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Temperature modulation of the optical transitions involving the Fermi surface in Ag:
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The thermomodulation mechanism for optical transitions originating or terminating near the Fermi

surface in noble metals has been investigated. Detailed thermoderivative line shapes of hc, for both

inter-conduction-band transitions and transitions from the d bands to the Fermi surface have been

calculated for Ag, The calculation also gives the temperature dependence of the joint density of states

for these transitions.

I. INTRODUCTION

In the last few years, much effort has been de-
voted to a deeper understanding of the electronic
structure of the noble metals. ' Refined theoret-
ical methods are now available for more reliable
band-structure calculations, 8 ' and photoemis-
sion" ' and optical'8 ~8 measurements (both of the
static and derivative or modulated type) have pro-
vided very detailed information on the electronic
structure many eV away from the Fermi surface.

It is fairly well established that the strong inter-
band edge in Ag at about 3.S eV is of a composite
nature, ' the strong L3- Lz(E~) transitions (d band

to Fermi surface near L) being overlapped by
weaker transitions near Lz(E~) -L, Both op.ti-
cal' ' ~ ~z ~ and photoemission""~3" results
support this interpretation which, however, has
been questioned recently by Christensen. '

Several questions [such as the exact position of
the onset of the Lz(E~) -L, transition as well as the
position of the Lz- L, critical point j are still
open. Another aspect of theoretical interest is the

exact determination of the ratio of the oscillator
strengths of the two overlapping transitions.

Recent work on thermomodulation at very low

temperature on Au has proved very useful for un-

tangling d-band-to-Fermi-surface optical transi-
tions from the large number of signal sources in

derivative experiments on noble metals. It also
provided the first attempt at giving a quantitative

account of the modulation mechanism for transi-
tions of this kind.

In the following a more comprehensive account

of this modulation mechanism is given, and the cal-
culation has been extended to inter-conduction-band
transitions involving the Fermi surface. Experi-
mental results of thermomodulation measurements
taken at very low temperature on Ag are reported
in the following paper3~ (referred to henceforth as

paper II) and interpreted in the light of the theory

presented below.

II INTER CONDUCTION BAND TRANSITIONS tL, (E ) ~ L, j

A. Static joint density of states

The inter-conduction-band transitions occurring

2.O-Ag RAP%

FIG. 1. Relativistic band
structure of Ag as calculated
by Christensen (Ref. 10).
The hatched area is of par-
ticular interest for optical
interband absorption.
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may write for the p and s bands'

@2 f2
Sop = —5'dy + kg — kjj

2Rz pg 2~p fi

S~
A(0 = Rog + kg + kjj2m, ~ 2m„,

where k~ is defined as

k~ = (k„+k )'~2 (3)

p band
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k„and k, being along orthogonal axes in the hexa-
gonal face through L.

Considering only direct or vertical transitions,
if I~, (k) and h~~(k) denote energies in the final band
s and in the initial band p, respectively, then tran-
sitions between these two bands at photon energy
Ro are restricted to the surface of constant inter-
band energy given by

Q,~(k)=—Ru, (k) —Ro~(k) —Ko = 0 (4)

The JDOS for the bands we are considering is
defined as

d band

ITld

L6y g (L3)

u, .(s )=,',j d'ao(o. ,(e) .

The prime on the integral denotes that the integra-
tio~ is to be performed only over those portions of
k space for which ko, &E~ &S(d& .

As is well known, ' it is possible to integrate

FIG. 2. Detail of the band structure near L for Ag.

near L in Ag are strongly influenced by the exis-
tence of the Fermi surface. Figure 1 shows the
relativistic augmented-plane-wave band structure
calculated by Christensen. ' The hatched area is
of particular interest in optical experiments be-
cause most of the optical interband absorption in-
volves these bands. Figure 2 shows this region in

greater detail.
If the p band were completely occupied, the p-s

transitions would give an M~-type critical point in
the joint density of states (JDOS). Since the band
is filled only up to the Fermi level, we can have

optical transitions only for photon energies above
a well-defined threshold he„which is shown in
Fig. 3(a). The shape for the JDOS which we ex-
pect is shown schematically in Fig. 3(b).

Assuming the energy bands depend quadratically
on the distance from L, the shapes of the JDOS
(Ro, T) and the related optical function s2(ilail, T) can
be calculated in closed form. From the latter, the
derivative Se2/8T can be calculated, allowing a.

meaningful comparison with thermoderivative ex-
perimental data. Referring to Fig. 2 and assuming
rotational symmetry around the direction L-1", we

a)

%co, fin)g

flQ)~
E„

JDOS(fiel)p~q
b)

%cog+%~&

FIG. 3. (a} Bands responsible for inter-conduction-
band transitions in Ag. (b} Schematic joint density of
states for the p -s transitions in Ag (solid line}.
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over the 5 function in Eq. (5). The JDOS reduces
then to the form

I

(2v)' I Vf(ku, ) —Vf(fkd, } I

the integral being carried out over the surface
n„(k) = o.

The surfaces where the band p has constant
initial energy E and the band s has constant final
energy E+ h(d are easily written:

h2 82
Roq (k) Roy+ k~~ kj~j = E

2 PPlp J 2PBp ()

2R), (k) =Re, + k,'+ k„=E+Ro
2m' 2ms ()

The surface Q,~(k) = 0, usually called CEDS' (con-
stant-energy-difference surface), is obtained by
subtracting Eq. (7) from Eq. (8):

h~ 1 10 (k) -=Su + Ro +-
m msl p~

1 1
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%cup = -4k BT

I CFDS Acu=3.76eV
II CFDS Ace=3.96 eV

III CEDS a~=4. I6 ev
2Z' CEDS 4~=4.36 eV
V CEDS Acu=4. 56eV
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Figure 4 shows the (110) section of the Fermi
surface as calculated from Eq. (7) together with

several (110) sections of CEDS's calculated for dif-
ferent photon energies from Eq. (9).40

For Ro = 3, 76 eV, CEDS IV runs outside the

Fermi surface and corresponds to empty states in

the p band. Therefore, no transition can occur.
When the photon energy is increased, the surface
cuts through the Fermi surface and optical absorp-
tion starts, increasing with the area of CEDS,
which runs inside the Fermi surface. The calcu-
lation of the JDOS (Ko) is therefore very easy at

x 8 u

eV

eV
eV
eV

FIG. 5. Cross section in the Fermi-surface neck re-
gion of CEDS (p -s bands) in a plane containing the L-I'
direction. The hatched area between the constant-ini-
tial-energy surfaces E =4k~T and E = —4AI3I show the re-
gion in k space where the occupation probability goes
from nearly 1 to nearly 0 {1=100 K).

T= 0 when the Fermi surface is perfectly sharp.
For a finite temperature T40 the situation is
slightly complicated by the smearing of the Fermi
surface. Figure 5 shows a section of the Brillouin
Zone nea. r L (corresponding to the hatched area of

Fig. 4}. Besides the Fermi surface, the surfaces
of constant initial energy E = 4k~ T and E = —4k~ T
(for T = 100 K) have been plotted. The hatched area
between these two surfaces represent the volume

in 0 space where the occupation probability de-
creases from nearly 1 to nearly 0 when T= 100 K.

In calculating the JDOS each infinitesimal ribbon

of a CEDS corresponding to transitions with initial
energy between E and E+ dE has to be weighted
with the probability f (E) that the initial state is oc-
cupied.

To perform this calculation we borrow from
photoemission theory the concept of energy dis-
tribution of the joint density of states (EDJDOS).
This is formally defined by

FIG. 4. (110) sections of CEDS and Fermi surface.

&~,(E, Ru) = (2v) ' fd'k5(A~(k})5(E- iud~(k))
(lo)

As discussed, for example, by Koyama and Smith, "
the extra 5 function picks out those transitions
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whose initial states lie at energy E. The expres-
sion for the EDJDOS may be converted to a line
integral':

The integral is performed around the line of inter-
section of the two constant-energy surfaces Ro~ = E
and Sos E+~

Owing to the rotational symmetry around A the
calculation of the integral is straightforward. The
paths of integration turn out to be circles on planes
perpendicular to A and centered on the A axis. "
Inserting Eqs. (1) and (2) into Eq. (11) one easily
obtains

u, ,(E, h(o) = (16m'8') '5, ,
8 e

X E+ @gp —@g) —E+ ~y
~L msi

(12)
where the factor $~, is given by

-S/2m
~~ mug + m&g my()

P~s
mg ff Flip () ms g Pip/

(13)

The EDJDOS exhibits an inverse-square-root sin-
gularity ' as already found for instance by Lindau
et al. " This singular behavior can be understood
easily from Fig. 6, which shows in great detail
part of the neck region. Close to the hexagonal
face of the Brillouin Zone, each CEDS becomes
tangent to a surface of constant initial energy,
giving rise to a very large number of states with
the same initial energy.

The calculation of the JDOS and its temperature
dependence is now straightforward:

&,„,(Ro, T) = J™~&,., (E, Ru) f(E, T) dE, (14)
dmin

f(E, T) being the Fermi distribution function.
In the constant-matrix-element approximation

the JDOS is easily related to the imaginary part of
the dielectric function'4:

g, ,(~ )
8v e'8'

I P(s- p) I g (3 (Ro)

Ne are left with the calculation of the integration
limits. The calculation of the lower limit is im-
mediate. One obtains

I.Q
and

E „=—5+~+ " [Ru, + Ro~ —Ro]m„- m„
for Rp &Kv~+Ru& (16)

E „=—k&o& — '" [Ru —(Roz+ Ro~)]
~)~ ™Si)

for Ro &Ko&+Ku, . (17)

~0.9
Z

o

Z
0.8

0.7-

II CEDS Ace 3.837 eV
"P "B GI CEDS 0~=3.86l ev

ZF CEDS+cu=3.869 eV
V CFDS M=3.877 eV
T CEDS 5~=3.90I eV~ CEDS Au=3.934 eV
T= I00 K

0. 1

(~/40) UNITS

FIG. 6. Detail of the Fermi-surface neck region show-
ing several (110) cross sections of CEDS's (p-s bands)
and constant-initial-energy surfaces. Region 4 (lower)
experiences a decrease in electron population during a
small temperature increase (at 1'=100 K) while region U

(upper) experiences an increase.

The upper limit of integration E ~ has been chosen
at the intersection of each CEDS with a plane per-
pendicular to A at a distance w/4a from L (shown
in Fig. 5). We obtain

msL
Emax = —~cog — — +

X — + — + ~~+So& —lop

(18)
This procedure may seem somewhat arbitrary at
first sight, but in the energy range of interest the

upper cut is actually provided by the Fermi sur-
face. The portions of a CEDS a few k~T above the
Fermi surfa, ce already give, in fact, a negligible
contribution to the absorption.

Figure 7 shows the JDOS obtained for three dif-
ferent temperatures. The magnitude of the JDOS
depends on the geometrical factor F~, given by
Eq. (13) as well as on the matrix element of the
transition. The latter has been chosen in order to
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FIG. 7. Joint density of states (JDOS) of Ag due to the inter-conduction-band transitions near I calculated at different
temperatures. The dashed line shows the JDOS that would be obtained were the p band completely filled.

obtain agreement with the experimental results
presented in paper II. The dashed line in Fig. 7
shows what the JDOS would be were the p band
completely occupied: The characteristic shape of
an M~ critical point is clearly seen.

B. Thermoderivative behavior

~,
( )

8v e~k IP(s-P) I

~ (@ )2 t
p 2 (f(~)2 0 8

(2l)
Figure 8 shows spectra of 4&~~ ' obtained at dif-
ferent temperatures, assuming ~ T = 1 K. On low-
ering the temperature, the structure becomes
much sharper and considerable enhancement is ob-

In a thermoderivative measurement a small tem-
perature wave is applied to a sample and the re-
sultant ac component of the ref lectivity and/or
transmission is measured. From these data, the
change of the imaginary part of the dielectric func-
tion e~ is usually obtained. Many different sources
of signal may contribute to thermomodulation spec-
tra in metals ' but it has been shown ' that, at suf-
ficiently low temperature, the dominant mechanism
is due to the periodic smearing out of the Fermi
surface.

The calculation of the JDOS we have been car-
rying out now allows us to calculate the theoretical
&&~ which should be expected from the inter-con-
duction-band transitions in a thermomodulation ex-
periment. Differentiating Eq. (14) with respect to
T we obtain

48~, (ku), T) = —g~, (ku, T) aT
where

IO~ 5&2

T=4.2 K

(eV)

—4 .,(R, T) f n~., (Z, M)—AZ, T)
&m~n

(2o)
and 4T is the amplitude of the temperature modu-
lation. The change of the imaginary part of the
dielectric function can be obtained immediately:

FIG. 8. De& thermomodulation spectra calculated at
different temperatures arising from inter-conduction-
band transitions in Ag.
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tained. At low temperature we may expect good
agreement with the experimental &E~ spectra, but
care should be taken when comparing high-tem-
perature spectra with experimental results, which
also involve the effect of the other modulation
mechanisms.

The physical mechanism through which the JDOS
is modulated (and with the JDOS, all the optically
related functions) can be understood easily. Re-
ferring to Fig. 6, the shaded area shows the vol-
ume in k space where the thermomodulation phe-
nomena take place at a temperature T= 100 K.. The
spectrum of ~e~ at this temperature is shown in
detail in Fig. 9.

On increasing the temperature a small amount
the region U (upper) between the Fermi surface and
the constant-energy surface h~~ = 4kBT experiences
an increase of electron population, while the region
L (lower) between the Fermi surface and the con-
stant-energy surface ~xo~ = —4kB ' experiences a
decrease. CEDS I at 3.804 eV (which starts 8k TB
above the Fermi surface) is too far above this
region, so no change whatsoever in absorption at
this energy can occur, The arrow (a) in Fig. 9
shows in fact that for this energy Aced is zero.

For Ro~ = 3.837 eV CEDS II starts touching the
constant-energy surface Ro~ =4kBT. Thereforep B ~

on increasing the temperature there is a slight in-
crease in electron population which, in turn, gives
rise to an increase in absorption [arrow (b) in

Fig. 9].
It is interesting also to plot the integrand of Eq.

Aa)=3.804 eV

I

-0.05 — 0 0.05 E(eV)

4&u= 5.857 eV

Q
) . -0.05 — 0 0.05 E (eV)

5.86) eV
'i

0.05 E(eV)

3.869 eV

0.05 E(eV)

I- Ace= 5.877 eV

Q -0.05 «$0 0.05 E(8V)

=5.90I eV
~ ej ~

0.05 E(eV)

can=3.952 eV
~ ~

0.05 E(eV)

FIG. 10. Thermomodulation mechanism for inter-
conduction-band transitions. The dotted line gives the
EDJDOS (E) for several photon energies. The dashed
line gives the temperature derivative of the Fermi dis-
tribution (at 100 K) and the solid line gives in each case
the product E times 8fjBT, the integrand of Eq. (20).
The algebraic sum of the negative and positive areas
(hatched in the figure) gives the net ~4&,(S( ).

T=lOO K

0.5-

3.80 3.84 3.8 fuy{eV)

FIG. 9. A@2 thermomodulation spectrum for inter-
conduction-band transitions in Ag at 100 K. Arrows (a)-
(g) indicate the situation corresponding to the CEDS's I-
VII, respectively, shown in Fig. 6.

(30) separated into its factors (Fig. 10). For each
photon energy, the algebraic sum of the negative
and positive a.reas gives the net b $~, (5o).

CEDS III has a large part of its surface in region
U, therefore giving a large increase of absorption
in phase with the temperature wave. CEDS IV
should, at first sight, give the maximum positive
change in ~&~ since it has more surface than any
other CEDS in region U. This is not the case,
however [see arrow (d) in Fig. 9]. As is clear
from Fig. 10, the singularity in the EDJDOS falls
in fact in a region where Sf/ST is zero, reducing
the resulting area.

On increasing the photon energy, the CEDS's
will have part of their surface in region L (which
experiences a decrease of electron population) so
that the net change of absorption will start a rather
fast decrease [arrow (e) in Fig. 9].

For Ro = 3.901 eV, CEDS VI, owing to its cur-



480 R. ROSE I 10

III. TRANSITIONS FROM d BANDS TO THE FERMI SURFACE

A. Static joint density of states

L —- I

EF Referring to Fig. 2 it is clear that if the P band
were completely empty, the d- p transitions would
give an M, -type critical point in the joint density of
states. Since the band is filled for a few tenths of
an eV above L~, we can have optical transitions
only for photon energies above a threshold h~~
[shown in Fig. 11(a)]. The shape of the JDOS which
we expect is shown schematically in Fig. 11(b).

Assuming, also, the d-band energy depends
quadratically on the distance from L, we may write

0JDOS
O'

Roy = —Rt)y —Roo- k)2)

2PFEjIJ 2mg)
(22)

)II I

)

I

I

I

I

I

%'e already know the constant-energy surfaces
for the p band [Eq. (7)]. The constant-energy sur-
faces for the d band are easily obtained:

S~ k~
Log = —SQpy —840 — k~ — —

k)) = E —Sco
2 pplgJ 2m/))

(23}
The JDOS for the d- p transitions can be written

as

FIG. 11. (a) Bands responsible for d p transition in
Ag. (b) Schematic joint density of states for the d-p
transition in Ag (solid line).

vature, has a larger part of its surface in region
L than in region U. Besides, the singularity in the
EDJDOS falls in the region where Sf/ST is negative
and this results in a strong contribution of the
negative area. For even higher photon energies,
the change in absorption goes to zero, because the
CEDS's have roughly equal areas in regions U and
L. The singularity in the EDJDOS falls outside the
region where Sf/9 T is significantly different from
zero so that the positive and negative lobes are
weighted roughly equally.

This analysis clearly shows that the thermode-
riv3tive signal arises in noble metals from a very
small and localized region of the Brillouin zone
(in practice, the neck regions very close to the
hexagonal faces}.

It is also interesting to note that the cruder
two-OPW (orthogonal plane wave) approximation
often used to explain photoemission results3 '~'

completely fails to explain the origin of thermo-
modulation signal. In this approximation, the
CEDS's are planes perpendicular to A and the
EDJDOS turns out to be a constant. The CEDS's
have roughly equal portions of their surfaces in
region U and region L, giving rise to a zero net
change of absorption.

t

3I)
I v (@u,) —v„-(Ru, ) l

the integral being now carried out (for each photon
energy) over the surface Q~(k) = O. The CEDS can
be obtained by subtracting Eg. (23) from Eq. (7):

1.5

i T=IOO k
I

~~A(uP =4kST

~cu& =0 {Fe)mi Surfoce)

M

z
i.O

I CEQ5 Ace=5.58 eY
Q CEDE Aau=3. 68 eV
JQ CEQ5 Acu=5. 78 eV

QT CEQQ 5~=3.88 eV
V CEDS Aru=5. 98 eV
'2[ CEDE Ace=4.09 eV

mr CEDS ~ =4. i8 eV~ CEDS %~=+.28 eV

0.5 i.O

{~/40) UNiTS

FIG. 12. Cross section in the Fermi-surface neck re-
gion of CEDS (d p bands) in a plane containing the J -I'
direction. Also shown are the constant-initial-energy
surfaces E= —4k&T, E=O (Fermi surface), and 8=4k&T.
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30I- f itic i

20-
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3.90 4.00 420

FIG. 13. Joint density of states (JDOS) of Ag due to the d-p-band transitions near L calculated at different tempera-
tures.

Q~ (k) = Roo+ — + )F~

k~ 1 1
2 P?XpJ mft J

+ — — ki) —RtP = Q.
2 mff () mp((

Figure 12 gives some (110) sections of these
CEDS's together with the (110) section of the Fermi
surface. It can be noticed that the CEDS's now run
almost parallel to the Fermi surface. This is, of
course, due to the flatness of the d band: We can
expect therefore a much sharper onset of the JDOS
than in the preceding case.

There is another important difference from the

case of the p- s transitions: On increasing the
photon energy, the CEDS's now tend to run out of
the Fermi surface. Since the points inside the
Fermi surface represent occupied states in the p
bands, only the regions of each CEDS exposed

I,O-

8-

lO~ ~~ p(&~)
2

20 K

'Aldp =

0.9 (Ferrn
~,%cup =

~rrrr
Vo ~ +p--
K//i

~ 0.8-
flCiPp-

I CEDS Ace 4.106 eV

II CEDS 0~=4.067 eV
III CEDS 0~=4.038 eV

H7 CEDS 5~=4.028 eV
V CEDS a~=4.0~9 eV

Xl CEDS Ac =3.990eV
VK CEDS Aau=3. 951 eV

T=IQQ K

i

O. I 0.2
kg)

0.3

FIG. 14. A&2 thermomodulation spectra calculated at
different temperatures arising from d p-band transi-
tions in Ag.

(~)4o) Uei TS
FIG. 15. Detail of the Fermi-surface neck region

showing several (110) cross sections of CEDS's (d-p
bands) and constant-final-energy surfaces.
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above the Fermi surface can contribute to the ab-
sorption.

In calculating the JDOS (Ixu, T), again, each in-
finitesimal ribbon of a CEDS, corresponding to
transitions with final energy between E and E+ dE,
has to be weighted with the probability that the final
state is empty [1-f(E)]. For this calculation we
resort again to the energy distribution of the joint
density of states:

dl~
i V (ku ) V (Ixu ) i

The integral is performed around the line of inter-
section of the two constant-energy surfaces So~ =E
and S~~=E —t~. The latter are now ellipsoids
with centers at L and rotational symmetry around
the I'-L direction. The paths of integration there-
fore are again circles on planes perpendicular to
~ and are centered on the A axis,

Inserting Eqs. (1) and (22) into Eq. (26), we ob-
tain

&,.,(E, Ixu) = (1698')-'F, ,

0
3.96 4.00 40

T=]00 K

%f0 (,eV)

x (iKu —ku, —Ru~ —E)
mp J

-1 /2
(E+ tuq)

FIG. 16. A&2 thermomodulation spectrum for d-p
transitions in Ag at 100 K. Arrows (a)-(g) indicate the
situation corresponding to the CEDS's I-VII, respective-
ly, shown in Fig. 15.

where the geometric factor 8'„~ is given by

-1/2mg„m, J+ m~J m~i)
cJ Q ~p

mif mP J m(f J SF' I)

(27)

(28}

the geometrical factor given by Eq. (28) and pa. rtly
by the matrix element of the transitions. This
latter has been again determined by comparison
with the experimental structures (see paper II).

The joint density of states is given by

8, ,(flu, r}=f™~&,,(E, m ) [1—f(E, T}]dE . (29)
mi

Straightforward algebra gives for the upper limit
of integration

B. Thermoderivative behavior

Differentiating Eq. (29) and using Eq. (15), we
obtain

E ~ = —k&u~+
" (Ru —duo) for flu & Ruo

mffll ~ II

and
(30}

, ,(~ )
8n e' IP(d-p}i

(~ (~ ))3m' (Ixu)' & T
(33)

where

E „=—ixuq+ ~ (Ixu —R(uo) for Ixu & huo
mpJ+ mgJ

(31}
The lower limit of integration has been chosen at
the intersection of each CEDS with the plane per-
pendicular to Ii at a distance a/4a from I.. We
obtain

52 g 2 rn.
Emgn = —

S(alp+-

+
2m„, 4a m„+m„

+ ko Wo

(32)
Figure 13 shows g~ &(ho) for three different tem-
peratures. The magnitude is determined partly by

~E mJ
a(ixu) m~ —m„

= —1.07 (p-s) (35)

(34)
Figure 14 shows the spectra of &E~ ~ calculated at
different temperatures, again assuming &T = 1 K.
Lowering the temperature we have again a sharp-
ening of the structures as well as an enhancement.
However, by comparing spectra obtained at the
same temperature in Figs. 8 and 14, one sees that
the d- p transitions give broader structures. The
reason for this can be seen easily by differentiating
Eqs. (16) and (31):
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and

=0. 89 (d fp)6(Rd) P7lN + Alps
(88)

which show that the CEDS's rate of spanning the
region where a modulation signal is produced is
larger for the p- s transitions than for the d- p
transitions. The former therefore tend to yield
larger signals.

In order to follow the mechanism of modulation
in this case, Fig. 15 shows the (110) section of the
Fermi surface in the neck region together with sec-
tions of some CEDS's, starting, respectively,

—8k&T, —4k&T, —k&T, 0, + k&T, +4k&T, and
+ BkeT away from the neck (with T= 100 K). Figure
16 gives a detailed plot of &&2~~ for T= 100 K. The
arrows show the situation corresponding to each of
the CEDS's shown in Fig. 15.

IV. CONCLUSIONS

A very simple model has been set up which al-
lows the calculation of the static and thermoderiva-
tive behavior (in the low-temperature limit) of the
dielectric function for optical transitions in noble
metals involving the Fermi surface. The results
obtained for Ag can be extended easily to Cu and Au.
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