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We present an exact expression of spin operators in terms of magnons and quasielectrons in

ferromagnetism. Its relation to the Holstein-Primakoff expression is discussed. The result shows that the

spin rotation of electrons is induced by a transformation of magnons and quasielectrons which is

different from rotation.

I, INTRODUCTION

Holstein and Primakoff' in 1940 introduced a
method to diagonalize the Hamiltonian in the ex-
change interaction model of a ferromagnet, by in-
troducing second-quantized creation and annihila-
tion operators a*, and Qr for magnons. In terms of
such operators, the spin angular momentum oper-
ators are given by'

[ (2) &+)] &+)5

t
(S) (-)i (-)

y sr' J= sr &rr' ~

[s,",sI. '] = 2$6«. = (const)I6«. ,

where I is the unit matrix.
I.et us now introduce

(1.5)

These operators satisfy the following commutation
relations:

S,'+'= S'"+iS' ' =(2$) / (1 —a*a /2$)'/2a

$,'-' = $&" 1$' '= (2$)'/2a«(1 a*a /2$) /2
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$r =S Qrar
(S) (1.lc)

Here $ is the eigenvalue of the third component of
total spin and the operators a*, and Q, , satisfy the
usual commutation relations for bosons: S'"=QS'"(x,), (l. 8)

with a =+, —,3 and s' = s'" ~ is'~'.
Since $,' ' and s,' ' are the operators associated

with the position x„Eqs. (1.6) and (1.7) mean

Qr~ari) = Qrari —arear = arri

ta) a)]=[a) a)']=o ~

(l. 2a)

(l. 2b)

The spin operators S,", S,' ', and S' ' satisfy the
algebraic relations of SU(2), generating the spin-
group (rotation-group) transformations:

[S (+) S(-)] 2$ (2) 5

S ''1=+ $)5))

A crucial role in the Holstein-Primakoff method
is played by the approximation used in writing the
Hamiltonian in terms of a,* and a, : Essentially
they neglected all terms which were not bilinear
in a,* and a, . In this way they were able to con-
struct a linear formalism suitable for practical
calculations. In this approximation, the factor
(1-a&2'a&/2S)'/2 in Eqs. (l. la) and (1. lb) ie put
equal to 1; therefore the operators $"' are re-
placed by s"', which are defined by

s&+) (2$)1/2

s(-) (2$)1/2ag

s,' '=S, =$-Qr Q
&3& &3)

Note that S' ' are the spin-rotation generators.
The operators s,'" and s,'', respectively, gen-

erate the "field transformations"

a, —a, +i($/2)&/28&,

a, —a, —i($/2)&/2g2
(l. 10)

for all /, while s' ' induces rotation around the
third axis:

Qr- e ie (1.11)

Here 8„8~, and 83 are continuous parameters of

the transf ormations.
The main purpose of this paper is to prove,

without any approximation, that when we express
the spin-density operators S' '(x, ) in terms of
quasiparticles and sum them over all the space
points, then the result is not S' ' but s' ' with the
boson Heisenberg operator a, replaced by the free-
field operator of the quasiboson (i.e. , the magnon).
We may express this situation by saying that S' '

becomes s' ' in the quasiparticle picture. To
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elaborate this statement, let us first note some
characteristics of the quasiparticle picture. The
theory of ferromagnetism begins with a Hamilto-
nian, say H, which is expressed in. terms of the
Heisenberg operators for the electrons [say g„(x)].
The spin operators S' ' generate the rotations of
()(„[i.e. , ()(„(x)- gz(x)] and the Hamiltonian is in-
variant under these rotations (spin rotational sym-
metry). On the other hand, the ferromagnetic
phenomena are usually described in terms of
quasiparticles (i.e. , quasielectrons and magnons).
Let 8(x) and p(x) denote the magnon field and

quasielectron field, respectively. To show the
existence of m3gnons and quasielectrons, starting
with the Hamiltonian, is a lengthy computation.
Results of such a computation lead to an expres-
sion of $„ in terms of Q and B. Such an expres-
sion can be obtained only through calculation of
matrix elements of ('„:

(1.12)

Here Ii& and lj& are quasiparticle states and F is
a certain combination of Q and B.

Since quasiparticle fields satisfy certain free-
field equations (i.e. , linear homogeneous differ-
ential equations), their Hamiltonian is a free
Hamiltonian 8,. Then, we obtainfrom Eq. (1.12)
the relation

In a similar way, we can obtain

and so on. In this sense, the free Hamiltonian Ho

acts as the time translation operator just as H does.
As a matter of fact, all the matrix elements of H

agree with those of Ho, i.e. ,

quasielectron P and magnon B. In general, when
we consider an operator A which is obtained by in-
tegrating a local density A(x) over the space, we
first express A(x) in terms of quasiparticles [say
A(x, Q, 8)] and then integrate it over the space.
The result is the operator A in the quasiparticle
picture. The path-integral method3 presents a
simple and general way of writing A(x, P, 8) [e.g. ,
F(x, @, 8) in Eq. (1.12), S'"(x, Q, 8), etc. ]. The
path-integral method is used extensively in this
paper.

In Sec. II, we present a simple derivation of
magnons. In Sec. III, we prove the following:
When the quasiparticles (p, 8) perform the E(2)-
group transformations (Q - P; 8 8-) then the
transformations of Heisenberg operators,
S' '(x, Q, 8)- S' '(x, P', 8'), are spin rotations.
Furthermore, it will be shown that the E(2) trans-
formations of (Q, 8) are the only ones which induce
the spin rotations on S' '(x, d(, 8).

We therefore state that the rotational symmetry
associated with electrons becomes hidden behind
the ferromagnetic behavior in which the magnon
exhibits the E(2)-group symmetry. We may say
that, owing to spin-spin interactions, the rota-
tional symmetry is dynamically rearranged ' into
the E(2) symmetry and that the observable loss of
rotational symmetry in a ferromagnet is a result
of such a rearrangement of symmetries.

One reason why the observable symmetry group
can be different from the original symmetry group
is based on the fact that any macroscopic observa-
tion on an infinite system is a collecti. on of local
observations. For example, the spin rotation of
the system is induced by creating spin rotation at
every point. Therefore, there always exists a
possibi. lity that in each local observation, one
misses an infinitesimal effect of the order of mag-
nitude of 1/V (with the volume V- ~). This miss-
ing effect can be accumulated as a finite amount
when it is integrated over the whole system. This
is the origin of the difference between S and s.
Such a locally infinitesimal effect is called the in-
frared effect. In Sec. IV, it will be proved that
the difference of S and s is indeed an infrared ef-
fect.

Let us now introduce

when we adjust the c number of Ho such that
&Ol BIO& = (0l BO lO&. This does not mean that the
quasiparticles do not interact. In fact, construc-
tion of the $ matrix in Sec. III will show that they
do interact among themselves despite the fact that
they satisfy the free-field equations. 2

In the quasiparticle picture one tries to express
all the local operators in terms of quasiparticles.
For example, we will present an expression of the
spin-density operators S"'(x, Q, 8) in terms of the

S(a) g f(e)(x )S(e)(x ) (l. 13)

s~"' =Q f' '(x, )s'"(x ) (1.14)

where (x=+, —,3 and f '"(x,) are square-integrabie
functions which are equal to 1 .'.n a large domain
(range 8). Contributions to S&

' and s&
' come

only from the domain to which the functions f '"(x)
are confined. In Sec. IV, we make an explicit
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calculation of the differences Sf sf %e will
find that the matrix elements of the differences

S&
'-

s&
' when n = +, are of the order of magni-

tude of 1/V, while S~(" and s&3' are exactly equal,
due to the fact that the rotational symmetry
around the third axis is preserved in observation.
Since we must regard 1/V as zero, we obtain

&ils,"'If &=&il "I».
However, in the limit f- 1 (i. e. , 8- ~) the in-

tegration of the effect of the order 1/V becomes
finite, thus creating the difference between S"'
and s'".

For the third components, we have

&ils"'I»= &il""If& (1.16)

because there is no infrared effect for these
quantitie s.

There is a mathematical reason for using S&"
and s&" instead of 9"' and s"'. It has been known

that the transformations in Eq. (l. 10) with a, re-
placed by B(x,) cannot be induced by any unitary
operator (i.e. , there are no generators). How-

ever, they can be regarded as limits of unitary
transformations, as follows:

lim exp(- ie;s~"')B(x,) exp(ie, sf )
= B(x,)+ i(S/2)' "e (1.I'7)

where + (-) for i= 1 (2). Our study of rearrange-
ment of symmetries in Sec. II, which relies on
the path-integral method and does not require the
use of generators, also reveals that the transfor-
mations in Eq. (l. 10) should be regarded as the
limit for f'"-1 of the following transformation:

B(x,)- B(x,) ~ i(S /2)"' e,
f"'( x) . (1.18)

Furthermore, we will find in Sec. III that f"'(x) in

Eq. (1.18) should satisfy the magnon equation for
B. Thus the transformations in Eq. (1.18) are
those under which the magnon equations are in-
variant: The original spin rotational invariance is
replaced by the E(2) transformation invariance in

the quasiparticle formulation.
Indeed, it will be shown in Sec. III, that when the

functions f '"(x) satisfy the magnon equation, then
the operators s&

' are independent of time, and the
transformations in Eq. (1.18) induce the magnon

condensations.
Although our conclusion is that S' ' becomes

s' ' in the quasiparticle picture, this does not

justify the Holstein-Primakof f approximation. In
the Holstein-Primakoff paper, the operator a, acts
as the Heisenberg operator and not as an operator
for the quasiboson. Vfhen a, is expressed in terms
of the quasiboson, i.e. , magnon 8, the expression
is a very complicated one. In fact, a, is an infinite
power seri.es in normal products of 8 and 8'. Thus

II. EXISTENCE OF MAGNONS

The ferromagnetic systems are characterized
by the Lagrangian, which is made of the electron
field g(x):

&(„( ((,( ))

The Lagrangian is invariant under the spin rota-
tion

() (x )- e(e"' P(x }, i = 1; 2, 3. (2. 1)

we are not considering the linear approximation,
which has been clarified by Dyson. 6 To establish
the quasiparticle picture, we need to consider in-
finite-power expansions of Heisenberg operators
in terms of creation-annihilation operators of
quasiparticles. Through this process the quasi-
boson (magnon) emerges as a bound state of elec-
trons. 7

%'e find in this paper that, when the spin opera-
tors S are expressed in terms of B and not in
terms of Heisenberg operators, they take the form
shown in Eq. (1.4), with a, replaced by B(x,). We

used the notation 8 for magnon instead of ag in
order to avoid a possible confusion between quasi:-
particles and Heisenberg operators.

The explicit expression of the spin operators in
terms of the Heisenberg operators depends on a
specific model. For example, the expressions
(1.la)-(1. 1c) in terms of a boson Heisenberg
operator a, presents a boson model. In this paper
we assume that the spin operator is made up of
electron Heisenberg fields (electron model). In
this model, the quasiboson is a bound state made
of original electrons. However, this assumption
is really not required, because our arguments for
magnons in the following sections do not use any
specific assumption for the structure of spin opera-
tors. Our only requirement is the invariance of
the Lagrangian under the spin rotation. Further-
more, our arguments apply to both the localized
spin case and the continuous spin distribution.
Therefore, our results are true for the Heisenberg
model and the itinerant-electron model of the fer-
romagnet.

Summarizing, we conclude that the three-param-
eter rotation symmetry is not simply reduced to
the cylindrical rotation symmetry of one parame-
ter, but is replaced by the Z(2) symmetry of three
parameters. In observation, we can detect the
E(2) symmetry, for example, through the well-
known low-energy theorem, which states that re-
actions among magnons vanish in the low-momen-
tum limit. %e shall show in Sec. V that this the-
orem is based on the E(2) symmetry

In this paper, all considerations are restricted
to the T=O'K case.
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where

+ J'(x)q(x)+y'(x)d(x)+j'(x)S„' '(x)

~ S,"(x)j( ) ~ S™u(*)( ) —kS,'"(*))}
(2. 3a}

(4')(&("1»p(' &'*(&:I('(*)I-'~&,'"(*))}
(2. 3b)

Here S„' '(x) (a =+, —,3) is the spin density which
is made of (t&(x). In the following we do not need
the explicit form of S,"'(x) in terms of (t)(x). The
electron fields g, 4~ and their sources J~, J anti-
commute, while the sources of spin fields j, j~
are c numbers. The e term in Eqs. (2. 3a) and
(2. 3b) is a symmetry-breaking term; we perform
the limit q-0 at the end of the computations. The
role played by this term will be explained later.

Let F[(t] denote a linear combination of products
of P and (i~. We will use the following notation:

(F((1&,, pf (N')(&(. '=-l&((l»v( f&'*(('(('( )I

+'d( )x((t))x+ ('t( x)&( x)+j'(x)s(, '(x)

s,"(*))(*)~ s,"'(x) (x) —'~S,'"(~))),

& F[C] &, , , „-=& F [C] &. ,..„

&F[~]&.,..-=&F[~]&, , .
&F[S]&,=-&F[C]).. .,„

&F[(1)]&-=&F[0]).. .,„

with J-O, (2. 4)

with j-0,
with j-O, J-O, n-O,
with all j, J, n, q-zero.

Generally, the parameters that are missing in the
suffixes are taken to be zero.

An important fact in the path-integral formalism
is that the quantity & F[(I)]) agrees with the ground-
state expectation value of T(F[(1&„(x}]},in which
all the products of Heisenberg operators g„and
g„are chronological products

&F[q]&=&ol r(F[q„(x)]}lo&
Since each functional derivative 5/t'&Z(x ) [f'&/

t&Z'(x}] acting on W[J, j, n] brings down the factor
i(t&~(x) [i(t)(x)], the ground-state expectation value of

any chronological product of (t&~ and )t) (i.e. , the
Green's function} can be obtained from W[Z, j, n] by

Here 8; are real parameters and X; are the spin
matrices

(2. 2)

where fT; are the Pauli matrices.
The path-integral formalism begins with the

generating functional

~(&,i, 1= y~ (&(l(e')»P( &' (('(((*))

repeated operations of t&/t& J and t)/t&Z~, followed by
limits J,j, and n going to zero. The presence of
sources j, j~, and n for the spin fields S~( '(x) are
not required for the calculation of the Green's func-
tions. However, use of j, j~, and n makes it pos-
sible to study the behavior of spin in ferromagnets
without specifying the explicit dependence of S,"'(x)
on (t(x).

In writing down (2. 3a) and (2. 3b) we have in our
minds both the cases of localized spins and itiner-
ant electrons. In the case of localized spin,

d'x[Z[(t (x)]+a'(x)y(x) + it '(x)Z(x)+ j'(x)S„'-'(x)

+ S„"(x)j (x)+ S„'"(x)n(x)—i~S„'"(x)j
should be read as

dt (Z[(t(x,)]+8'(x,)(t)(x, )+(t)'(x, )Z(x, )

+j'(x, )S„' '(x, ) + S„"(x,)j (x, ) + S("(x,)n(x, )

—i.s,&"(x, )) . (2. 5)

In general, for the case of localized spin the fol-
lowing replacement is understood:

(2. 6)

for any quantity F(x).
Let us now put J= 0 and n = 0 and perform the

change of variables (2. 1) in the numerator of Eq.
(2. 3a). When 8, are infinitesimal the change of
variables (2. 1) should induce rotation of the spin
f ields:

s,"'(x) —s,"'(x)—e, ~,„s„'"'(x). (2 'I)

Here &;,.„ is the completely antisymmetric tensor:
g...= (- 1)~, where p is the number of permutations
of 1, 2, and 3. Since a change of variables does
not influence the integration, we have

(2. a)

This gives

td'x &[E»,[j (x)+j (x)]+is,»[j (x) -j (x)]
—ianna(, }s', (x}&, , = o . (2 9)

Operating 5/t)j(y) on this and then putting j = 0, we
obtain

(a;,. '~„.) & sl(&) &.
= —»„.fd'*

x(s,'"(x)s,"(y) ), .
In a similar way, use of 5/t&j ~(y) leads to

(2. 10)

(~„.—'~„.)&s,"'(v)&, = —»„fu &s)' ()s(,&)&, .''', '

(2. 11)
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Equations (2. 10) a.nd (2. 11) give

E;,.( s,"'(s) &, = —Es„,fs ' &sl" (*)s,"'(s) ), ,

E„,(s',"(s)&,=-EE„fs„(s'*"(,)s'(s",&')

where

s,'"(x) = s"'(x) ~ is„"'(x) .
When I = 3, we get from Eqs. (2. 12)

(S(1)(y) ) (S(2)( )) 0

With l = 1 and l = 2 we have

d x Sq'x Sq'y, =O,

(S,'"(y) ), = e d'x(SI" (x)S,"'(y) ), ,

(s,"'(s)&, = )fs' &s,"'(*)s,'"(s)), .

(2. 12)

(2. iS)

(2. 14)

(2. 15)

(2. 16)

(s(,*"„'))E,=gfsl(s( (')s*,"(,*
Also, operating [5/5ji(z)][i)/5j(y)] and [5/5j(z)][s)/
5j~(y)] on (2.9), putting then j = 0 and subtracting,
we obtain

(2. 19)

(S (1& (x )S (1)
(y) ) (S (2) (x )S (2 &

(~)) )

which gives

P, (t ) = P2(u),

Qy = ap

(2. 20)

(2. 2i)

The magnetization is given by gt(2(s(3'(x) ),
where p.~ is the Bohr magneton. We shall use the
notation

.tf (4) -=(s,'"(x ) ), (2. 22)

together with

where d is the lattice length. Equations (2. 15) and

(2. 16) should be read as

Let us now write 3f =limM(4) .
6-0

(2. 23)
4

(S(i) (x )S ( i)
(y))

~ 0 e-ii)(x-3) p (p)l&l E (2x)4 'i Equations (2. 15) and (2. 16) then say that there
should be a bound state of gapless energy:

1 1
X

~ ~

Po —m~ + i&a; Po+ co& —isa;

+ (continuum contribution), i = 1, 2, 3 . (2. 17)

(d&=0 at p=0 .
Indeed Eqs. (2. 15) and (2. 16) give

.tf (4:) = i2&((e, 0), i =1, 2

(2. 24)

(2. 25)
Here we used the notation

1 1
X

~ ~

ft}o —
m& + i&a; P»+ w&

—isa,.

+ (continuum contribution}, (2. 18)

in which v is the volume of the unit lattice and the
integration of p is confined to the domain

—v/d & p, & 2/d,

j)(x —y) = —p ~ (x —y)+ip, (t, —t„) .
In Eq. (2. 17) &))~ is the energy of a quasiparticle
which is a bound state of electrons. We will prove
that p,.(p) c0, which proves the existence of such a.

bound state. The continuum contribution comes
from those states which contain more than one
quasiparticle, As is well known, the pole singu-
larities in the Feynman Green's functions are de-
fined by putting ~~ —ig for (d~ with an infinitesimal

In (2. 17) we introduced a; = 3t/4, so that &d2 in

the denominator carries i&a; . The spectral func-
tions p, ( j)) cannot be negative because SE" are
Hermitian.

When we consider the case of localized spins,
Eq. (2. 17) should be replaced by

(S (E)(X )S(i)(» ) ) l 0 P ie( i()-x) xS(pP)
dh d h

l E 2 E 2(( (2x)3 E

which can lead to nonvanishing Af with q- 0 only
when ~~=0 at p=0. We further have

.tf = 2p/a . (2. 26)

In Eq. (2. 25) we used

Q e i))x( 5(31(p)-
(2v)3

(2. 28)

Summarizing, we have shown that the relation
(2. 22) along with nonzero M requires the existence
of gapless bosons, i.e. , the magnons. The role
of the & term in Eq. (2. 3) is now evident, because
without this term we cannot realize the case M
g0 5, 9

Let us now calculate p. Since M is the local
spin density in the third direction, the total spin
in this direction is X3f, where N is the number of
lattice points. Then the ground-state expectation
value of S~ is given by

~, (e, p) == p (p)t
~~3

iI

0 ~
~

i» 0
~

~
~

~

t

~

1 1

po —e~ +i Ea,. po+ (d& —i&a,

(2. 27)

and in Eq. (2. 26) we put pi(0)=p2(D)=p and a, =a

In the case of localized spins, derivation of Eq.
(2. 25) requires the formula
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&ols'lo&= A/, v(A//if+1) . (2. 29) e(4, O', B, B'}=(:exp[- t~(y, y', B B')]:) (3.7)

Assuming te & t, in Eq. (2. 18), with i =1, 2, and
then performing the limit t, —t, (same results can
be obtained by assuming t, & t, ), we find, using Eq.
(2. 28), that

&o!s"'s'"lo)=piv f» t=1, 2.

SS'(xP P BB)
= &S„"'(x):exp[-tg(4, y&, B, B&}] )

where
(3.8)

Thus

&ol 8'I o) = 2p&+ (tt&t)' .
Comparing this with (2. 29) we get

(2. so)
A(4, Q', B, B') =fd'x[o "'B(-x)SC(e)S' '(x)

+p'"Se'(x)Z( e)B-'(x)+Z "Sd'(x)A(e)p(x)

(2. 31) + 2 '/2/t'(x)A(- e)y(x)] (3.9)

Thl, s gives

/2p" 2 = (~/2) (2. 32)

Equation (2. 31) also shows that a= 1 [cf. (2. 26)].

III. DYNAMICAL REARRANGEMENT OF SYMMETRY

Let us introduce the field for the magnons:

d k
B(x}=

(2x)s/2 2 (3 1)

CA t3: pt f'If ex+1'4lyfB x
(2 )3/2 2

The commutation relations are

[B(x), B'(y)],„-,, = 6(x -y),

[B(x), B(y)] = [B'(x), B'(y)] = 0 .

(3 2)

(3. 3)

Equations (3.1) and (3.2) satisfy the equations

Z(e) B'(x) = O,

B(x)Z(- e) =O,
(3 4)

with

-8
K(e) =- i —+~

Bt
(3. 5)

(3. 6)

Here arrows on the derivatives indicate the direc-
tions in which the derivatives operate.

%'e write also the free-field equations for the
quasielectron P(x) as

A(e) 4 (x) = o,
@'(x)A(- e) =O .

and i=1, 2, 3. Here Z is the wave-function renor-
malization of the electron. Equation (3.8} together
with (3.7) gives us the expressions of the spin-
density operator in terms of quasiparticles. In
(3.7) and (3. 8), the symbol:: means the normal
products in which all the creation operators of
quasiparticles are to the left of the annihilation
operators. The symbol ( ) was introduced in (2.4).

Our task in this section is to study the following
question: How do @, Pt, B, B' in (3.7) and (3.8)
transform so that spin rotation of S'"(Q, Q~, B,B~)
is induced? Let us write the transformed fields
P,(x), @,'(x), B,(x), B,(x) as

Q,(x ) = C (x, 8;, Q, Q', B, B'),

B,(x) = B(x, e, , y, y', B, B'),
(s. lo)

etc. , i = 1, 2, 3, and require that they satisfy the
equations for quasipa. rticles (3.6) and (3. 4),

A(e)4, (x) =o,

Z (e)B,'(x}= O,

@,'(x)A(- e) = O,

B,(x)Z(- e) = O,

(3. 11)

8

ee e(@e &e Be Be) =O
7

(3.12)

S"'(x, @e, Pe, Be, Be)

=-& ieS"'(» Ae &e Be Be) (3 13)

When (3.7)-(3.9) are considered, the conditions
(3. 12) and (3. 13}can be rewritten, respectively,
as

Let us denote the 8 matrix and the spin-density
operators for the Heisenberg electron field by ~

and S"(x), respectively. The next step is to ex-
press these quantities in terms of quasielectron Q

andmagnonBas e(g, Q,B,Bt) andS"'(x, P,P,B,B ).
Use of the functional formalism together with the
Lehmann-Symanzik-Zimmerman (LSZ) formula"
g jves52 18

(
a:-i A e'"~: =0 $=& 2 3eg 8 ' 7 p p

1

y
~ j A e-Ag

&S,"'(y): e ' '. ), l = 1, 2, 3

(3. 14)

(3.15)
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where we use the notation A~—= A(ge, (())te, B~, Bt~) and

e= » ~g
z(s) s'-'(x)

d'x &[If(S)S„' '(x)+ S„"(x)ff(-S)]:c '":}=0~ ~

(3.24)

&s(3)( ). -(Ae. }

d4x S&'&
y ~ a S& ) x

s„'"'( )fc(- s)]:e '" ) (3. 25)

"'0'( ) (- ) eg)
(3.16}

d4x S"'
y & & $,(-

Our problem is to solve Eqs. (3.14) and (3.15) for
Be, Bef fII}ey and Q~e. To do this, we note that when

the choices

—S"(x)K(- s)] c-' (). )

&s
(8) (v) . -(.4(), )

(3. 26)

Z(x) = —A(- e)p, (x)Z-'"

j(x) = —fc(- S)B',(x)p-'", (3. 1'7) d x S~ y K 8 $~
' x

n(x) =0
are made, then W[J, j, n] becomes the transformed
S matrix S((t)„(t)'„B„B',). Now we need several
formulas which are derived in the Appendix. Equa-
tions (Al), (A2), and (A3), together with (3. 17),
give, for / = 3,

—S,"(x)fc(-s)]:c '"~:},

(s (()(v) . e-(Ae . )

d'x S,'"(y Z a S,'-' x}

(3.2'7)

(:A, e '"~:)=0,
&s"(y): e '"():)=(s,"(y):—iA e '"() )

(3. 18)

(3. IS) + s,"(x)ff(- s)1: e "':» (3.28)

and

&s„' '(y): e '"&: }= &s,
' '(y): iA e '"e: ) (3.20)

respectively. In (3. 18)-(3.20) we used the nota-
tion

Ae d 4x z ~/~yg~ x A 8 x 37(]j x

—Z "'y'(x)7, A(- a)y, (x)+p '"B,ff(S)S„' '(x)

re spe ctively.
Our task now is to solve the two equations, (3.14)

and (3. 15}, by using the formulas (3. 18)-(3.20) and

(3.24)-(3. 28).
When (3.24)-(3.28) are used, Eqs. (3. 14) and

(3. 15) with l = 1 give

9
B,(x) = i( tf/2)"',

1

—p '"S,"(x)Z (- S)B',(x)]. (3.21)
8

B,'(x) = —i(SS/2)' ",
gg e

We shall now introduce the following formulas:

li.m& d x S~ xQ,
6-0

= —i dx KBS''xQ + S" x E —~Q

(3. 22)

lim ~ d'x&S,"'(x)Q&,
6-0

(te(x) =0,a

1

8
@',(x)=o,

gg e

while the choice l=2 leads to

8

gg eB,(x) = —()Vf/2)' ",

(3. 28)

d4x yC e S,'-' x Q — S „"x Z —a Q

(3. 23)
Also these relations will be derived in the Appen-
dix.

Using (3.22) and (3. 23), we can write (A5) and

(All)-(A14) as

B',(x) = —(,tf/2)"',
gg e

, e,()=0,
gg e

Q tt (x}= 0 .
882

(3.30)
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8
a', (x) = fa', (x ),

8
4)e(x) = f&g4 g(x),88 8 3 e

(3.31)

8
4',(x) = —f4,'(x)~, .

88 8

Using the relations

@e(x)= 4(x),

Bg(x) = a(x), etc. ,

for 8=0, we derive from (3.29), (3.30), and (3.31),
respe ctively,

a,(x) = B(x) +f8,(M/2)'",

'(x) = a'(x) - f8, (M/

4.(.) = 4 (x),

e,'(.) = e'( )

for 82=83=0,

a, (x) = a(x) —8,(M/2)'",

a', (x) = BPx) 8,(M/2)'"—,

(3. 32)

(3. 33)

Here the relation 2p = M [cf. (2. 31)] was used.
When l= 3, (3. 14) and (3.15) together with (3.16)-

(3.20) give

8
a, (x) = —fa, (x),88 8

S'"= d3X (t)' X &3@ X -a' X B X (3. 36c)

Here f(x) stands for any square-integrable function
which satisfies the magnon equation. Such a func-
tion is necessary, because without it the quanti-
ties on the left-hand sides of (3. 7) and (3. 6) are
not well defined. For example, when (3. 32) is
used, A(pe, (f)te, Be, Bte) contains the term 8,(M/2p)
x K(s)Sg( '(x) which contributes to Feynman dia-
grams in $(ge) (f) e) ae) Be) and s"'(x) (t)e) 4)e) Be) Be)
by energyless and momentumless external lines,
and therefore these Feynman diagrams can contain
a power of zero-energy singularities. To avoid
such an infrared catastrophe, we replace 8,. by

8; f(x) (i =1, 2) in ae(x) in (3. 17); then the limit
f (x) - 1 should be taken at the end of computations.
Since Be(x) must satisfy the magnon equation in
order to have the equation in (3. 21) satisfied, it is
necessary that f(x) satisfy the magnon equation.
Note that the magnon equations are invariant under
the transformations in (3. 35a) and (3. 35b) even be-
fore the limit f(x)- 1 is taken, exhibiting the E(2)
invariance of the theory.

The generators of the transformations (3. 32)-
(3.34) [with 8, and 8e replaced by 8,f (x) and 8ef (x),
respectively] are

s()' = (M/2)'" d'x[B(x)f(x)+ B'(x)f '(x)],
(S. S6a.)

,'" = — (M/&)"'fu' (R( )f(*)-&'(~)f («))'
(3. 36b)

4e(x) = 4(x),
4', (x) = 4'(x)

for 8, = 8, =0, and

a,(x)=e "ga(x),

a', (x) = e "g a'(x),

Pe(x) = e "g"g (t (x),

0',(x) = 0'(x) e "e'g

(3. 34)

As was pointed out in the Introduction, the pres-
ence of the function f(x) is essential for sz" and
sze) to be well defined. ' Note that (3.36a)-
(3.36c) agree exactly with the expression (1.4)
when we recall s'" = s'" + js 3' and (2.32). We also
note that the generators (3.36a)-(3. 36c) are time
independent since f(x) satisfies the magnon equa-
tion.

The generators (3.36a)-(3. 36c) satisfy the fol-
lowing commutation relations:

for 8, = 8, =0, respectively. Thus we conclude that
the spin rotation for the electron Heisenberg field
is induced by the transformations (3. 32)-(3.34) of
the quasiparticle fields; note that the transforma-
tions (3.32)-(3.34) exactly agree with the E(2)

transformation given in (1.10) and (1.11).
We now note that c-number tra, nslations in the

transformations for B in (3. 32) and (3. 33) must
be understood, respectively, as the limit for f(x)
—1 of the transformations'

( )", ,"')= Mj&'*lf( 'll'=( o

S(3) S(l) 1 (2)

(3) (2) 1 (1)

or in terms of s&".

(*,'' )')=~~f8' lf()l'=( t)1,
[s(s) s(s)) + s(g)

, sy — sy

(3. 37)

B(x)- a,(x) = 1im[ B(x) + 1f (x)8, (M/2)' ']

and

B(x)—Be(x) = lim[B(x) —f (x)8e(M/2)' ~ g] .

(S. S5a)

(3. 35b)

This shows that the algebra of the generators for
the transformations of the quasiparticle fields is
the sa.me as in (1.5).'g

IV. ORIGIN OF THE CHANGE OF SYMMETRY GROUP

In this section we will study what really causes
the chancre of the original spin-rotation algebra
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(1.3) i,nto the algebra (3.36) [(1.5)].
Let us decompose the magnon field B(x) into the

sum of two parts as

8(x) = 8, (x) + 8„(x), (4. 1)

(4. 2)

where B„contains only momenta smaller than g
while momenta in 8, are larger than g. Here q is
infinitesimal. There are many ways of construct-
ing such 8„; for example,

H, (x)=-,'qf dte"'"B(*).
~&I

S"'(y) = s"'(y) —i(l/2M)"'(8 —8'„)s,' '(y) (4. 6)

S' '(y) = s,' '(y) + (1/2M)' [i(B„—8"„)s,' '(y)

—(a„+a'„)s,"'(y)], (4 9)

respectively.
Note that, in the limit q-0, the matrix elements'

of S"'(y) are equal to those of s,"'(y):

&'ls"'(y)lg&=& l.,"'(y)lg&. (4. 1o}

Using (3.1), we can write

(4 3)

In particular, this for i=3 gives

&ols,'"(y)lo&=&ols'"(y)lo&=M .
We can therefore write

(4. 11)

= &S,"'(y): exp[- iA(e, y', a, + a„,a', + a'„)]:&

= ~ l"(v)- p'"&)fd' (sl",(v)

&&if(a)S,(-&(x): e '"i:
&

-~p"'B' d'x S"' y S,"xZ -e:e'"~:,
(4 4)

where s,"'(y) is obtained from S"'(y) by ignoring
the infrared fields, B, and Bt:

&i)
(y)

—(S(i&(y) . s-&Ai .
& (4. s)

The symbol A, is A with the infrared field disre-
garded:

Here S„(k) is a function which approaches 6(k) in
the limit &)- 0. Therefore 8„(x) is of order q and
independent of x in the limit g-0.

Using (3. 6) we can write SS& "(x, (f&, &j&', 8, 8'),
up to the first order in q, as follows:

SS&i&(y) —3S(i)(y y yt 8 8'&)

s,'"(y) = M+: s,'"(y): . (4. 12)

s,'"= d'x:y'x~, y xf x:

Equations (4. 7)-(4.9) show that, when we express
the spin-density operators S'"(y) in terms of quasi-
particles and then ignore the infrared operators
B„and Bt, we obtain s,"'(y). Therefore, the
space integration of s,'"(y) must be the generators
in (3.36a)-(3. 36c), which 8(x) is replaced by 8, (x).
Therefore, we can write (4. 7)-(4.9) as
S"'=s"'+(I/2M)'~ (8 +8 )s', ~', (4. iS)
S' ' = s'~' —i(1/2M)' (8 —8 )s (4. 14)

S,'" = s,'" + (i/2M)'" [i(8,—a'„)s"' —(a„+a', )s'"]
(4. is)

'"=(~/&)" f" (& ( )f(*) g(*)&'( )),

s,"'=- (kt&2)" f'd' (&) '( )f(*)—&l( )f'(*)),

A, -=A(@, y', a„a,') . (4. 6)
+ d xVI-BxB)x f x,

Let us first consider (4. 4) with i= l. Since (ASb)
and (A9b) together with (3.14) and (3.15) give

d'x g~(" y Z a S„'-' x —S,"x Z —e:e-'": =0

d'x &S"'(y)[Z(a)S„'-'(x)+S,"(x)Z(- s)]:s '":
&

= o

(4. 4) with i =1 gives

ss"'(y)=g "'(&)-—', i ~(B+8p\fd x(s' (,&)

x [Z(s)S,' '(x)+ S„"(x)Z(-s)]:s '"i:&,

which together with (3.25) and the relation p = M/2
[cf. (2. 31)] leads to

S"'(y) =s,"'b)+(1/2M)"'(8„+8„)s,' '(y). (4. 7)

In a similar way (4. 4) with i = 2 and z = 3 gives

according to (3.36a)-(3.36c). Here f(x) is the
square-integrable function which appeared in
(3.36a)-(3. 36c) and which is extremely close to 1.
The spin-rotation generators $'" should be given
by Sf" in the limit f —1.

Use of (4. 12) gives

s'" + (1/2M) (8„+Bt„)s',

s&&& +(I/2M) )'2(8 +8&) . s' ':,
because 8=8, +8„. Here s&

' is given by (3.36a).
In this way we can rewrite (4. 13) and (4. 14) as

S"'= s"'+(1/2M)' '(8 +8') s'" ' (4. 16)

S"' = s,"' —i(l/2M)' '(8, —8'„):s,'":, (4 17)

where sz&» and s&
' are given in (3. 36a.) and (3.36b).

Our task now is to show that the spin operators
S&" in (4. 13)-(4.15) indeed satisfy the commuta. —

tors for the rotation group (1.3) when the limit
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f —1 is taken. We first note the following commu-
tation relations:

[s,"', s,"']=iMjd3x ~f(x)~2,
p

t S S ] IS(3 S 8)l (1)

[s~"', B„(x)]= —(M/2) ~2f „*(x),

[sy i B',(x)1 = (M/2}&"f„(x), (4. 18)

[s,"', B„(x)]= —i(M/2)'»f d (x),
[sq", B'„(x)]= —i(M/2)'~2f „(x},
[s,B„(x)]= B„(x),
[s"', B'„(x)]=- B'„(x}.

Here f „(x) is the infrared part of the square-in-
tegrable function f (x):

In other words, f,(x) contains only momenta
smaller than g and therefore has a domain of
range I/3]. Thus f,(x) vanishes in the limit )l-0
because f (x) is square integrable. Let us note
that, since we consider commutators of two gen-
erators (i.e. , two successive rotations) we need
two infrared cutoffs q and j: two limits g-0 and
g-0 are to be performed successively. Let us
a,ssume that the limit q-0 is to be performed be-
fore the limit g- 0 and therefore assume that q
» 3i (we find a same result when we exchange the
order of two limits). To take care of the locally
infinitesimal effect, the space integration must
extend to infinity. We must, therefore, take the
limit f -1 before g and g tend to zero in. order to
recognize the differences between Sf" and sf".
Using (4. 16)-(4.18) we find

[$,"', $,"']=iM d x;f(x)t +i-'[f*„(x)+f„(x)

[$ &&) S &2)] .
S &3) (4. 20)

where (4. 12) and (4. 9) are taken into consideration.
We also obtain

[$' ' $'"]= i$'2' [$'3' $&»]= $&» (4 21)

Thus we find tha. t

lim iim Iim[$~&", S~")]= i~...S'",
rf-0 r}-0 f-1

while

(4. 22)

f d'( ) + f„-(x)):s,' ':—(1/2M)

x (B-—B„-)s',"—i(1/2M)'"(B„+B', )s,"' .
(4. 19}

Since g«q implies that If-„I« I j„l for the square-
integrable function f, we ignore f-„and f-„ in the
second term in the right-hand side of (4. 19). Tak-
ing the limit f-l, (4. 19) leads to

ttm ttm[di", d]tt] = (Miim fd t» ]f(e) ]' = (eeeet) i,
f -1 f)-0 f -1

lim lim[$~ ', Sz '] = lim lim iS' ',
f-1 ~-0 f-1 q-0

lim lim[$& ', Sz '] = —lim limiS"',
f -1 3)-0 f -1 3)=0

(4. 23)

where )i=(minimum of q and 3]).
Equation (4. 22), in which the limit f —1 is per-

formed before the limit g-0 and q-0, corresponds
to the rotational-group symmetry, while (4. 23) cor-
respond to the E(2)-group symmetry. We have thus
proved that the differences between 9'" and s"' are
due to the infrared effects: limf -1 and limp- 0
are not commutable. The infrared term, although
locally infinitesimal, gives, however, a finite
global contribution to the commutators of the gen-
erators 5'" of the electron transformation. Its
locally infinitesimal nature makes it, instead,
commutable with any local operator and thus it
does not contribute to the commutators of the gen-
erators for the quasiparticles, which are directly
related to the (local) observations.

V. CONCLUSION

We derived, without any approximation, the com-
mutation relations between the generators of the
transformations for quasiparticles in a, ferromag-
netic system. The algebra found is the one used
by Holstein and Primakoff. ' We analyzed the rea-
son why the algebra for quasiparticle transforma-
tion differs from that for electron transformation.
To summarize, we first proved the existence of a
boson (i.e. , magnon) without energy gap as a con-
sequence of the nonzero vacuum expectation value
of S'"(x). Next, we expressed the Heisenberg
operator S'"(x) for spin density in terms of the
quasiparticle fields (quasielectron @ and magnon B)
[cf. Eq. (3.8)] which satisfy the linear homogene-
ous (i.e. , free field) Eqs. (3. 6) and (3. 4). In this
way we were able to reconstruct the transforrr. a-
tions (3.32)-(3.34) for the quasiparticles which in-
duce the transformation (2. 1) for the electron. We
found that the nature of such quasiparticle trans-
formations is different from rotation; we called
this phenomena the dynamical rearrangement of
symmetry. Such a difference is caused by the
effects of infinitesimal momenta (infrared effects)
which are loca.lly infinitesimal but contribute to
global objects such as the total spin operators, thus
creating the difference between S'" and s'" (i
= 1, 2). Let us note that the E(2) symmetry (3. 38)
is related with observable results, since quasi-
particles are related to observable energy levels.
The fact that the magnons are associated with the
E(2) symmetry can be expressed by saying that the
magnons form an irreducible representation of the
E(2) symmetry group. As we have seen in Sec.
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III, the $-matrix 3 is not unity; i.e. , the quasi-
particles do interact with each other though such
interactions do not contribute to any energy shift
and the Hamiltonian of quasiparticles is the free
one.

Although we assumed the electron model, all
the arguments in connection with the magnons are
true in any model for the spin, because we did not
assume any specific form of spin-density operator
S'"(x). In case of the electron model, quasielec-
tron Q appears in addition to the magnons. It is
remarkable that under the E(2) transformations in
(3.32) and (3. 33), Q does not change at all; the
magnon is the only agent for the transformation
generated by S"' and S'3'.

It is also easy to show that the E(2) transforma-
tions of quasiparticles in (3. 32)-(3.34) induce the
spin transformation on the Heisenberg operator of
the electron g» i.e. , {{„(x)-e" "&' {&)( )xTo. do
this we use the path-integral formalism to express
&{)H(x) in terms of 4) and 8:

S&{' (x) =
& 4(x):exp[- i&(4 O' B 8')1: & .

We then perform E(2) transformations (3.32)-
(3.34); this results in the spin rotation of gs. The
proof for this follows the steps of the argument in
Sec. III, where we proved that the E(2) transfor-
mation of quasiparticles induces the spin rotation
of S & i) (x)

Dyson concluded' that interaction between low-
frequency magnons is very small. We note that
this is a manifestation of the E(2) symmetry.

Indeed we proved [cf. (3.12)] that the S matrix
is invariant under the transformation B- 8
+ const [cf. (3.32)-(3.34)]; this implies that the
magnon operator 8 always appears with its deriva-
tives in the $ matrix, and thus the magnon interac-
tion disappears in the zero-momentum limit. In
this connection we note that the study of interac-
tions among quasiparticles requires the study of
relations among vertices with many external lines.
This can be done by the path-integral technique,
tOO 53 9& 12

Although our conclusion looks similar to the one

obtained by Holstein and Primakoff, ' its implication
is quite different, as discussed in the Introduction.

Finally, we recall that our arguments are com-
pletely general; no assumption is made on the La-
grangian except its invariance under the spin-rota-
tion transformation (2. 1); furthermore, our study
covers the cases of localized spin (such as the
Heisenberg model) and of continuous spin distribu-
tion (such as the itinerant electron).

Although the path-integral method presents vari-
ous results which are independent of specific mod-
el and of any approximation, it rarely helps us in

computing model-dependent quantities. However,
it gives us a framework of rigorous statements

It is our pleasure to thank Professor M. Tachiki
(Tohoku University) and Professor Y. Chow (Uni-
versity of Wisconsin-Milwaukee) for many enlight-
ening discussions.

APPEND1X

Here we derive several formulas which are used
in the text. We first recall W[J,j, n], which was
introduced in (2. 3a}. We make the change of vari-
ables (2. 1) in the numerator of (2. 3a). Then,
8 W[J,j, n]/88, = 0 gives

(Al)

where

&)~)tt)(& —$ (& ~)J{X +1(f1)P—26'~g~

xj'{x}S3'(x) +i{&„,+ ie3„)s&&"{x)j(x}

+ i&3&p3&3)(x)n(x) ] .
Equation {Al}reduces to {2.9) when J=O and n=o.
Operating 5/5j{y) on {Al) we obtain

{a~»+ie3,3) &S3"'(y) ), , , „=-&S&I'( y)f), ~, „

d'x&s„"(y)s&"(x)). ..„.
The operation of 5/5j (y) gives

{&,)3 —if3)3) &s„"'(y) &, , , „=-(s,' '(y)f). . .„

(A2)

—663g~ d X Sg (y Sg (X) (A3}

On the other hand, when 5/5n(y) operates on (Al)
we obtain

3)3«I (y) ) z I &s«t {y)f) I j

d x S~"'(y)S,"' ), ~,. „. (A4)

When (3. 17) is used, Eq. (Al) gives

d'x S,"'(x:e ' &:,=0 for k=1, 2

when I =l or 2; in deriving (A5) we used the rela-
tions

d g ft) (g}A{9)X,.q{g)q =0

d'~ a,(&z(e s,"'{&)q =0,
(A6}

i= 1, 2, with arbitrary operator Q. The second re-
lation in (A6} is obtained when we recall the fact

with which no practical calculations are allowed to
contradict. It is therefore advisable to combine
use of the path-integral method with practical mod-
el calculations.

ACKNOWLEDGMENTS
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e (A». ) (A7a)

that &SP'(x}q) does not contain the magnon Green's
function associated with the point x. The first re-
lation is derived by using the fact that ~, is an off-
diagonal matrix when i =1 or 2. Equation (A2}, to-
gether with (3. 17), gives, for I = 1 and 2,

(Sp'(x): e '"': ) =-', lim e d'x&S»" (y)S» '{x):
f&

Now we derive the relations (3.22) and (3.23).
When Q denotes any operator, a study of the Feyn-
man diagrams leads us to the formula

i=1, 2

with certain quantity (f(e}. Here G is the magnon
Green's function defined by [cf. (2. 17)]

d4x S,"(y S,"(x):e 'A&: =0. (A7b) d4
G(x)=f {,e ""~(e,p) .

Equation (A3) with / =1 and 2 gives

&S„"'(y):e '"(): ) =-', lim e d'x&S»~)(y)S&')(x):
6~0

e-'"
& (A6 )

We thus have

d'x A(S) &S"'(x)q)

d x S„' '
y S„' '(x: e '"~: =0 . = p d'xq(x)

It is more useful for our purpose to write (A7a) by
using (ASb}:

&S"'(y) e '"' ) =lim e d'x&S' '(y)S' '(x): e '"»: )
e 0

(A9a)

=ilime d x&S»~'(y)S»& '(x): e '"e: ), . (A9b
)6 wQ

In a similar way (Aga) together with (A7b) leads to

(S&3){y) . e-&A.» . )

=&al.ime d'x dzGx —z qz
a+

= -', a iim e d»x&S"'{x)q &, ,
6 "0

which leads to the formula

lim& d4x S"' x Q
g 0

d'xZ(a S"'(x)q, i=1,2.

=lime d x(SP'(y)S„"(x):e '"» )
a "0

= —Him e d'x&sp'(y}S "(x):e '"»: ),
6 0

We can therefore write

&SP )(y) . e -(A» . )

= hm e d'x&S„"'(y)S"'(x) e '"() . )
~0

=lima d x&SP'(y)SP'(x): e '"» )
6~0

(Ajoa)

(Ajob)

(A11)

(A12)

In a similar way we can derive

lim e d'x&S"'(x)q),
c-0

d'x S"'(xZ(- e)q,

I'hese relations give

lim d'x &S "'{x)q ),
6 "0

d'x [&ff(a)S(-)(x)q) + &S"(x)A.(- e)q) ]
2p

When (3.17}is used, (A4) together with (A6} gives

&S,"'(y): e '"»: ),

and

»m ~ d'x S"'x)q,
6 "0

d4x gg)(y g (2)( ) . e-iAg . (A13) d'x [&ff(e)S' '(x)q &
- &S"(x)A(-%)q &] .

2p

&st"&)): e '*:) = —~ f8*(s)'&) )sp'&*):

(A14}
Using the relation 2p = M [cf. (2. 31}],we find the
relations (3.22) and (3. 23).
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