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The thermoelectric dc transport properties of five single-crystal tungsten samples have been measured
over the temperature range 1.2-7 K. In addition to the electrical resistivity, thermal resistivity, and
thermoelectric power, a new thermoelectric function G (T) was determined; the properties of this
function and the method for measuring it are analyzed. Evidence for electron-phonon scattering was
observed for both the electrical and thermal resistivity, appearing as a deviation from a quadratic
temperature dependence usually associated with the electron-electron interaction. The thermoelectric
coefficients S(T') and G (T) were positive below about 5 K for all samples with a sign reversal
occurring at higher temperatures. Below 3 K, a marked impurity dependence in the thermoelectric
properties was observed. No sample exhibited the characteristic temperature dependence of
electron-electron scattering. The sign reversal at higher temperatures is attributed to the onset of a

phonon-drag mechanism.

I. INTRODUCTION

The electronic properties of tungsten have been
the subject of considerable interest in recent
years. Having a 5d*, 6s? atomic configuration,
tungsten resembles in many ways its 4d°, 5s?
neighbor in the second transition series, molyb-
denum. Each element is nonmagnetic, completely
compensated, and has a closed Fermi surface
consisting of several relatively simple topological
shapes. Tungsten, in particular, has been the
object of extensive theoretical and experimental
Fermi-surface studies, so that the details of its
electronic structure are now reasonably well un-
derstood.! The metal is characterized by a sig-
nificant hybridization of s- and d-like electron
states, so that the model of a high-density d band
and a mobile, low-density s band? which is fre-
quently advanced for transition metals has little
validity.

While the electronic structure of tungsten has
been studied thoroughly, relatively little is known
about scattering processes in the metal® despite
the fact that samples of tungsten can be readily
prepared (by zone refining) into ultrapure single-
crystal form. It is widely believed that electron-
electron scattering between Fermi-surface sheets
should dominate the low-temperature scattering
in the nonmagnetic transition metals, * and in fact,
most of the electrical resistivity measurements
reported for these elements® show the quadratic

temperature dependence characteristic of the elec-

tron-electron interaction. In tungsten, however,
electron-electron scattering is not expected to be
as significant a process as in the other transition
metals. The low-temperature electronic specific
heat of tungsten is only about 1 mJ/K?mole,’ well
below that of any other metal in the transition-

metal series, and it may be inferred from this
that the electronic density of states—and hence
the predominance of electron-electron scattering-
is quite low. Nevertheless, measurements by
Wagner et al.® of the electrical resistance and the
analogous thermal quantity W7 (W is the thermal
resistivity) of tungsten have shown that each varies
nearly as T2 over the temperature range 1-5 K.
While these results were explained at the time on
the basis of electron-electron scattering, a more
recent study, by Wagner, " of the high-field elec-
trical and thermal magnetoconductivity of tungsten
obtained results that could not be explained plau-
sibly by electron-electron scattering; instead it
was suggested that the electron-phonon interac-
tion might be responsible not only for the observed
galvanomagnetic effects, but also for the earlier
low-temperature zero-field measurements. It
was primarily these results that provided the
stimulus for the investigation of the low-tempera-
ture thermoelectric properties of tungsten which
is reported here.®

Previous measurements of the thermoelectric
properties of tungsten are very sparse. Raag and
Kowger® investigated the temperature dependence
of the thermoelectric power of tungsten above 400
K and found it to be positive, varying between 5
and 20 uV/K. These results were consistent with
earlier measurements by Lander!® of the high-tem-
perature Thomson coefficient. The thermoelectric
power of two polycrystalline tungsten wires was
measured by Carter, Davidson, and Schroeder, !
over the temperature range 5-300 K. They found
the thermoelectric power of each specimen to be
negative between approximately 15 and 270 K and
positive below 15 K. A peak was observed in S
near 10 K of about 0.1 uV/K which was most pro-
nounced in the lower-purity specimen. This low-
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temperature peak was attributed to phonon-drag ef-
fects resulting from electronic transitions across
the small hole ellipsoids centered at the symmetry
point N. (At low temperatures, transitions across
the larger surfaces would not be significant because
of insufficient phonon energy.) It is interesting to
note that these hole ellipsoids comprise only about
11% of the available Fermi-surface area of tung-
sten'? and thus can be considered to play only a
minor role in electrical conduction. An alternate
explanation of the peak was made by Colquitt,
Fankhauser, and Blatt, !3 who suggested that it
might result from a positive diffusion term in the
thermoelectric power arising from electron-elec-
tron scattering in combination with a higher-tem-
perature negative term due to electron-phonon
scattering. A very recent study of the thermo-
electric power of a pure single crystal of tungsten
from 2 to 9 K by Trodahl!* confirmed the existence
of the positive low-temperature peak in S; Trodahl
interpreted his results on the basis of a positive
electron-electron diffusion term at low tempera-
tures which becomes swamped at higher tempera-
tures by a negative phonon-drag peak. He also
found, however, that a combination of an impurity
term and a low-temperature phonon-drag term
provided an equally satisfactory fit to his data be-
low 4 K. To summarize the results of the mea-
surements we have made of the thermoelectric
properties of tungsten, we find no evidence for
electron-electron scattering at low temperatures,
but we do believe that the low-temperature positive
peak in the thermopower is a result of the “tail”
of a large negative phonon-drag peak whose maxi-
mum occurs about 70 K.

In our measurements of the thermoelectric prop-
erties of five tungsten samples, we have made use
of a new technique which we believe can offer sub-
stantial benefits over conventional thermoelectric-
power experiments under certain circumstances.
There are basically two problems to be overcome
in determining the thermoelectric power of a very
pure metal at low temperatures: The thermoelec-
tric voltages are very small, typically 10 v, and
temperature differences of only a few millidegrees
must be accurately measured. While the discovery
of the dc Josephson effect now makes it possible to
measure very small voltages with great accuracy,'®
there nevertheless remains the difficult thermom-
etry problem of determining tiny temperature
gradients with microdegree resolution. In the
technique we have used, temperature differences
are not measured; instead, our method involves
the measurement of two currents, a heat current
and an electric current, while a voltmeter is used
only as a null detector. We do not obtain the ther-
moelectric power from this method [although in the
work reported here we also measured S(7) of our
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samples using conventional techniques] but instead
a related thermoelectric function G(T). The prop-
erties of this function are discussed in Sec. II, but
we mention here that G(T) exhibits the same, or
greater, sensitivity to scattering processes as the
thermopower, and in pure metals can be mea-
sured with at least an order-of-magnitude im-
provement in resolution over comparable measure-
ments of S(T).

II. THERMOELECTRIC FUNCTION G(T)

A. Basic concepts

In metals, the flow of heat current and electric
current can be specified quite generally by two
linear transport equations of the form!®

T=e?K E+(e/TK\(-VT) , 1)
Fo=eKE+(1/TKy(- VT), (2)

where the electric current J and the heat current
J, are coupled together by a common thermoelec-
tric transport coefficient K,.1" Because K, is not
a directly accessible experimental quantity, mea-
surements of it are usually made in combination
with other coefficients, for example, the thermo-
electric power S=(1/eT)K, K !, or the Peltier co-
efficient 7=(1/e)K, K ;.

In this section we wish to introduce another ther-
moelectric parameter G, which we believe can
provide useful information about the thermoelectric
properties of metals, particularly under circum-
stances which make conventional thermopower
measurements very difficult. G is defined by

G=eK, K3 (3)

and is functionally similar to the thermoelectric
power S, except for the substitution of the thermal
conductivity K,/T (appropriate to E =0 rather than
J'=0) for the electrical conductivity e?K,. This
relationship can be expressed formally in terms of
the Wiedemann-Franz ratio by noting that

S/G=(1/e DK, K/ (eK, K3
=(K,/T)/(e®Ky) =LT, (4)

where the Wiedemann-Franz ratio L reduces to the
classical Lorenz number L, under conditions of
elastic scattering. Equation (4) suggests that
S/L,T is the appropriate quantity for comparing
measurements of G and S, their ratio providing an
indication of the extent of inelastic scattering
events, i.e.,

(S/L,T)/G=L/L, . (5)

Strictly speaking, Egqs. (4) and (5) are in error by
a term of order (k5 7/p)? which arises from the

difference between K,/ T and the usual definition of
the thermal conductivity k = (1/T)(K, - K2K3!) (de-
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termined in the absence of an electric current
flow). Although this term is of no experimental
consequence in metals at low temperatures, it does
have thermodynamic implications for this work,

as will be shown subsequently.

It is possible to make direct measurements of G
by applying a heat current TQ to a specimen and
then balancing out the resulting thermoelectric vol-
tage gradient with an opposing electric current J,
From Egs. (1) and (2), it follows that for E=0,

G=J/Jdy , (6)

where E is the “effective” electric field given by
E=-1/e)V(p+eV).

Although the details of this field-nulling tech-
nique will be discussed in Sec. III, we mention here
that in pure metals at low temperatures it is pos-
sible to measure these two currents with better
precision than the fields E and VT which are re-
quired for thermoelectric-power calculations.

B. Thermodynamic considerations

The currents J and J, which are used to deter-
mine the thermoelectric function G are measured
under conditions of a uniform electrochemical po-
tential ¢, given by

ep=p+eV. ()

In this situation the usual field-derived energy
source J- (- Vo) is absent, and we wish now to con-
sider the implications of this on the reversible and
irreversible processes which normally accompany
the simultaneous flow of J and J, in a conductor.
We begin by defining an energy current density J; v
given by

j’U:3>0+¢j’. (8)

The rate at which energy is supplied to the medium
when the electrochemical potential is constant is
then

VT =V Tt (=V) - T-0V-T, (9)

where the last two terms on the right are zero.
From Eq. (2) we see that To=(K,/T)(-VT) for
V¢ =0, so that

_6.3U=_$-(§7%(-$T)>. (10)

According to Eq. (10) the only source of energy
flow in a measurement of G comes from the ordi-
nary irreversible process of heat conduction from
one reservoir to another. The absence of terms
corresponding to the Thomson heat and the Joule
heat in Eq. (10) does not mean, however, that these
effects are nonexistent, but rather that the addi-
tional energy for these processes is derived from
the heat reservoir instead of the electric field.
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This may be seen by comparing Eq. (10) with the
equivalent expression for the energy flow which
occurs when the electric current is absent. We
have, for this second case,

-V-Ty==-V - [k(=VD], (11)

where the thermal conductivity « is that applicable
to the condition that =0 rather than V¢ =0 and is
smaller than K,/T by an amount equal to KK ;'/T.
It may be verified by direct calculation that this
difference accounts exactly for the Thomson and
Joule effects; it is somewhat more informative,
however, to approach this problem from a slightly
different point of view.

Consider a conducting medium which supports a
fixed temperature gradient VT and which has vol-
ume densities of energy U and entropy S with as-
sociated continuity equations

8 - -

a—t+V- U=0, (12)
S = aS

a1tV Iss 5 43)

Here J, s represents an entropy density current
equal to J, o/ T, and we are supposing that the total
entropy S is composed of two sources, an “equi-
librium” entropy S, which can be associated with
nondissipative processes, and an “irreversible”
entropy Si..; 8S;;,/d¢ then corresponds to the rate
of entropy production by dissipative processes in
a unit volume of the medium. We now wish to cal-
culate the increase in the rate of change of both
Sy and S, when an electric current J is applied
to the medium and adjusted so that the electro-
chemical potential ¢ is uniform. In other words,
we want to know

T asirr asirr
S T B o IS

A‘S'O:('-v.'j-s)Vow_(—G'j.s)i':o . (15)

Excluding the possibility of mechanical work on the
system, but allowing for the diffusion of charge
carriers (as might be encountered in ionic conduc-
tors) we have

dU=TdS+e¢dN , (18)

where the electrochemical potential ¢ is defined by

Eq. (7). Taking the time derivative of Eq. (16)
and making use of Eqs. (12) and (13) results in
8S 1 aU e¢ oN
ot T ot T at ’ 1)
8Sirr = = 1 = o e¢ (" J
=4+V. - — . — . —
ot + ST (V-Jy)+ v S (18)
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$.(5\_7.5(2
[ ()-+(2)
7L\ 7-35(L
-7, V(T) hj V(T). (19)
Using Eq. (19) to solve for AS,,, we find

3 - - =/1 - -/1
Asirr: (JZI -¢J )Vo:o ’ V(‘%‘)- J U)j‘,o . V<7>

K (_61‘).6(%) _(ﬁa:i;iﬂ) (-¥7) .3(—%—)

2p-1 - -
= =3t (VD) (-VD). (20)

By noting that the electrical conductivity of the me-
dium is 0=e?K, and that the electric current T
=(e/T)K,(~ VT), where ¢ is uniform, we see that
Eq. (20) becomes

. 2
Aslrr:%(JT> . (21)

In other words, the increase in the volume rate of
production of entropy in the medium is just that
produced by the Joule heat. Experimentally, the
source of this entropy production is the increased
heat current required to maintain a constant tem-
perature gradient when the electric current is ap-
plied; energy is not supplied by the source.of elec-
tric current since ‘V'd) =0.

We can now calculate AS, from Eq. (15):

85,= <_$' %q—>vo=o - <_‘7' —3%—)?:0
N

='v'-(KfKo —TT) . (22)

==V

By noting that the thermoelectric power S= 1/eT)
XK, K3 and that J = (e/T)K,(- VT), Eq. (22) be-
comes

AS,=-V-(ST)

1 ds = 1 - .
= —_— VT = - — .
= (TdT T ﬁ T (ppvT-3), (23)

where pu, is the Thomson coefficient and the quan-
tity in brackets on the right is the Thomson heat.
Thus the accumulation or depletion of the equilibri-
um entropy S, can be identified with the nondissipa-
tive Thomson heat. In measurements of G the
Thomson heat is comparable in magnitude to the
Joule heat as may be seen from Eq. (1) by noting
that E-J=0, and by making use of the Kelvin rela-
tion p,=T7(dS/dT); i.e.,

T2/0+SVT-T =0. (24)

In many simple metals S has a predominantly linear
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temperature dependence at low temperatures so
that pu,~S and the Joule heat is just absorbed by
the Thomson heat.

C. Evaluation of G(T)

A general expression for G(T) may easily be de-
rived which is analogous to the familiar formula for
the thermoelectric power!®:

S(7) =eL0T(-a—15rf—(§l)u )

(25)
where o(€) is the (energy-dependent) conductivity
whose derivative is evaluated at the chemical po-
tential. For scattering processes which can be
described by a mean free path (assumed to be en-
ergy and k dependent) the transport coefficients
K,, K,, and K, are given by integrals of the form'®

0
K, = Zlﬁfxf(e)vk (. %)d’k, (26)
0
K= g R @e-wi (- L) a%, @

0
K,= 4—11;5]3 (e)(e - n)?v, (— %)dsk , (28)

where XZ(€) and AZ(€) are the vector mean free
paths resulting from the application of an electric
field and a temperature gradient, respectively.

If the functional form of the mean free path is the
same for each of the coefficients, i.e., if XE(€)
=17(¢), then Eq. (26) may be simplified by writing

K, =Icr(e) (— %];-O—)de=o(u)+--~0(k3 T/u)?, (29)

where o(€) is an integral over a constant-energy
surface,

-

ole) = Lfi () ~& gs (30)
ar’im ) P v, TR

Using this notation, it ispossible to write the ex-
pressions for K, and K, in terms of o(e€), i.e.,

K, = ;12—,[(6 - p)o(e) (— Z—{o)de

- —glz—l:%(ﬂka T)? (————a‘a’f)) } , (31)

1 /
e f(e - [J.)ZU(E)(— L&e )ds = elz [(mks T)20 ()] .
(32)

Dividing Eq. (31) by Eq. (32) we then arrive at
the desired result for G(T):

6(T) =e(91—ggﬁ) . (33)

Equation (33) is a general expression in that it al-
lows for an anisotropic and energy-dependent scat-
tering length and also since there are no conditions
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or limitations on the Fermi surface of the metal
under investigation. On the other hand, the re-
quirement that the mean-free-path function be
common to all of the transport coefficients essen-
tially restricts the validity of Eq. (33) to situations
in which the scattering is elastic, or at least pre-
dominantly elastic.?® The elastic scattering ap-
proximation is likely to be valid in nearly all met-
als at high temperatures, i.e., for T7>>0©p, in al-
loys, and in pure metals at very low temperatures
(when the scattering is dominated by impurities).
Although Eq. (33) bears an interesting resem-
blence to Eq. (25) for the thermoelectric power,
it is in one sense a rather artificial representa-
tion for G(T) because of its emphasis on the elec-
trical conductivity. G(7T) is a measure of the
transport currents in a conductor which result
from the application of a temperature gradient.
The nonequilibrium distribution function which is
responsible for these currents is quite different,
both in form and sensitivity to scattering process-
es, from that which results from an electric field.
While the elastic scattering restriction makes it
possible to find a direct relationship between the
two kinds of distribution functions, in the most
general case these functions and the currents they
produce cannot be simply related. On the other
hand, the currents described by K, and K, are de-
termined by the same distribution function, so that
an expression which relates the two coefficients
may be derived which is independent of the details
of the scattering. This expression can be obtained
by noting that K, and K, can be written quite gen-
erally as

K~f(e- wate) (- %;)de = 4k T2 (%) :

(34)

9 0
K.~ [ (e - wea(o (- L)de = L(nky TV

J€

(35)

where the energy-dependent function Q(€) incor-
porates the effects of scattering, as in Eq. (30),
but is not equal to o(€) unless the scattering is
elastic. By the same reasoning that leads to Eq.
(33) it then follows immediately that

4 [ol
G=eK K= e(%(e)> , (36)
[’

where k(€) =K,(€)/T. By analogy with o(e), «(e€)
may be thought of as the hypothetical thermal con-
ductivity which could be obtained by changing the
chemical potential (as by adding or subtracting
electrons) without altering the band structure of
the metal. The logarithmic derivative of k(e)
which appears in Eq. (36) is thus to be evaluated
at the real chemical potential. We remark that for
purely elastic scattering Eq. (33) and Eq. (36) im-

ply that

(alnx(e»)) _ (alno(e)) _ (37)
9e  /, e |/,

This result is consistent with the Wiedemann-Franz
law.

As an example of the use of Eq. (36), we will
calculate G(T) for a metal with a spherical Fermi
surface in the simple relaxation-time approxima-
tion. Writing X,=V,r we have, from Eq. (28),

K -~ af°
K= 7a =lkavk(e- p)? (— ~af—>d3k

T €
(e — 1112 €372 ___‘Zf_o
j(e w?e ( ac )de
~%(‘”kB T)Z “3/2 , (38)
so that G(T) =e[alnk(e)/a€], is given by
G=3e/2u . (39)

Thus, in this very simple system, G(7) is inde-
pendent of temperature [to order (k5 7/€)?] and
inversely proportional to the chemical potential.
The same result is obtained for electron-electron
scattering: in this latter case a relaxation time
Toe= (k5 T)? + (€ — n)?]™ is used but the procedure
for calculating G(7) remains the same.

D. Multiple scattering and multiband effects

In a conductor whose transport currents are
limited by more than one kind of scattering pro-
cess, an expression for G(T) may be derived which
is analogous to the Nordheim-Gorter?! rule for the
thermoelectric power, although of somewhat great-
er generality. We consider the conductor to be
made up of n elements, each element being char-
acterized by its own thermal resistivity W,, elec-
trical resistivity p;, thermoelectric power S;, and
thermoelectric function G;. These four parameters
are not independent of each other, but are related
according to Eq. (5), i.e., G,/S;=W,/p;. As
shown by de Vroomen et al.,? if the scattering
rates due to each scattering process are additive,
so that Matthiessen’s rule is obeyed, then the con-
ductor may be treated as if the individual elements
are simply connected in series. For a conductor
which carries an electric current J and a heat
current Jo, then the requirement that the electric
field vanish may be expressed as

T 0 +3.89T,=0, (40)
i i

where -V.Ti is the temperature gradient across the
ith element. Rewriting Eq. (40), we obtain

0=szi‘JoZ SiWi:JZpi"JQZ Gip;,
i 1 i i

(e
so that
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oo _ 3Gips
Jo 2i Pi
If there are only two predominant scattering mech-
anisms, then Eq. (42) takes the useful form,

(G, - Gy)p;
P

(42)

G= G;PszGsz =G, +

Although Eq. (43) resembles the Nordheim-Gorter
expression for the thermoelectric power there is
a significant difference in the conditions for the
validity of the two expressions. In particular, Eq.
(43) does not assume the validity of the Wiede-
mann-Franz law so that it may be used at tempera-
tures in which small-angle inelastic scattering
precludes the use of the Nordheim-Gorter rule.

For a conductor with more than one conduction
band it is often convenient to treat each band as
independent of the others and, for the purpose of
estimating the transport properties, to assume
that all the bands are simply connected in parallel.
If we associate with each band an electrical con-
ductivity o;, thermal conductivity «;, thermoelec-
tric power S;, and thermoelectric function G;,
then it follows immediately that

(43)

s:%Eajsj (44)
and that
G=%ZK,-G,- . (45)

Equation (44) is a well-known expression®® and Eq.
(45) follows by setting 0;5;=«; G, as in Eq. (5).

1II. EXPERIMENTAL PROCEDURE
A. Measurement of G(T)

As shown in Sec. I, G(T) is gbtained by measuring
the ratio of anelectric current J toa heat current 30
under conditions of vanishing electric field. To deter-
mine this ratio, we have used a simple potentio-
metric circuit which has proved to be very easy
to use and capable of precision of 0.1% or better,
even in our largest and most pure specimens. A

FIG. 1. (a) Simplified diagram of the experiment for
measuring the thermoelectric function G(T). (b) Equiv-
alent-circuit representation of the experiment for mea-
suring G(T).
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simplified schematic representation of our experi-
ment is shown in Fig. 1(a). One end of a sample
is anchored to a heat reservoir at temperature
T,, while the other end is connected to a heating
coil. A section of the sample is short circuited
by a superconducting galvanometer which indicates
a current flow whenever the heater is turned on.

In principle, the magnitude of this current flow is
equal to the thermoelectric voltage SAT developed
between the galvanometer leads (measured under
open-circuit conditions) divided by the resistance
R of the sample. In practice, the current through
the galvanometer is reduced substantially from
this amount by the contact resistance 7 between
the superconducting loop and the sample; our
measurements indicate that the contact resistance
can be as much as an order of magnitude greater
than the sample resistance. The galvanometer
“deflection” resulting from a thermoelectrically
generated current is amplified and used to supply
a feedback current J to the sample which restores
the galvanometer to equilibrium. The measured
quantities in the experiment are then the heat cur-
rent J, os the feedback current J, and the tempera-
ture T,.

In Fig. 1(b), a simplified equivalent-circuit
representation of the experiment is shown in which
the sample is treated as a thermoelectric “battery”
with internal resistance R and open-circuit voltage
SAT. The current through the superconducting
galvanometer is 67 while the feedback current is
B6¢, Bbeing the effective “open-loop” current
gain of the circuit. For the moment we will con-
sider only the equilibrium, steady-state response
of the experiment; thus, we will neglect the in-
ductance of the ring formed by the sample and the
superconducting galvanometer, as well as the
time constants of the feedback circuit. Each of
these quantities has an important effect on the
stability and response of the experiment and will
be considered in detail in the Appendix.

By adding the voltages around the ring consisting
of the galvanometer and sample to zero, and by
supposing that the current entering or leaving a
junction is conserved, we obtain

-AV+iR+(8i)r =0, (46)

6i(B+1)-i=0, (47)

where 7 is the current through the sample, 7 is the
total contact resistance between the galvanometer
and the sample, i,=p(57) is the feedback current,
and AV is the open-circuit thermoelectric voltage
developed across the sample. Solving Eqs. (46)
and (47) for 5¢ then yields

AV AV

0i= r+(B+1)R: ﬁ

for g>1. (48)
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For a finite current gain B, the equilibrium offset
current 67 leads to an error in the measurement
of G. In order for this feedback error to be
smaller than the error introduced by random sys-
tem noise we require, from Eq. (48), that

AV

B>—r >

(49)
where the over-all system noise is now considered
equivalent to an rms noise current in the galvan-
ometer. For characteristic values of R=10"% @,
V=101V, and €=107 A, we require that the
over-all current gain of the system be greater
than 10* in order for the feedback error to be
negligible. The corresponding fractional error
in the measurement of G is then easily estimated.
From Eq. (48), the feedback current ;= 86i can
be written as

. [ B ) AV/R AV ([, 7 50
’°'(ﬁ+1 /G- DR- & \!" &) Y
The fractional error in G is then given by

3G _ AV/R—i,
G AV/R

i 8
%%, /MR-

COPPER PLATFORM

COPPER
TERMINAL STRIPS FIG. 2. Diagram of the
cryostat used in the exper-

iment,

I~ JOSEPHSON DETECTOR
(SLUG)

COPPER
TERMINAL STRIP

LEAD PLATED RINGS

v
“7R - (51)
In this experiment, v~ 10" @ and R~ 10"® @ so that
8G/G ~0.1%, a value which corresponded closely
to the measured scatter of the data for most of the
samples.

B. Experiment details

The cryostat with its associated instrumentation
(Figs. 2 and 3) was designed so that measurements
of the electrical resistivity p, thermal resistivity
W, and thermoelectric power S could be taken at
each temperature in addition to the thermoelectric
function G. The tungsten samples were in the form
of cylindrical rods with lengths between 6 and 15
cm and diameters of 1.5to 7.0 mm. The rods
were suspended inside of an evacuated copper can
whose inside surface was tinned with lead. A 100-
© heating coil was attached to one end of the sam-
ple. On the larger-diameter samples the coil was
wound directly onto the end of the rod and cemented
into place with GE 7031 varnish; on the smaller
samples the coil was wound onto a hollow copper
former and then soldered to a lead band which was
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FIG. 3. Diagram of the instrumentation used in the
experiment,

electroplated onto the end of the sample. The other
end of the sample was attached to a cylindrical cop-
per block which was thermally isolated, via a
0.010-in. -wall copper tube, from the helium bath.
The temperature of this block was monitored by a
calibrated germanium thermometer in conjunction
with a four-terminal ac resistance bridge?* operat-
ing at 220 Hz. An electronic regulator, operating
at 150 Hz, was used to maintain the temperature of
the sample at a constant value; the regulator heater
was wound directly onto the block while the regula-
tor sensing thermometer (an 82-Q-3-W composition
resistor) was attached to either the sample or to the
block itself. The latter arrangement was used when
the thermal time constants of the sample and block
made it difficult to obtain a stable temperature.
Temperature differences along the sample were
measured with matched germanium thermometers
R, and R,. These thermometers consisted of bare
germanium chips, supplied by Cryocal, Inc., which
were mounted onto tiny epoxy holders and soldered
to lead bands on the sample. A differential three-
wire temperature bridge, operating at 97 Hz, was
used to measure R, and AR=R,;- R,. During each
run, R, and AR were calibrated against the ger-
manium standard thermometer at 0. 1-K intervals.
These calibration points were used as the basis
for a least-squares fit to the expression

InT=ay+a,1nR +a,In°R . (52)

Once the least-squares coefficients a4, a,, and

a, were determined from the data, the temperature
derivatives of R were calculated from the expres-
sion [obtained by inverting Eq. (52)]

dR

R
B o B(& - say(a,- 10D, (53)
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where

mR=-2 _ L [a® - 4a,(ay - InT)]*/2 .

2a, 2a, (54)

Equation (53) was used to determine the tempera-
ture differences along the sample according to a
procedure described in a previous paper.® Typical
values of AT varied between 0.1 and 10 mK, cor-
responding to a heater power of 1-10 mW,

Current and voltage measurements were made
using a Josephson junction detector (Clarke
“SLUG”) as a superconducting galvanometer. 2’

Two detectors were used to cover the 1-7-K tem-
perature range, each selected to have desirable
switching characteristics at its working tempera-
ture. The detectors were ac biased at their criti-
cal currents at a frequency of 10 kHz. The tech-
nique used for measurements of G(T) has been pre-
viously described; voltage measurements used for
determining the thermoelectric power and electrical
resistance were made by balancing the voltage
across the sample with a voltage across a standard
resistor in an ordinary potentiometric circuit.

The standard resistor was made of oxygen-free
high-conductivity copper and had a resistance of
9.25X10°® Q. The feedback current through the
standard resistor, or through the sample, was
supplied by programmable constant-current sources
(Hewlett-Packard No. 6177B) which were controlled
either manually or by the output of the SLUG elec-
tronics. Typical currents were in the range 1-10
mA. All electrical connections to the tungsten
samples were made by soldering to lead bands
which had been electroplated onto the tungsten.

We found that this procedure resulted in a tenacious
low-resistance connection to the sample which
could be cycled repeatedly to room temperature
without degradation.?® The contact resistance to
the sample was found to be 10" to 10" @ depending
on the area of the lead band and the surface condi-
tion of the tungsten. The superconducting leads to
the sample were made by tinning a twisted pair of
No. 36 Manganin wires with lead-tin solder; the
thermal conductivity of these wires was negligible
in comparison to that of the tungsten so that the
presence of the leads did not distort the tempera-
ture profile along the specimens.

During each run, data was taken in the following
sequence. First, the temperature of the copper
block was stabilized at a temperature T, and the
values of R; and AR =R, - R, were calibrated
against the germanium standard thermometer at
this temperature. Next the electrical resistance
of the sample was measured. Then the sample
heater was turned on and the temperature regulator
was trimmed (if necessary) to make sure that the
value of R, was equal to its original value. The
new value of AR was then recorded and the thermo-
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TABLE I. Summary of electrical and physical properties of all tungsten specimens.
o K ax AP B® Diameter  Length®
Sample  RRR* o' @em)  (W/emK)  K!/Zv) (kv (mm) (cm)
w-7 77 300 6,958 687 -0.13 0.386 2.84 7.62
W-6 62700 8. 587 638 0.06 0,232 3.00 5.08
w-3 44200 12,18 494 1.22 0.2175 1.50 7.62
W-¢ 29200 18, 42 o 0.68 0.170 7.11 4,45
W-5 9001 59,77 147 6.42 0.1213 1.504 5.08

% (300 K)=5.38 pQ cm,
YG(T)=AT/2+BT*!, T<4K.

electric voltage across the sample was measured.
Finally, G(T) was obtained by balancing the galvan-
ometer currentto zero as previously described.

IV. EXPERIMENTAL RESULTS

The thermoelectric and transport properties of
five high-purity tungsten specimens were mea-
sured over the temperature range 1.2-7 K. All
of the specimens, except one, 27 were thin cylindri-
cal rods with diameters ranging between 1.5 and
7.0 mm. The samples were single crystals, pre-
pared by electron-beam zone refining, 2% with the
[110] crystalline axis oriented parallel to the rod
axis. The residual-resistivity ratio (RRR) p(290)/
p(0) of the samples varied between 9000 and 77 000;
the electrical and physical properties of the sam-
ples are summarized in Table I. Data in the ex-
periment were obtained at 0.1-K intervals accord-
ing to the procedure described in Sec. III. At
each temperature, measurements were made of the
following quantities: the electrical resistivity p(T),
the thermal resistivity W(T), the thermoelectric
power S(T), and the thermoelectric function G(T)
discussed in Sec. II.

Measurements of the electrical and thermal
resistivity of four of these specimens have been
reported in earlier work by Wagner, Garland, and
Bowers (WGB).® In this experiment (approximately
two years after WGB) these measurements were
repeated and it was found that the residual resistiv-
ity of the highest-purity sample, W-7, had in-
creased by 23%, while no significant change was
noted for the other samples. A deterioration with
age of the electrical purity of tungsten has been
reported by Walsh, 2° who noticed that the amplitude
of Azbel-Kaner cyclotron-resonance signals in
tungsten showed a marked decrease over several
months in high-resistivity-ratio samples. This
effect was attributed® to the formation of a mosaic
crystal structure in very pure material (resulting
from the zone-refining process) which led to an
enhanced amount of small-angle scattering at low
temperatures. This explanation is consistent with
our observation of a similar, though smaller, ef-
fect on the residual resistivity, a quantity which is

®Distance between probes on sample.
dSquare cross section,

relatively insensitive to small-angle scattering.

In Fig. 4, the temperature-dependent component
of the electrical resistivity Ap(T)=p(T) - p(0) is
shown for samples W-3, W-5, and W-6, and it
should be noted that Matthiessen’s rule is well
obeyed to within the resolution of the data.3! As
noted by WGB, 8 the electrical resistivity of tungsten
at low temperatures can be satisfactorily described
by a polynomial of the form

p(T)=p(0) +aT?+bT* , (55)

where the quadratic term is dominant in this tem-
perature range, as shown by the dashed line in
Fig. 4.

We have found WT, the product of the thermal
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FIG. 4. Temperature-dependent component of the elec-
trical resisitivity of tungsten samples W-3 (open circles),
W-5 (closed triangles), and W-6 (crosses), showing con-
formity to Matthiessen’s rule. The dashed line repre-
sents the quadratic function (7.25x 10-% Q cm/K?)T2.
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WT- gy /Lo (I02K2cm/W)
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FIG. 5. Temperature-dependent thermal resistivity
(WT —py/Ly) of tungsten samples W-3, W-6, and W-7,
The data for each sample have been displaced vertically
for clarity.

resistivity and temperature, of all of our samples
to have a predominantly quadratic temperature de-
pendence. However, in contrast to Refs. 6 and 14
we have also observed the onset of a stronger
power-law dependence in this temperature range.
This is shown in Fig. 5, where the temperature -
dependent part of the thermal resistivity WT-(WT),
is plotted as a function of T2 for samples W-3,
W-6, and W-7. The thermal resistivity of all of
our specimens can be satisfactorily described by
the expression

WT =(WT)y+a T2 + BT, (56)

where the coefficients @ and B were found to have
the same value for each specimen within experimen-
tal error. The cubic term in Eq. (56) was chosen
by analogy to the b7° term in Eq. (55); clearly the
resolution of the data is not sufficient to distinguish
a T3 term from some other power-law dependence,
for example T*, For each sample, the extrapolated
value of (WT), agrees to within a few percent to the
quantity p,/L, expected from the zero-temperature
limit of the Wiedemann-Franz law; this is in ac-
cord with the results of Ref. 6.

The temperature dependence of the thermoelec-
tric function G(T) defined by Eq. (3) is shown in
Fig. 6 for all of the samples, and it is clear that
this quantity is strongly dependent upon the elec-
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trical quality of the specimen. We will first con-
sider the variation of G(7) in the temperature
range below about 4 K. In the highest-resistivity-
ratio samples, W-6 and W-7, G(T) increased near-
ly linearly with temperature up to about 3.5 K. In
the lower -resistivity-ratio specimens, W-3, W-0,
and W-5, a qualitatively different inverse tempera-
ture dependence began to appear which was most
pronounced in the lowest-purity specimens. We
have found that in this temperature range G(7T) can
be adequately described for all samples by a two
term polynominal of the form
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FIG. 6. (a) Thermoelectric function G(T) for tungsten

samples W-3, W-6, W-7, and W-0, (b) Thermoelectric
function G(T) for tungsten sample W-5.
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FIG. 7. Thermoelectric function G(T) in the low-tem-
perature region T<4 K for all specimens, plotted to il-
lustrate the fit of the data to Eq. (57). The data for sam-
ple W-5 are associated with the right-hand ordinate.

G(TY=AT'?+BT (T<4K), (57

where A and B are coefficients which vary from
sample to sample. 3 This is shown in Fig. 7,
where the quantity GT /2 is plotted as a function of
T3/2 for all samples: The intercepts give the coef-
ficient A while B is obtained from the slope of the
lines. The values of these coefficients are listed
in Table I, while their dependence on residual re-
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FIG. 8. (a) Dependence on residual resistivity of the
coefficients A and B, defined by Eq. (57), for all speci-
mens. (b) Dependence of G(2K) on inverse resistivity for
all specimens illustrating the failure of the Nordheim-
Gorter rule.

I T T T I I

V)
5

T i
& ‘
0.5 4
00 ! | ! | |
° 0 20 30 40 50 60 170
T(K)

FIG. 9. Phonon-drag contribution to G(T) for tungsten
samples W-6 and W-7; the data points were obtained ac-
cording to the procedure described in the text. The solid
lines represent the best fit of Eq. (58) to the data using,
for W-6, K=0.008 V-'K? and ®;=47 K and, for W-7,
K=0.010 V-'K-? and ©=38 K.

sistivity is shown in Fig. 8(a); it is clear that
there is a general tendency for A to increase and
for B to decrease with increasing impurity content.
While this result appears to suggest a competition
between multiple scattering processes in the metal,
we note that there is an evident failure of the
Nordheim-Gorter rule [Eq. (43)] at the higher-
impurity levels. This is shown in Fig. 8(b), where
G(2K) is plotted against p™! for all of the samples.
Above 4 K there is the onset of a different tem-
perature dependence for G(T) which we observed
for all specimens and which leads to a sign re-
versal in G(T) at higher temperatures. We have
found that all of our data above 4 K may be ade-
quately described by an expression of the form

G(T)=-KT?F(T/9,), (58)

where G,(T) is obtained by subtracting from G(T)
the low-temperature terms AT"Y/2 BT, and F(T/
©,), defined by Eq. (67), is a function which is
characteristic of the onset of electron-phonon in-
terband processes. The temperature dependence
of G,(T) of samples W-6 and W -7 is shown in Fig.
9; the solid curves correspond to the tempera-
ture dependence of Eq. (58) with K and O treated
as adjustable parameters. The data for the re-
maining samples exhibited, to within experimental
uncertainties, the same temperature dependence
as the data for W-6. As discussed in Sec. V we
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identify this high-temperature effect as the onset
of a phonon-drag mechanism.

Figure 10 shows the temperature dependence of
the absolute thermoelectric power for samples
W-3, W-5, W-6, and W-7; thermopower data for
W-0 could not be obtained because of the large
diameter of this specimen. As discussed in Sec.

II, the ratio between S-and G is a measure of in-
elastic scattering, i.e.,

S/L,T L
S Lol _ L
G Ly’ (59)

In Fig. 11, the temperature dependence of L/L, ob-
tained in this way is shown for samples W-3, W-5,
W-6, and W-7. As expected for inelastic electron-
phonon scattering, the ratio L/Lo tends toward the
classical elastic limit at zero temperature. The
scatter in the data of Fig. 11 is almost entirely due
to thermometry errors resulting from the mea-
surement of the thermoelectric power. **

V. DISCUSSION

We have found that below about 4 K the tempera-
ture dependence of the electrical resistivity p and
the thermal resistivity WT of tungsten increases
nearly as T2, Above 4 K there is a deviation from
the quadratic power-law dependence of the data
which can be adequately described by an additional
TS5 term for p and a T3 term for WT. The most
straightforward explanation of these results is to
attribute the low-temperature quadratic behavior
of p and WT to electron-electron scattering, and
to explain the additional higher-temperature terms

T T T
00,0 40 a8
s’ .

20— -

S(I0°7 W/K)

-l

FIG. 10. Temperature dependence of the thermoelec-
tric power S(T) for tungsten samples W-3, W-5, W-6,
and W-7.
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FIG. 11, Temperature dependence of the Wiedemann-
Franz ratio for tungsten samples W-3, W-5, W-6, and W-
7.

on the basis of a Bloch-Griineisen model for elec-
tron-phonon scattering. It is generally believed,
however, that the resistivity resulting from elec-
tron-phonon scattering in a polyvalent transition
metal with a multisheet Fermi surface has a more
complicated temperature dependence than the sim-
ple power-law expression of the Bloch-Griineisen
theory. Thus, for tungsten, we do not believe it
is possible to make an unambiguous association of
a particular power-law component of p or WT with
a specific scattering mechanism solely on the basis
of resistivity measurements. As will be shown,
we have found no corroborating evidence from
measurements of the thermoelectric properties of
tungsten that electron-electron scattering is signif-
icant in this temperature range; instead, it seems
more likely to us that the low-temperature qua-
dratic temperature dependence of p and WT is a
consequence of the electron-phonon interaction.
From our measurements of the electrical and
thermal resistivity we have found no measurable
deviations from Matthiessen’s rule (DMR) for almost
atenfold variationinthe residual resistivity of our
samples. We believe this to be a rather surpris-
ing result in view of the striking DMR observed in
most high-purity metals in this temperature
range. 3 Recent studies of DMR in dilute alloys
of aluminum, %3¢ indium, 37 and gallium3® have
shown that in each case the DMR, Ap, can be ex-
pressed as a cubic function of temperature with a
logarithmic dependence on residual resistivity,
i.e.,

Ap=AT®Inp,, (60)

and it has been suggested recently that this expres-
sion may be applicable to all polyvalent metals
with Fermi surfaces of two or more sheets. Our
results indicate that this conjecture is not correct,
at least insofar as tungsten is concerned, and that
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the suggestion, by Bass, * that Eq. (60) may be an
accidental result of curve-fitting procedures de-
serves further consideration.

Our measurements of the thermoelectric prop-
erties of tungsten show a pronounced peak in both
S(T) and G(T) at about 4 K followed by a sign re-
versal at higher temperatures. In the subsequent
discussion, we will consider primarily the tem-
perature dependence of G(T) rather than S(T) be-
cause of the higher resolution of the G(T) data.
Colquitt, Fankhauser, and Blatt'® (CFB) have re-
marked that a low-temperature peak in the thermo-
electric power of a transition metal can in some
circumstances result from interband electron-
electron scattering. Although the “intrinsic”
thermopower arising from electron-electron scat-
tering alone has a linear temperature dependence,
with multiple scattering the observed electron-
electron contribution to the total thermopower will
be weighted according to the Nordheim-Gorter rule
i.e.,

Seezs;.e Wee/Wtot ’ (61)

where S/, is the intrinsic thermopower due to e-e
processes, and W,, is the corresponding component
of the thermal resistivity. Both S, and W,, have

a linear temperature dependence and, if impurity
scattering is neglected, W,,,=aT +bT", where n
characterizes the contribution to the thermal resis-
tivity from electron-phonon scattering. CFB have
shown that Eq. (61) predicts a low-temperature
peak in S,,; whether or not this could actually be
observed depends on the magnitudes of both the
impurity contribution and the electron-phonon con-
tribution to the total thermopower. We do not
believe that this explanation can be used to account
for the peak in S(T) and G(T) observed in tungsten.

Q.2 -

ELECTRON-ELECTRON WEIGHTING FACTOR

i 2%
T(K)

FIG. 12, Temperature dependence of the electron-
electron weighting factor, defined by Eq. (62), for all
samples.
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The expression for G,, which corresponds to Eq.
(61) is, according to Eq. (42),

Gee= G;e Pee /ptot ’ (62)

where the intrinsic electron-electron component
G!, is independent of temperature, p,, is propor-
tional to Tz, and the total resistivity can be writ-
ten as in Eq. (55).%° In contrast to Eq. (61), this
expression does not allow for a peak in G,, in the
high-purity limit p;=0; however, for moderate im-
purity levels, a peak in G,, can occur at low tem-
peratures. This is shown in Fig. 12, where the
electron-electron weighting factor aT?/(p,+aT?
+bT?®) is plotted as a function of temperature for
each of our specimens. It should be noted that in
the temperature range below 4 K, G, has a tem-
perature dependence which is predominantly
quadratic. We find no evidence of such a quadratic
term in G(T) for any of our samples; instead, as
noted in Sec. IV, G(T) in the temperature range
from 1 to 4 K appears to increase nearly linearly
with temperature in the highest-purity specimens,
and as T'/% in the lower-purity specimens. In
this regard, we also note that these two tempera-
ture components do not scale with sample resistiv-
ity according to the Nordheim-Gorter rule. As a
result, we do not believe it is possible to identify
either the T' or the T-'/? term with a particular
scattering mechanism. A more plausible explana-
tion is to attribute these two terms to contribu-
tions to G(T) from different sheets of the Fermi
surface. In this case, each component of G(T)
would incorporate the effects of all scattering
mechanisms rather than a single scattering com-
ponent. An expression for G(T) for multiple scat-
tering in a multiband conductor may be easily de-
rived by combining Eq. (42) and Eq. (45). The re-
sult, however, is not easily evaluated since it in-
volves detailed knowledge of the transport coeffi-
cients of each band which result from every scat-
tering mechanism. In the high-purity limit, how-
ever, the expression for G(T) reduces simply to
Eq. (45). For electron-electron scattering in a
multiband conductor this is

Gi
G(T)=Wtotz Wie ’ (63)
i ee

where G, is the intrinsic contribution on band i to
G(T) from electron-electron scattering, and W!,
is the corresponding thermal resistivity. From
Eq. (63) G(T) is temperature independent to lowest
order if the impurity term in W,,, is neglected,
and has a T2 dependence if it is included. We
therefore find no reasonable way to account for the
linear temperature dependence of G(T) observed in
high-purity specimens on the basis of electron-
electron scattering. Instead, we believe the elec-
tron-phonon interaction is a more likely cause of
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the observed results in high-purity specimens.
Unfortunately, we cannot determine the tempera-
ture dependence for G(T) characteristic of elec-
tron-phonon scattering without including specific
details of the tungsten Fermi surface, and allowing
for the important effect of umklapp processes on
both G,, and W,,.*° Because the data for pure
specimens has such a simple linear temperature
dependence, however, it seems likely that there is
a single dominant contributor to G(T) in this tem-
perature range; if this is correct, then additional
theoretical work on this problem would appear to
have attractive possibilities.

The T"!/2 dependence of G(T) observed in the
lowest-purity samples below 4 K cannot be ex-
plained by any simple model of impurity scattering,
as discussed in Sec. II, the contribution to G(T)
from impurity scattering is independent of tem-
perature. We believe that the T-!/2 term in G(T)
is probably also a consequence of electron-phonon
scattering, and that the electrical purity of all the
samples is too great to permit the impurity con-
tribution to G(T) to become predominant. In this
regard we remark that while the resistivity of all
of our samples in this temperature range was
dominated by impurity scattering, *° even the low-
est-purity specimen, W-5, had a residual resis-
tance ratio of 9000 and an estimated impurity con-
tent of only several parts per million. We are
unable to account for the enhancement of the 7-/2
term with increasing impurity content, however, a
result which is in conflict with the Nordheim-Gor-
ter rule. If the 7! and the T-*/2 terms are inter-
preted as electron-phonon contributions to G(T)
from different sheets of the tungsten Fermi sur-
face, then the observed impurity dependence of
these terms could be explained only by supposing
that the addition of impurities of the metal acted
preferentially on the transport processes of one
of the sheets. While this seems unlikely for iso-
tropic impurity scattering, it is possible that
boundary scattering could lead to such a result in
size-limited specimens.

At temperatures above 4 K, S(7T) and G(T) for
all samples was found to exhibit a qualitatively dif-
ferent temperature dependence, eventually becom-
ing negative in the highest-purity specimens. We
attribute this high-temperature behavior to the on-
set of a phonon-drag mechanism whose peak is re-
ported to occur at about 70 K.!* The onset of pho-
nondrag is usually observed to contribute a T3 com-
ponent to the thermoelectric power or, from Eq.
(4), a T2 component to G(T). While our data for
G(T) tend toward a quadratic temperature depen-
dence at the highest temperatures, the onset of the
effect occurs with a much stronger power-law de-
pendence. We believe this result can be explained
on the basis of interband scattering between hole
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FIG. 13. Schematic projection of the Fermi surface
of tungsten on the (001) plane showing the allowed inter-
band transitions which result in the absorption of [110]
phonons.

and electron sheets of the tungsten Fermi surface.
rf size-effect measurements*! indicate that a gap,
resulting from spin-orbit coupling, *? exists between
the balls of the electron jack, centered at I' in the
Brillouin zone, and the hole octahedra located along
the six equivalent (100) directions. This gap sug-
gests that phonon-induced interband transitions can
occur only for phonon energies greater than a mini-
mum threshold energy, and we believe this can lead
to the sudden onset observed in the phonon-drag
contribution to G(7). The allowed interband transi-
tions are given in Fig. 13, which shows a stylized
projection of the Fermi surface of tungsten on the
(001) plane. We are assuming a nonequilibrium
phonon distribution corresponding to a heat current
J o along the [110] direction, and we want to deter-
mine what electric current will result when these
excess phonons are absorbed by the electron sys-
tem. As shown in Fig. 13, there are two energeti-
cally favorable interband processes which can oc-
cur at lowtemperatures, corresponding, respective-
ly, to the creation and annihilation of electron-

hole pairs; in each process, a phonon is absorbed
which has a wave-vector component along the [110]
direction. The inverse (phonon emission) processes
are also possible of course, but occur with equal
probability only in the absence of a temperature
gradient, as required by detailed balance con-
siderations. In the pair-creation process, an ex-
cited electron k, is created at the [100] gap while

a hole excitation k, is created at the [100] gap. In
order to conserve crystal momentum a phonon with
wavevector 4 must be absorbed such that G=k,

+k,, and it can be seen from the figure that q must
be sufficiently large to span the gap between the
hole and electron surfaces. An identical creation
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process (not shown in the figure) will occur at the
[0T0] and [010] gaps, and from symmetry the con-
tribution to the total current from these two pro-
cesses must lie along the [110] direction. Whether
this current is positive or negative depends on the
relative magnitude of the Fermi velocities on the
electron and hole surfaces near the gap; for v% >v%,
the resultant current will be negative and this will
lead to a negative phonon-drag contribution to G(T).

In the other phonon absorption process, an elec-
tron in a filled state with wave vector E; is destroyed
at the [010] gap while a simultaneous hole vacancy
Kk, is created at the [010] gap. For this case,
momentum conservation requires that q' +k/ +kj=0,
while the direction of the resultant current again
depends on the relative Fermi velocities on the hole
and electron surfaces. Energy is conserved in the
transition inasmuch as the absorbed phonon is re-
quired to make up the deficit between the energy
gained in removing an electron from k., and the en-
ergy expended in establishing a hole vacancy at k;.
Identical transitions (not shown in the figure) oc-
cur at the [100] and [T00] gaps and cancel all but
the [110] component of current. On the (100) axes,
the Fermi velocity on the hole octahedron is found
from energy-band calculations*? to be slightly
greater than that on the adjacent electron jack.
Since the Fermi surface is roughly spherical in the
vicinity of these points, the total current is domi-
nated by the hole carriers. Hence, J and J q Will
be oppositely directed and the electron-hole inter-
band transitions will give rise to a negative phonon-
drag contribution to G(7) and S(T'). It can be shown
that at higher temperatures at which long-phonon-
wave-vector absorptions occur, both the hole and
electron sheets contribute negatively to G(T') and
the relative Fermi velocities are not critical.

A simple model of electron-hole transitions gives
a good qualitative fit to the data above 4 K. The
phonon-drag contribution to the thermopower S, is
proportional to the lattice specific heat C,, which
for a Debye solid can be written as*

“p (iw/kT hw /T
Co=3Nk | (—(e—,,/m}%),;c(w)dw,

(64)
where C(w) is the fractional phonon density of states
given by C(w)=3w?/w} and w, is the Debye fre-
quency. Setting S,=C,/3Ne and making use of Eq.
(64) and Eq. (4), we obtain

3k T\ (/T x* e
A'(T)—eLe <e ) fo dx (ex_l)a ’ (65)

where the Debye temperature ©,=%w,/k. At tem-
peratures T<<©p,, G,(T) has the anticipated qua-
dratic temperature dependence. We account for the
phonon wave vector threshold for interband transi-
tions by assuming that only phonons of frequency

w >w, can transfer momentum to the electrons.
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FIG. 14,

Temperature dependence of the weighting
factor F(T/®) defined by Eq. (67).

Thus the lower limit of the integral in Eq. (65) can
be replaced by ©,/T, where © = fw,/k. It is con-
venient to change variables to y=1/x so that Eq.
(65) becomes, for T<< @, and ©;< 0,

3k [T\ (T
60+ zi6,(67)* (6,) 0
where
1 el/y
F(T/0,) = f a5 Gy (67)

The temperature dependence of the weighting factor
F(T/9,) is shown in Fig. 14, and it should be noted
that the onset of interband transitions begins at
temperatures well below the threshold temperature
©,. For our samples, phonon drag began to appear
at about 4 K, corresponding to a cutoff of ©,~45 K.
Recent calculations of the phonon dispersion rela-
tions in tungsten** suggest the existence of a trans-
verse-acoustic-phonon mode along (110) corre-
sponding to ©,=45 K at wave vector ¢~0.1 A"},
which should be the gap between the electron and
hole sheets in the (100) directions. This agrees
with rf size-effect measurements?*! which set the
gap at approximately 5% of the total distance from
the center of the zone to the zone vertex along the
[100] direction (1.987 A™!). While this phonon-
drag model reproduces satisfactorily the qualita-
tive features of our data, agreement in detail would
require consmermg the true phonon spectrum for
tungsten and the k dependence of the Fermi veloci-
ties on the hole octahedra and electron-jack balls.
We have also implicitly assumed that the phonon gas
transfers essentially all of its momentum to the
conduction electrons, which ignores phonon-phonon
scattering. This assumption is probably reason-
able in the temperature range investigated in this
experiment.
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APPENDIX

The equilibrium or steady-state analysis of the
experiment for measuring G(T)—shown schematical-
ly in Fig. 1—has been outlined in Sec. II. We now
wish to consider the response of the experiment to
transient deviations from equilibrium. As in any
direct-coupled system which employs negative
feedback, there is a mandatory compromise be-
tween the dc gain and the frequency response of the
system. While it is desirable for the gain to be as
great as possible in order to minimize inherent
feedback error [cf Eq. (51)], the gain cannot be in-
creased indefinitely without eventually precipitating
some kind of dynamic instability; this instability
results from the phase shifts which are an inevi-
table consequence of the high-frequency “roll-off”
characteristics of the system. In this experiment,
the high-frequency response is essentially limited
by the resistance R of the sample and the induc-
tance L, of the superconducting loop shunting the
sample. A typical value of L, was about 10" H
while R varied between 10" Q and 10™° Q, cor-
responding to an “intrinsic” time constant 7,=L,/R
of 1-10 sec. The contact resistance » between the
superconducting loop and the sample tends to re-
duce the observed time constant from this intrinsic
value somewhat, although loop time constants as
great as 5 sec were noted for some of the larger-
diameter samples. In addition to the intrinsic
time constant 7,, the response of the instrumenta-
tion may be tailored to enhance stability and to at-
tenuate noise; in this experiment the instrumenta-
tion time constant 7, was determined by a single -
section RC filter and could be adjusted between
0.01 and 1 sec. Figure 15 shows an equivalent-
circuit representation of the experiment, in which
the sample is considered to be a resistance R in
series with a voltage source AV(w), L, is the in-
ductance of the superconducting loop which shunts
the sample, 7 is the total contact resistance be-
tween the loop and the sample, and the instrumenta-
tion is represented as a current amplifier with
gain 8. As already mentioned there are two char-
acteristic time constants, 7,=R,C, and 7,=L,/R;
the real time constant of the sample-superconduc-
tor loop is Ly /(R +7), but this quantity is of no
practical importance since it does not characterize
the response of the loop when it is operating in a
feedback mode.

FIG. 15. Equivalent-circuit representation used for
analyzing the dynamic response of the experiment.

According to Kirchoff’s law, the voltages around
the sample -superconductor loop must sum to zero,
resulting in

- AV(w) +ip(w) R +0¢(w)(7 +jwLy) =0, (A1)

where current conservation requires #(w) + 6#(w)
=i(w). The “filtered” current from the amplifier
i(w) is related to the “unfiltered” current pdi(w)
according to Ohm’s law, i.e.,

i(w)=yp0i(1 - jwTy) , (A2)

where y =(1+w?73)™), Solving Eqs. (Al) and (A2)
for i(w) results in
()= YB(1 - jwTg) AV(w)/R
U= Ggrr/R+ 1)+ ja(r, —vBTg)

(A3)

In the low-frequency limit, Eq. (A3) reduces to Eq.
(50), i.e.,

: B

i(0)= Fr1+7/R (AV/R),
while at nonzero frequencies #(w) is both attenuated
and shifted in phase with respect to the “excitation”
voltage AV(w). Because the time constant 7, is
typically several seconds, this attenuation is very
pronounced, even at low frequencies, so that
dynamic measurements of G cannot be made without
incurring an excessive measurement error.

Of more importance, however, is the effect of
the phase shifts introduced by 7, and 7, on the
stability of dc measurements of G. We adopt the
following criteria for stability®: (i) The experi-
ment will be regenerative, although not neces-
sarily unstable, at all frequencies corresponding
to 11 -MI|<1, where M is the complex loop gain, %
and (ii) the experiment will be unstable (i.e.,
oscillate) at any frequency for which M becomes
both real and greater than unity.

In this experiment M is given by

_ -1 B
M—(l +7/R +jw7'1> (1 +jw7'o) ’ (a9)

with a frequency-dependent phase angle given by
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wT(1+7/R+T7, /7))
1+7/R-u?1,1,

tang = (A5)

Inspection of Eq. (A5) reveals thatthe phase shift
can never reach 180°, so that oscillations will not
occur for any values of 7,, 7,, or v/R. How-
ever, M will always enter the regenerative region
characterized by criterion (i) at sufficiently high

frequencies; whether transient instabilities (ring-
ing) or other troublesome effects will actually oc-
cur depend on how close M approaches the critical
point, M=+1. We have not found this to be a
problem provided that the current gain g8 was kept
below about 10° and that reasonable care was taken
to ensure that the frequency response of the instru-
mentation was dominated by a single time constant
T, and not by stray reactive elements.
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