin spheres as

P„,k(r)=Q A, (k, n)u, Ek(r)F, (r),
l, m

(5)

III. RESULTS

To obtain an idea of the magnitude of the contri-
bution from each l component of the wave function,

where

I, Ek( -) Rl ~ Ek(r)/ l, Ek( ET)

and the R, Eke) are obtained by numerically inte-
grating the Schrodinger equation. When it is noted
that the 4f orbitals are essentially zero outside
the APW sphere, the exchange integral of Eq. (3)
is easily evaluated inside the sphere by using the
same procedures asare used in atomic Hartree-
Fock calculations. ' We have found that only terms
up to l = 3 need be included in the wave-function ex-
pansion of Eq. (5) for the precise (better than 1%)
calculation of the matrix elements.
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Th E'he E dependence of the exchange integral E
(71

q,
& I, for E=E„is shown in Fig. 6. From this plot
we see that the radial part of the matrix elements
does not fall off very rapidly for large energy dif-
ferences. This means that the sum over bands in

Eq. (4) will probably have to be taken over all ten
d bands in order to obtain complete convergence,
although contributions from those bands at the Fer-
mi energy (bands 3 and 4) will be the most signif-
icant. (This question of the number of bands need-
ed for convergence will be discussed with the cal-
culation of the magnon-dispersion curves. )

Since the magnetic-ordering structures ob-
served in the heavy rare-earth metals can be de-
scribed by a wave vector along the I to A direction
in the Brillouin zone, we have calculated the ma-
rix elements for (k'-k) = q = q, along each of the

25 vertical lines which pass through the points in
Fig. l. As a typical example which demonstrates
the general character observed, we have platted,
in Fig. 7, bands 3 and 4 and the corresponding q

FIG. 7. Third and- Fourth bands along the vertical line
which passes through point 2 in Fig. 1. The correspond-

th
ing q= 0 matrix elements are shown vertically abo

ese bands, for both intraband and interband "transi-
tions. "

= 0 intraband and interband matrix elements for
the vertical line passing through the point labeled
2 in Fig. 1. To easily obtain a global representa-
tion of the bands, the eigenvalues were least-
squares fitted using symmetrized plane waves
(rms error = 2 mRy). The errors in the fitting at
the AHL
5-m

e plane are the reason for the approxim t laey
-mRy gap between the third and fourth band at

d-'
k, = + w c. The wave functions of both bands aare

-like and thus have about the same magnitud f
th

agni e or
e contraband matrix elements. The interband

matrix elements are very small because the angu-
lar distribution of the wave functions is nearly or-
thogonal [i.e. , the Az 's of Eq. (5) cause the ma-
trix element to be small]. For qw0 the wave func-
tion's coupling bands 3 and 4 need no longe b f

z ferent angular distribution; therefore large in-
terband matrix elements may occur, as shown in
Fig. 8 for q= v/5c. The oscillations are caused b
the band crossing which, for q0, allows wave
functions with similar angular distributions to cou-
ple. For the 25 vertical lines and the different q
values we have studied, these oscillations are the
rule rather than the exception, so that any anal t-

arguments based on simplified band struc-
ay-

tures and wave functions would be doubtful.
If there are no band crossing as one moves

horizontally in the Brillouin zone (i.e. , keeping
k fixed& thee variation of the matrix elements is
not large, as is shown in Fig. 9. Here we hawe ve

p otted the matrix elements for q = 3v/5c between
bands 3 and 4 along the vertical lines through the
neighboring points 9, 13, and 16 of Fig. 1. We
should remark here that the curves passing
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FIG. 8. Matrix elements with (k'-k) =q= &/5c for the
same bands as shown in Fig. 7. Band 4 has been plotted
so that the corresponding matrix elements are vertically
above the bands. There is no reflection symmetry in
the k =0 plane.

through these points have been drawn by "eyeball",
and the few inbetween points we have checked sug-
gest that the peaks or oscillations may be sharper
than we have drawn them but that the lines give a
good overall description of the matrix-element
variations.

In ferromagnetic gadolinium the spin splitting
of the nth band at k is proportional to the size of
the 4f-conduction-electron interaction. The mag-
nitude of the average splitting at the Fermi surface
has been determined by two different experiments.
In one experiment, optical measurements reveal
an apparent absorption between the spin split bands
(allowed in the presence of spin-orbit coupling) at
the Fermi level and suggest a splitting in the neigh-
borhood of 0.7 eV. ~ This result may not be an ac-
curate average over the Fermi surface, however,
since some regions near the surface may contrib-
ute more than others due to differences in the mag-
nitude of the optical matrix elements.

The other experiment which gives information
about the average splitting is a measurement of
the total saturated magnetic moment at low tem-
perature and in a high magnetic field. The mea-
sured moment is I. 55ps/atom, which is 0. 55p, s/
atom above that expected from the seven unpaired
4f electrons. ~ The extra 0. 55 p /at smcoomes
from the unpaired spin-up electrons near the Fer-
mi level. Assuming a rigid-band model, the
amount of splitting needed to produce this moment
is easily calculated from the paramagnetic density
of the states.

&n=n, -n,

(0.0

9 5O

Io.o

5.0

f~ )oo

CU

O

5.0

oo '

c k +
c

with 5n= 0. 55/atom and our calculated density of
states (using a histogram increment of 0 002 Ry)
we obtained the splitting E~, —E~, = 0. 56 eV. The
assumption of rigid-band splitting is reasonable
since the dominant character of all the eigenstates
near the Fermi energy is d-like, and the splitting
in the bands has been found to be proportional to
the amount of d character. 0

The theoretical magnitude of the band splitting
is easily obtained from our matrix-element calcu-
lations. In the magnetically ordered state the en-
ergy of a spin-up conduction electron of wave vec-
tor k and band index n will differ from the energy of the
corresponding spin-down electron by 2j„„(k,k);
where j„„(k,k) is given in Eq. (3) and the fac-
tor of 2 is because there are two 4f moments in
each unit cell of the hcp crystal. As a very good
approximation we may take the wave-function char-
acter for all the states at the Fermi level to be
pured-like, andobtainfrom Fig. 2avaluefor j„„(k,k)
of 0.51 eV at E=E~. Thus we would predict the
band splitting at the Fermi level to be about 1

eV, which is considerably larger than the two val-
ues quoted above.

Anobvious reasonwhich can ge given for the larg-
er theoretical value of the band splitting is the ne-
glect of screening in Eq. (3) for the 4f-conduction-
electron exchange. Screening or correlation ef-
fects are known to reduce the calculated atomic
Hartree-Fock exchange integrals between 4f elec-
trons by about 25% as determined from atomic
spectroscopy measurements. 3~ In the solid one
would expect increased screening from the 5d con-
duction electrons near the Fermi level. The
amount of reduction of the calculated Hartree-Fock
conduction-electron-4f interaction caused by

go
&(E)dE — 'N(E) dE (8)

FIG. 9. Interband matrix elements for the three verti-
cal lines passing through the neighboring points 9, 13,
and 16 of Fig. l.
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screening is, however, difficult to estimate, but
the difference between our calculated value and the
experimental values seems reasonable. In the fu-
ture we hope to study these screening effects in
more detail. We do not expect them to change the
k dependence of the matrix elements we have cal-
culated, but rather we expect their main effect
will be to scale the magnitude of the matrix ele-
ments.

IV. CONCLUSIONS

The large 4f exchange interaction with the @-
like electrons and the predominant d character of
the wave functions (80 to 95/o} near the Fermi en-
ergy indicate that the d-like electrons play the
dominant role in coupling the local 4f moments.
Since d electrons have considerably more angular
variations than do s or p electrons, the matrix
elements are much more complicated than might

be expected if a 4f si-nteraction were dominant.
We chose gadolinium because of its spherical

distribution of 4f electrons; however, nonspher-
ical 4f distributions are not that much more dif-
ficult to handle ' and should provide insight into
some of the large anisotropies observed in the
other rare-earth metals. These and many other
interesting questions can be studied once the ma-
trix elements have been calculated. We hope to
report in the near future on some calculations
which utilize these matrix elements.
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