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Properties of interface Shockley states for a one-dimensional sp hybrid lattice
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The electronic density of states at the interface of two semi-infinite linear chains consisting of atoms

with sp orbitals is investigated using the Green's-function formalism. The effect of the interface

coupling on the Shockley surface states and the bulklike densities of states is studied in detail.

I. INTRODUCTION

Electronic states localized at the surface of a
semiconductor' ' or at the interface between two

semiconductors" ' have been studied by many
authors because of their importance in developing
semiconductor devices like junction transistors.
For most semiconductors, such as tetrahedrally
coordinated Si, Ge, and GaAs, their electronic
structure can be well constructed by tight-binding
combinations of bonding sp hybrid orbitals. "'"
As noted by Shockley in 1939, ' surface states ap-
pear at the middle of the energy gap when the s and

p bands cross, even if no surface potential pertur-
bation is present ~ In contrast to the Tamm sur-
face state, whose existence solely depends on the
potential perturbation at the surface, such a sur-
face state is called a. Shockley surface state. It
is known that the appearance of the gap states will
severely modify the optical and electrical. proper-
ties of a semiconductor. Thus a study of the effect
of the interface coupling between two semi-infinite
semiconductors on the Shockley states is of inter-
est.

Shockley' considered a general one-dimensional
crystal, containing a finite number of atoms with
symmetric potential wells. He used the method
of matching the wave function and its derivative at
the crystal surface. Goodwin' studied a similar
problem based on the linear-combination-of-
atomic-orbitals (LCAO) method. The LCAO method
was later generalized by many authors to study the
existence conditions and energies of the various
types of surface states. 4's

Most recently, Foo and Wong' (FW) made a sys-
tematic study of the Shockley surface state for a
one-dimensional tight-binding model, using the
more sophisticated Green's-function method. This
Green's-function method was outlined in detail by
Kalkstein and Soven' (KS}. This method is ideal
for treating tight-binding crystals consisting of
atoms with localized orbitals. FW were able to
study the Shockley state analytically. The essence

of the KS method can be summarized as follows:
The surface of a semi-infinite crystal is formed
by starting with a perfect (infinite) crystal and

passing an imaginary cleavage plane through it in
some crystallographic direction. The hopping
integrals which couple the two cleaved crystals
are set equal to zero. The difference between
the Hamiltonians of the perfect and cleaved crys-
tals is then treated 3s a scattering potential. Thus
the Green's functions for the cleaved crystals can
be expressed in terms of the Green's function for
the perfect crystal and the scattering potential in-
troduced by the cleavage plane.

Properties of Shockley surface states have also
been investigated via the pseudopotenti31 method' '
with complex band structure. In this treatment,
the electrons in the crystal were regarded as near-
ly free, the crystal was treated as a continuum,
and the potential was regarded as a perturbation.
The Shockley state was found to exist inside the
bonding energy gap (crossed band) but not in the
antibonding energy gap (uncrossed band).

Electronic interface states have also been studied,
primarily along the line of either the LCAO method
or the pseudopotential method. Davison and Cheng"
studied the interface state of a composite crystal
using the LCAO method. Since the hybridization
of the sP orbitals was not included in their model,
a Shockley state did not appear in their calculations.
Garcia-Moliner and Rubio' extended the pseudo-
potential method to study the interface Shockley
state. However, it is again applicable to a nearly-
free-electron model. Parallel to the development
of the theory of the interface electronic states,
studies on interface phonon state were also re-
ported by Maradudin et al. ' 2nd Hori et al. ' How-

ever, no Shockley-type state appeared in phonon
spectrum.

The purpose of this paper is to use the Green's-
function formalism to study the interface Shockley
states. The interface is formed along the line as
suggested by 1VIaradudin et al. ' A pair of cleaved
semi-infinite crystals are coupled together via
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II. GREEN'S-FUNCTION FORMALISM FOR
INTERFACE STATES

In this section we will derive a formalism for
the interface electronic states in general. Our
derivation is similar in spirit to that outlined by
Maradudin et al. ' in their studies of the interface
phonon spec'trum. The interface is formed by
coupling the cleavage planes of a pair of semi-in-
finite crystals. The atomic orbitals in both crys-
tals are assumed to be localized at the lattice
sites; i.e. , they are mutually orthogonal. All
hopping integrals, except those between the near-
est neighbors, are assumed to be negligible. Let
HRR and H«be the Hamiltonians for the right-half
(RH) and left-half (LH) semi-infinite cleaved crys-
tal and Hsz (or H~s) represent the interaction be-
tween RH and LH crystals which consists of the
nearest-neighbor hopping integrals between atoms
located on the two cleaved surfaces. Let H denote
the interface Hamiltonian for the coupled RH and
LH crystal, which can be expressed as

RR RL

and its corresponding interface Green's function
is given by

RR RL E H) 1G G

GLR G
(2)

The calculations are facilitated by the observa-
tion that the whole system retains a translational
symmetry parallel to the interface plane. For
convenience we will adopt a mixed Bloch-Wannier
representation in the following derivations. Thus
the wave functions can be specified as IK„, n),
where K„ is the wave vector parallel to the inter-
face plane; n =0, 1, 2 or n = —1, —2 denotes planes
of lattice sites in the RH or LH crystal, and the
interface is located between the n = 0 and n = —1
planes.

Since K„ is a well-defined quantum number, we
will calculate the Green's functions as functions

an interface hopping integral. Then the pair of
cleaved semi-infinite crystals are regarded as the
unperturbed system and the interface hopping in-
tegral is treated as the scattering potential. Thus
the interface Green's function can be expressed
in terms of the surface Green's functions associat-
ed with the pair of cleaved semi-infinite crystals
and the interface hopping integral.

In Sec. II, the Green's-function formalism for
the interface states is derived for a tight-binding
model. In Sec. III, application of this formalism
to a one-dimensional sp hybrid model is presented.
A brief discussion of the conclusions is given in
Sec. IV.

of K„. The K„argument will be generally sup-
pressed in our notation, i. e. , I K„, n ) =—I n ) .
Since the Green's function corresponding to a
cleaved semi-infinite crystal is known, we can
treat the system consisting of two uncoupled haU-

crystals as the unperturbed system with the Hamil-

tonian

RR (3)

and its associated Green's function

RR (4)

where

G'= (Z —H')-' .
The interaction HRL (and HLR) is then treated as
the scattering potential,

Thus the interface Hamiltonian can be expressed
as

H=H'+ V.
The interface Green's function can then be ex-
pressed in terms of the unperturbed surface
Green's function G' and the scattering potential V
via the Dyson equation

G = G'+ G' VG . (8)

For simplicity, we assume that V has only matrix
elements between 0 and —1, i. e. , V(0, —1) and V
(- 1, 0), then Eq. (8) can be solved exactly as fol-
lows:

Gss(m, m) = G'„s(m, m) + G'„~(m, 0)

x Hs~(0, —1)G~s(- 1,m),

G~s(- 1,m) = G~~(- 1, —1) H~s( 1, 0) Gs„(0,m)-,

Gs„(0,m) = Gas(0, m)+ Gss(0, 0)

XH„(0, 1)G „(-l,m) .
From (9) we obtain

Gss(ng, m) = Gss(m, m ) + Gss(m, 0) H„~(0, —1)

xa~'~ G~~~(-1, —1)H~s( 1,0) Gss(0, m), -
(10)

where

s~~ = 1 —G~~(- 1,—1) H~s( 1,0) G'„s(0, 0) Hsr(-0, —1) .

Following the same procedure, we can also obtain

G~~( m, —m) = G~~( m, —m)--
+ G' (-m, —1)H ( 1,0) n ' G'„(0,0)-

X;HRL(0, —1) GLL(- 1,m), (11)
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where

~BR = 1 —Gas+I 0}KR1 (0 —1}GI, I ( 1-—1}
xH~s(-1, 0) .

The surface Green's function can be calculated
using the KS formalism, namely,

Gas(m, n) = Gas(m —n) —Gas(m+ 1}Has(-1)

x [1+Gs„(1)Kss (- 1)] ' Gas(- n), (12)
and
G~~(- m, —n) = Go~~(n —m) —G~~(- m) H~~( 1)-

gether at the interface (i. e. , a point). Associated
with each atom is one s-like and one p-like orbital.
The interface is chosen to be between the —1 and
0 sites. The Hamiltonian for the RH crystal is
given by

Rss Rsp
+RR

HRps HRpp

where

ass= CRs N, S Pl, S

p„(m) = ——Q Im G„s(m, m ),1 1
7t' N„

K))

1 1
p~(- m) = ——Q Im G~~(- m, —m),

II

(14)

where N, is the total number of atoms in each plane
The energies of interface states are determined

by the zeros of the determinant

n =—
I
1 —Gas(0, 0) K„~(0,—1)

x G~~( 1, —1) K~-s(- 1,0) I
= 0 . (15)

III. APPLICATIONS: SHOCKLEY INTERFACE STATES
IN A ONE-DIMENSIONAL sp HYBRID LATTICE

Let us consider two semi-infinite one-dimen-
sional monatomic chains, which are coupled to-

x [1+Go«(1) H~~~(- 1}]' G~~(n —1),
(13)

where Gas(G~~) and Has(H+z) represent the
Green's function and the Hamiltonian for an in-
finite extended RH- (LH-) type crystal, respective-
ly.

The local density of states (LDS) of the coupled
crystals is given by the usual formula

—h», (In+1, s&&n, sl+ In, s&&n+l, pl&,
n=

KR» = es.g I
n» &n p I

n

+h»g(ln+»»&n pl+ ln»&n+»pl&
n

(17)

K»~= Ks» = h»~g ( ln s& &n+ I~ p I In+ I s& &n~ p I
& .

Here ER, and E» represent the atomic energies
of the s and p orbitals for an isolated atom, re-
spectively. The parameters h~„hR~, and hR, p,

respectively, represent the hopping integrals be-
tween two s orbitals, two p orbitals, and one s and
one p orbital associated with two nearest-neigh-
boring atoms. The Hamiltonian H~~ for the LH
crystal has the same form as HRR except param-
eters are replaced by &zs, &r p, ass, happ, and

h~, p and pg is summed from —1 to —~. For sim-
plicity, and without sacrificing too much physical
content, we set hR„= hR»= hRsp= hR and h~„=h&»
= hz »——hz, . The analytical expression for G (or
Gzz}for this infinite one-dimensional s-p hybrid
model has been calculated by Foo and Kong, ' as

G„(n) = (1/2s) (&o+ [(s-E)/2e —p] [-p+ (pa —1) 2 ]'"~ (p2 —1)

G»(n) = (- I/2e) (&„o+[(e+E)/2e —p ][-p+ (p —1)' ]
" (pa —1)

G»(n) =- G»(n) = (1/2e) sgn(n)(1 —5~}[-P+ (P —1) ~2 ]~"'

where p= (e +4h —E )/4ah and E is measured from
the middle of the energy gap, i. e. , by setting ER,
+ en~ = 0 (or z~, + e~~ = 0) @is equ.al to ea =——,'(c»
—e») or ez =—2(er, &

—ez, ), and h is equal to hs or
h~. It has also been shown that a Shockley surface
state appears at E=0, when ys(=-2hz/es) or y~
(—= 2hz/ar) is greater than 1, i.e. , the s and p bands
cross each other. Thus these s-p hybrid solids

can be classified as crossed-band or uncrossed-
band types of solid.

The scattering potential at the interface is also
assumed to be characterized by a single parameter
hR~, which reads

(0, I)=
hRz, hR
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and

il (-10)= (
" *) (19)

Thus we will consider the interface which can be
characterized by the set of parameters E» e»
h~, h~, and h~~. In the following we will compute
the electronic density of states at various kinds of
interfaces, using Eqs. (11)-(14), (18), and (19).

Interaction between two degenerate ShocMey
states. First we consider the case in which both
RH and LH crystals are band crossed, i.e. , yR & 1

and y& &1 and their Shockley states are degenerate
at E= 0. In the presence of a weak interface cou-
pling h~z, the pair of degenerate Shockley states
associated with the RH and LH crystal interact,
and their energies are shifted by the amount

Er ——a 2hsr [(1 —ys )(1 —yr )] ~ (20)

For the special case in which RH and LH crystals
are of the same type, Eq. (20) becomes

Er = + 2hst(1 —e /4h ) . (21)

This type of interface describes the case of a
weakening bond in an otherwise perfect one-dimen-
sional lattice. However, this statement may not
be applicable to a two- or three-dimensional sys-
tem. In Fig. 1 the energies of interface states EI
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for this special case, with es/ha= e~/hs=h~/he= 1,
are plotted as a function of h~~. One observes
that, for &~1, «h~, EI are linear in hzz, , as de-
scribed by Eq. (21), and approach the limits of

FIG. 2. Local densities of states p&(0) at the interface
for several different hei, plotted as functions ofE. In (a) the
dash lines represent the upper-half and the lower-half of
the spectra for ImG~(0) and ImG&(0), respectively. (b),
(c), and (d) describe ps(0) for hsrjhs=0. 4, 0.2, and 0.1,
respectively. Other parameters are &z/hz =&&/hz
=h~/h~ =0.5. The Shockley states are degenerate at E
=0 when hzz, =0.

1

Ez/h

0 Eijh„

-2

I 2
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FIG. 1. Energies of the interface states EI plotted as
functions of the interface coupling constant h~L, . Param-
eters are es/hs ——el/hR-— hr/hs ——1. For such a system,
both RH and LH crystals are band crossed and their
Shockley states are degenerate at E =0 when h&1. =0.
Shaded areas denote the bulk continuum.

FIG. 3. Energies of the interface states EI plotted as
functions of the interface coupling constant h&I.. Param-
eters are &z/hz =&I/hz =4, and hl, /hz=1. For this sys-
tem, both RH and LH crystals are band uncrossed.
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Er= + 2hsn(hR/&s) ~ (22)

when hR~»hR. In Fig. 2, we consider the elec-
tronic density of state for a more general degener-
ate case in which the RH and LH crystals are not
alike. The set of parameters is en/ha= es/hs
= hn/hs = 0. 5. For the purpose of comparison,
ImG»(0) and ImGnn (0) corresponding to perfect
crystals are plotted in Fig. 2(a) (only one-half of
the spectra being plotted here). For h„n/ha=0. 1,

, 4O
t2c
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FIG. 5. Local densities of states pR(0) and pz, (-1)
plotted as functions of E. Parameters for this system
are &s/ha=sr/hs ——hz/hz -—1 and hate/hs ——0.1. The cen-
ters of the energy gap for the RH and LH crystals are at
E/hR=-1 and 1, respectively.

Q I

E/g„

FIG. 4. Local densities of states pR(0) at the interface
for several different hRz, plotted as functions of E. The
parameters for this system are &s/ha=&I/ha=l, and

h~/hR=0. 25. For such a system, the RH crystal is band

crossed and LH crystal is band uncrossed. In (a), the
dash lines represent the upper- and lower-halves of the
spectra for ImGI, (0) and ImGR(0), respectively. (b),
(c), and (d) describe pR(0) for hRI/hR ——0.4, 0.2, and 0.1,
respectively.

-4 -3 -2 -
I 0 I 2 3 4

E/s~

FIG. 6. Local densities of states pR(0) and pL(-1)
plotted as functions of E. Parameters for this system
a.re as/he=1, &q/ha=2, ht/hz—- 0.5, and hsr, /ha=0. l.
The centers of the energy gap for the RH and LH crystals
are at &/hR ——1 and —1, respectively.

the RH crystal and the LH crystal are weakly
coupled and the two originally degenerate surface
states split according to Eq. (21), and the bulk
continuum pa, rt of ps(0) is predominantly ft like as
shown in Fig. 2(d). For hzs/ha=0. 2 [see Fig.
2(c)], the interface Shockley states split further
apart and the bulk continuum part of ps(0) picks up
some more L-like states. For hsn/hs = 0. 5 [see
Fig. 2(b)], the interface Shockley states merge
into the bulk continuum and become resonance
states, and, as a result, the bulk continuum is
strongly enhanced. In addition, we also observe
that the band-edge singularities associated with a
perfect crystal are being washed out completely in
ps(0). A similar kind of conclusion can be also
drawn for pn(-1).

Symmetric case with yR, y~&1. Here, both RH
and LH crystals are band uncrossed, and thus
there are no Shockley states in the gap region.
However, we observe that, when hR~ &hR, h~ there
exist two interface states in the outer band-edge
regions as shown in Fig. 3. The set of parameters
used here is ht/hs = 1, as/ht = &Jhs = 4. The
energies for the pair of interface states approach
the limit of Eq. (22) as h»/hs» 1.

Symmetric case of yz & 1 and yz &1. In this case
there is only one Shockley surface state associated
with the RH crystal. As h» increases, the Shock-
ley state will stay at E = 0, but will also decay into
the LH crystal. The bulk continuum of ps(0) will
also pick up more L-like states, as shown in Fig. 4.

Unsymmetric case with both yR &nd y~ &1. There
are now two Shockley states at different energies.
The energy of the Shockley state associated with
the RH crystal lies in the continuum region of the
LH crystal, and vice versa. As shown in Fig. 5,
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one observes one resonance state and one dip in
both p„(0) and p~(-1}. This shows that the Shock-
ley state associated with the RH crystal will not
penetrate into the continuum of the LH crystal as
a resonance state. The dashed lines describe the
case of h» = 0.

Unsymmetric case saith y& ) 1 and y~ «1. In this
case, the Shockley state associated with the LH
crystal lies in the bulk continuum region of the RH
crystal. In Fig. 6, one observes that the Shockley
state which appears in p~(0) is broadened by cou-
pling to the continuum, and a sharp dip appears in

p~(-1) at the same energy where the Shockley
state is located. This again shows that the Shock-
ley state will not penetrate into the continuum of
the other side of the interface.

IV. DISCUSSION

We have used the Green's-function method to
study the electronic density of states at the inter-
face of two semi-infinite one-dimensional lattices
consisting of sp hybrid atoms. The interaction
between two degenerate Shockley states and that
between a Shockley state and a bulk continuum
have received special attention. Our results in-
dicate that a pair of degenerate Shockley states
will split in the presence of a weak interface cou-

pling. They also reveal that the Shockley state
will not penetrate into the bulk continuum as a
resonance state, and, instead, there is a dip in
the density of states at the energy of the Shockley
state.

So far, only systems consisting of two pure
semi-infinite one-dimensional lattices have been
considered. No interface potential perturbation
has been taken into account. However, this meth-
od is completely general, and can be applied to
more complicated three-dimensional systems with
some modification. Our calculation is essentially
a one-electron theory for a static system. No

attempt has been made to take into account the ef-
fect of the charge redistribution near the interface.
Thus the phenomenon of band bending or a junction
potential has been excluded from our discussion.
Investigations on the effect of the charge redis-
tribution have been reported in recent years by many
authors' '; however, they have left out the effect
of the interface structure. A theory which includes
both the effect of the charge redistribution and the
effect of the crystal structure at the interface is
needed in order to understand the nature of the
electronic states at the interface. Our study of
the "static" system is of some importance in the
process of developing a more complete theory for
the interface state.
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