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The critical temperature T,(n,d) of a classical n-component spin model on a d-dimensional
hypercubic lattice is expanded in powers of 1/d to fifth order. In the spherical-model limit, n — o,
the expansion is derived exactly to all orders and shown rigorously to be only asymptotic, although

T.(w0,d) is analytic in d for 2 < d < .

I. INTRODUCTION

Among those nonuniversal parameters describ-
ing a critical point, the critical temperature 7, is
perhaps the most significant. Some time ago Fish-
er and Gaunt! showed that the critical temperature
of an Ising model with nearest-neighbor interac-
tions on a d-dimensional hypercubic lattice, of co-
ordination number ¢=0+1=2d, could be expanded
in inverse powers of d. Fisher and Gaunt carried
the expansion to order 1/d°. The expansion ap-
peared to be of asymptotic character although this
could not be established definitely. As a matter of
fact, truncation of the expansion at the smallest
term gave reasonable estimates even for d=3 or
d=2.

In this paper we extend the work of Fisher and
Gaunt to general classical spin models with n-com-
ponent spins? §=[s*] (¢ =1, 2, ... n) of fixed length
181 =n'/2.® We calculate the 1/d expansion for
general n, obtaining

LLT@?Q =1-4" —q'2(1+ nri2)-q-3<3+ n4:l2)
-7 (16 * (2(1::;)3)’2 - (n+ 22)’::1 +4))
—g (102 R (129#2 ::EZZ;;; 340)n
- (mlz‘;%) +0(@®,  (1.1)
where

T=qd/kg =2dJ/ kg (1.2)
is the mean-field critical temperature. For n=1
this reduces to the Ising-model result of Fisher
and Gaunt.! For =0 it is equivalent to the result
obtained by Fisher and Gaunt for n/gq, where u(d)
=1im;. .(c;)} is the self-avoiding-walk limit [c,(d)
being the number of self-avoiding walks of / steps
from the origin of the hypercubic lattice!]. This
is precisely in accord with expectations*® that the
self-avoiding-walk problem should be described by
the limit »— 0. Our result can be regarded as the
first explicit demonstration of this identity for a
nonuniversal critical parameter, although it is im-
plied by the proportionality of the self-avoiding

10

walks c¢; to the high-temperature series-expansion
coefficients a,;(n, d) of the susceptibility when n—-0,
as demonstrated recently by Bowers and McKer-
rell.®

In the result (1.1) we may also take the limit »
—~, As shown by Stanley® this limit should corre-
spond to the spherical model.®” For this reason
we have made a separate analytical investigation
of the critical temperature of the d-dimensional
spherical model. This first demonstrates the ex-
istence of a 1/d expansion. Second, it confirms
the expansion (1.1) for n~~, However, the analy-
sis also shows how to calculate the general expan-
sion coefficient of T,(~, d) and hence establishes
rigorously that the expansion is, in fact, only as-
ymptotic. (The magnitudes of the coefficients
grow factorially fast.) On the other hand we also
prove that 7,(«,d) extends to an analytic function
of d in the whole interval 2<d<w, This result is
inconsistent with a recent speculation of Baker® to
the effect that 7,(1, d) might have an essential sin-
gularity at d=4. It is remarkable that the critical
temperature 7,(~,d) varies analytically through d
=4 even though the critical exponents are nonana-
lytic at d=4 [e.g., y(x,d)=2/(d - 2) for 2<d=4
but y= 1 for d= 4.7

The layout of this paper is as follows: In
Sec. II we discuss the critical temperature of the
spherical model analytically. In Sec. III the
graphical methods used to expand 7,(», d) for gen-
eral n are expounded. The results are examined
numerically and discussed in Sec. IV. An Appen-
dix explains some of the computational details.

II. SPHERICAL MODEL

The critical point of a spherical model with near-
est-neighbor interactions of strength J on a d-di-
mensional hypercubic lattice of coordination num-
ber g =2d may be written™®

K (d)=d/kg T,(, d) = W,(0) , (2.1)
for d>2, where the generalized Watson functions

! J‘Z' J‘z" d6, db,--- db,
Wd(z) = (21T)d o ° z+z‘;:1(1 - COSGJ-)

(2.2)

4697



4698
can be written™®

Wa(e)=4 [ es2lemry(s)ds, (2.3)
0

in which Iy(s) is the Bessel function of zero order

and pure-imaginary argument. This last expres-

sion provides an appropriate analytic continuation

in d (see Sec. IV) and yields

KJd)=3 f e gs | (2.4)
0
where
g(s)=s-1Inly(s) . (2.5)
From the integral representation!'®
e"Io(s) =1 f e-s(hcose) de , (2. 6)
0

we see that g(s) increases monotonically from g(0)
=0. Furthermore, as s~ we have'’

&(s)=21Ins+3 27+ o(1) , 2.7
and thus one can find bounds of the form

g(s)=1n(s +c®)2+ B=y(s) (2.8)
and

et < A/(s+ AW2=Ce (2.9)

where A, B, C, and ¢ are constants.
Now by differentiating (2.4) with respect to d we
obtain

Q@)= (- 1" (25 K@)
=3 f: Lg(s)|m e ds

<Cde-28 Jﬂo yme-(d-Z)ydy
- ’
Yo
with yo=Inlc| + B=0. Extending the lower limit of
integration to zero, yields

Q,(d)/ m! = Cle?B(d - 2)™1

(2.10)

(2.11)

It follows from this bound that K (d) has an expan-
sion about any dimensionality d; (with 2 <dy<)
with a radius of convergence of at least (d, - 2).
Since K,(d)—~ = as d— 2+ the radius of convergence
cannot exceed (dy —2). Hence we conclude that
K,(d) is analytic in d for 2<d<«, Evidently K,(d)
is also a monotonic function of 4 in the same inter-
val.

To obtain an expansion for large d we set z=g(s),
with inverse s=f(z), and obtain

_lf‘ -2z A
Kc(d)-2 | e dz

dJ:f(z)e"“dz , (2.12)
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where we have integrated by parts.
expansion

Now, from the

f(z)=zlf,z’ , (2.13)
I=

we obtain by termwise integration the desired 1/4
expansion

Kc(d) =

mem! / d’":z K. /q™. (2.14)
m=1 m=1

Reversion of the series for g(s) derived from (2.5)
yields explicitly

D |

2dK (d)=T%/ T (»,d)=1+q +3¢72+12¢3+60¢™*
+355¢7°+238047%+ 174 304" 7+ 134 1904 -
+102765647+69221464'°+ 21 248 0734~

- 601744 143¢71% - 2080211562093 — - - - |

(2.15)
which, indeed, checks the result (1.1) in the limit
n—-«=, The terms become positive again at order

-20
qa.

From (2. 14) we see that if the expansion for
K.(d) is to have a nonzero radius of convergence,
say 11/d | =1/d., one must have |f,m!|~d%or
fm~d%/m!. Thus a necessary condition that the
1/d expansion have a circle of convergence is that
f(2) is an entire function. To show that f(2) cannot
be entire we look for zeros of the derivative of the
inverse function, namely, !°

dz dg, .

75 = 75 (8) =1 = 1(8)/ &(s) -
Equivalently, since [y(s) and /(s) have no common
zeros, we may look for zeros of

L(s)=Iy(s) = I(s) .

(2.16)

(2.17)

If s=s,is such a zero then f(z) has a branch point
singularity at zy=g(s,).

Now L(s) is an entire function of order (of
growth) unity.!! It follows by Hadamard’s theo-
rem! that L(s) has a representation of the form

L(s)= oo ] (1-s/s;)e¥si | (2.18)

i

where A(s) =%, +h,s is a linear function of s while
the product runs over the zeros s;, if any, of L(s).
From the power series expansion for InL(s) we find
n(s)=-3s. However, L(s)is clearly not equal to
e~¥'2; thus the canonical product over the zeros
cannot be empty. Hence L(s) has at least one finite
zero, implying a finite singularity in f(z), which
cannot then be entire.

To find an upper bound on the radius of conver-
gence p of the expansion (2.13) for f(z) we have
determined numerically several of the zeros s; of
L(s), which occur in complex-conjugate pairs.
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The pair of zeros nearest the origin can also be
determined by application of the formula

; 5" = - (—771-1;—1)—, [(%)m 1nL(s)L=0 . (2.19)

which follows readily from (2.18) for m=2. In
Table I the first five pairs of zeros are listed to-
gether with the corresponding singular points z;
=g(s;). Although we have no formal proof, it
seems most likely that the closest zeros si do, in
fact, also determine the nearest singularities z;

in the z plane. These singularities, in turn, de-
termine the radius of convergence of the expansion
for f(z). Accepting this, the expansion coefficients
for K.(d) vary as

| K| = ml(2/0) "k

as n -, where p~1.62006 and %,/ "~1. From
this explicit estimate it is again clear that the se-
ries for K.(d) can only be asymptotic.

From the expression (2.12) one concludes that
one may reasonably truncate the expansion in pow-
ers of 1/d at that term, [=1*, for which the maxi-
mum of the integrand z'e™? lies within the radius
of convergence of the f(z) expansion. This yields
the prescription

I*~|pd]-1=~[1.62d]-1.

(2.20)

(2.21)

Thus in three dimensions it is reasonable to trun-
cate the series (2.15) after the fourth-order term.
Finally we may note that one may construct an
expansion about 4=2 for d - 2>0 by (a) splitting the
range of the integral in (2.4) at s=1 and (b) sub-
tracting off the asymptotic piece of the integrand,
which varies as (27s)/2, in the integral for s>1.

This leads straightforwardly to

TC(OO) d)/ Tg :pl(d - 2) - /‘a(d - 2)2+ O((d - 2)3) ’

(2.22)
where p, = i7 and

pa=im (1 - In27 + fm[Zne'zsl(z)(S) - 6(s - 1)/s]ds>

0
zéﬂ(l -hl2”+1if‘:)1[2(1 -z€) K(1 —é€)+Ei(—€)]>

I

m[1+1n(8/7) + v, |
=1,972863...,

4

(2.23)

TABLE I, Zeros of the function L(s)=Iy(s) —~I;(s) and
corresponding singular points z; =g(s;)of s=f(z).

i Re(s;) Im(sy) Re(z;) Im(z,)

1 1.27960 +2,98038 1.52405 +0, 54943
2 1.61872 +6,17515 1.85140 +0,63872
3 1.81887 +9, 34196 2,04831 +0,67651
4 1.96146 +12, 49851 2.18954 +0.69787
5 2,07231 +15,65010 2,29968 +0,71176
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where y;=0.577... is Euler’s constant, Ei(x) is
the exponential integral, K(k) is the complete el-
liptic integral, and 6(x) is the unit step function.

III. GENERAL n-VECTOR MODEL

We consider now the general #-vector spin mod-
el with nearest-neighbor interactions, as described
by the Hamiltonian

3c=—12 8- §,-—g‘uaHZsli-

(ij) i

(3.1)

As mentioned, the spin vectors $; have » compo-
nents and are of fixed length |8 | =»*2. The re-
duced zero-field susceptibility above 7,(n,d) is
given by
Xo=xrka T/g2u% =1 20 (8- 5) . (3.2)
1

In order to find the critical temperature we fol-
low Fisher and Gaunt! by calculating the high-tem-
perature expansion

0

Xo=1+ ZJ aK',

=1

K=J/kgT . (3.3)
If the coefficients a;(n, d) are all positive, the radi-
us of convergence, and hence the critical tempera-
ture, is given by

InK (n,d)=-1limsup [ Ina, (n,d) .

)

(3.4)

We aim to calculate the «,(n, d) to leading order in
d for all /.

A systematic graphical method for calculating
the susceptibility coefficients «,;(n, 4) has been de-
veloped by Stanley and Kaplan.!? Following Ref.
12c we may write

a;(n,d)=2 Zz (G% £)A(n; G?) (3.5)

Gl

where the sum runs over multigraphs'® G2 of 1
lines or edges (counting multiedges with appropri-
ate multiplicity) which (i) are connected, (ii) have
precisely two vertices of odd degree (as indicated
by the superscript 2), and (iii) the graphs G¥
formed by joining the two odd points by an addition-
al (wavy) line are stars; i.e., they have no articu-
lation points (or cut vertices).'® The symbol
(G; £,) denotes the weak lattice constant per site!®
of the graph G in the hypercubical lattice £, of di-
mensionality d. The graphical weights A(n; G2)
satisfy the recurrence relations

A(n; G2 =N (n; G%) - Z M(n; GY_)A(n; G2, (3.6)
%

where the sum runs over all proper subgraphs G2

of GZ which fulfill the same conditions as G%. Then

GY_, denotes the complementary subgraph of 7 - &
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lines (and no odd vertices) such that G9_,U G2 = G2.
Note that GY_, may contain articulation points and,
in general, is not even connected. The basic
graphical weights N and M are defined by

0 6 =(IT &, ms0my0) (3.7
(ij) 0
N(n;Gz)=n"‘<§0o§1H(§,~'§j)"'if(m;,~!)'1 . (3.8)
(i) 0

where ( - ), denotes the noninteracting statistical
average (i.e., taken at K=0 or 7 =) normalized
so that (1);=1. The vertices of G are labeled ¢,
j, ... and the products run over adjacent pairs of
vertices (ij); the two odd vertices of G? carry the
labels 0 and 1. The multiplicity of the edge (#) is
denoted by m;;.

Following Fisher and Gaunt we now select those
graphs of / lines which have lattice constants of
highest order in d, the dimensionality. According
to this criterion the graphs of largest diameter are
the most important. In leading order these are
just the I-step chains or self-avoiding walks C,;
=G, see Fig. 1(a), whose lattice constant ¢,(d)
=2(G!*7; £,) on the hypercubical lattices is known!
to fifth order in 1/0, where 0=2d -1. To leading
order one easily sees that c;(d)= qo'. According-
ly we define the reduced lattice constants

G =247 071" Z (G; £ ,

Gegltl

(3.9)

where the significance of the tilde and correspond-
ing summation will be explained shortly; for
chains, both are to be ignored. From the calcula-
tions of Fisher and Gaunt [Ref. 1, Eq. (5.15)] we
thus obtain

P ERPE S
S A

(h) [x] (] [m]

SRR

(n] [q] [r] [s]

FIG. 1. Generic graphs G needed to calculate the
susceptibility expansion coefficients to relative order
1/d°. The graphs (k) and () also include the cases where
the triple bond shares a vertex with the double bond,
since, as in the case of (f) and (g), the weights are the
same,
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AGEN =1 = (1 -3)072 = (21 - 13)0°
(12 -274+107)07

+ (212 - 831+ 895)0"°+ O(c7%) . (3.10)

The next most important graphs are (I - 2)-step
chains with one triple bond G!, see Fig. 1(b); the
lattice constant is clearly just c¢; ,(d). Such graphs
did not arise in the Ising-model calculations! since
repeated bonds or multiedges are not needed when

=tanhK is used as expansion variable. It is shown
in the Appendix that the weights of such graphs are
independent of the position of the triple bond along
the chain of (/- 2) links. More generally this is
true for any distribution of bonds amongst the free
“tails” of a graph. Thus we may class all such
graphs together under one generic graph GI' and
take the sum in (3.9) over the particular graphs
which are members of the same generic class. In
the present case this simply means multiplying the
single lattice constant by (I — 2) to account for the
different possible positions of the triple bond. Thus
we obtain

A(GPY) = (1-2)072 = (12 =71+ 10)0°*

- (212 - 217+ 34)0"%+ 0(07") . (3.11)

The class of graphs of next significance, G[“
consists of a square with a double bond and two
tails, see Fig. 1(c). These tails must intersect
neither themselves, each other, nor the square.
Let the lengths of the tails be % and #’, with %, &’
=4, The first step of each tail (starting at the
square) can point in ¢ - 1 possible directions. In
leading order the number of possible tails is hence
(0 -1)%**¥ 2 but this overcounts by allowing the
following possibilities: (i) each tail forms a square
loop with the original square, giving 2(20 - 4)

x (0 = 1)o** ~4= 4¢**¥-2, (ii) the two tails together
form a square loop w1th the original square, giving
2(0 = 2)0**'~3~ 2¢***"-2; (iii) one or the other tail
contains a square loop giving ~ (b — 3+ k' - 3)o**¥ 2,
To relative order o these are all the possibilities.
Collecting them together gives

**[1 =201 = (k+k' -1)0"2+ 0(0™Y)] ,

where £+ %' =1-5. This is to be multiplied by the
number of ways of choosing % and k' with &, k' =4,
namely, k+k%'-T7=1-12. Similar considerations
can be applied when one or the other tail has a
length 1, 2, or 3. The final result, which also in-
cludes the lattice constant of the original square,
is then

AMGEN~(1-4)0" - 8lo™ - (B - 120)0"%, (3.12)

where terms of order 7° in the coefficients of o~*
and ¢7° have been neglected, since they cannot con-
tribute to the final expression for K.(d) to order
1/0°
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The calculations of the other lattice constants
needed to orders 1/0° and ! is somewhat simpler
since they are all of order 1/0* or higher, so that
only 1/0 corrections are needed. The required
graphs are shown in Fig. 1 and the results are
summarized in Table IL.

Table II also lists the corresponding class
weights A(n; G); these data must be supplemented
by

A(m; Gi*h =1,
Aln; GPN==-n/(n+2),
Ay Gl == 3n/(n+2) .

(3.13)

The calculation of these weights is straightforward
if performed with the aid of the Funk-Hencke theo-
rem.'* The crucial steps are sketched in the Ap-
pendix. It can be seen from (3.13), from Table II,
and, more generally, from the Appendix that the
weight A(n; G) for every class of graphs except the
self -avoiding chain G{*' = C; is proportional to » and
hence vanishes when »=0. This represents an al-
ternative derivation of the Bowers-McKerrell re-
sult’ referred to in the Introduction.

On combining (3.9) and (3.5) in (3.4) we obtain
finally

qK(n, d) = (q/0) exp[- lir?_iup "t m( ZE: ME)A(n, é))] .

(3.14)

By considering 1/0 as a small parameter one may

expand the logarithm. In this process all explicit

dependence on ! cancels and one may formally take
the limit /—-«. This step is only formal since the

expansion, as such, is valid only for I/0% « 1.

TABLE II. Reduced lattice constants A(G!*])and cor-
responding graphical weights A(n, G'*Y) needed to calculate

the susceptibility coefficients a;(n,d) to relative order
-5

0™, Graphs labeled [t] are shown in Fig. 1.

0] AGHY) A@; Gi*Y
[d) lo™4 = 3107 — Bn+4)n/ (n+2)?
le] lo™ 212/ (0 +2) (o +4)

A +1g) $@% - 9o nt/ (n+2)?

(k) 4lo™! - 23107 —3n/(n+2)

[1] 3ot — 31107 - 6n/(n+2)

[4] i - (Tt +12n+8)n/ (n+2)°
[k]+[1] @ ~100)07 3n%/ (n+2)?
[m] 1™ 107%/ (n+2) (n +4)
[n] 4l¢78 — (Gn+4n/(n+2)°
[0 lo™5 —6n/(n+2)
9] 21075 ~26Bn+4)n/ (n+2)?
7 g —3n/(n+2)

r] -5 —6n/(n+2)
[s] 1™ —6n/(n+2)

(]

4701

Thus one must not be surprised if the final expan-
sion is only asymptotic. Lastly we may replace
1/0 by ¢*(1 —¢™)™* and expand the exponential to
obtain

2dJ _TQ a4 -2 n 3 6n
s ek et AR Gy ) R (R

4 n _ 12 8
v [27+n+2(33 n+2+n+4):‘

-5 n B 136 80 12
*4 [157+n+2(198 n+2+n+4+(n+2)2
+0(g™) . (3.15)

On taking the reciprocal this yields the result al-
ready quoted in (1.1).

IV. DISCUSSION

As observed in the Introduction, the results (1.1)
and (3.15) reduce to the previous Ising-model ex-
pressions® for n=1 and to those for the self-avoid-
ing-walk or excluded-volume problem for #=0.!*
In the limit® n—« the exact spherical model expan-
sion (2. 15) is recaptured to order 1/4°. It is also
evident, from the fact that » dependence enters
only in the 1/¢% and higher-order terms, that the
critical temperatures for large g =2d are less sen-
sitive to » than in lower dimensionalities. As =
-~ —2or -4 (and, presumably, -6, -8, ... ) the
coefficients of the 1/q expansion diverge. It is in-
teresting that these values of » are also just those
at which pure Gaussian behavior is expected, at
least for continuous-spin systems. ?

In Fig. 2 the critical temperatures 7,(n,d) pre-
dicted by (1.1), with truncation after /, terms, are
plotted vs n/(n +2) for various values of 4 (solid
and dashed lines, which are almost straight in this
representation). The circled dots indicate the ex-
act critical temperatures®!® or best series esti-
mates, based on series expansions’#!?; the dotted
lines serve to show the trend of these precise data
but have no other significance. When the criterion
ly=1%*, following from (2.21), is used, the results
improve with decreasing ». Improvement with in-
creasing d is, of course, to be expected.

It is interesting that the 1/d series do not always
yield the best numerical values when truncated at
the smallest term. For example, the exact spher-
ical model result for d=4 is® T,(~,4)/T2=0. 80680.
Truncation at fifth order, following (2.21), yields
T,/ T2=0.81497. The best value is obtained by in-
cluding the sixth-order term, giving 7,/72
=0.80925, but truncation after the smallest term,
which is the eleventh, gives 7,/7%=~0.78941. Ev-
idently the criterion (2. 21) is fairly reliable al-
though inclusion of a following term or two may
improve the accuracy.
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05 n/(n+2) 1

FIG. 2. 'Variation of critical temperatures T, (r,d)
with n for various dimensionalites d. Solid and dashed
lines represent the expansion (1.1) truncated at the
term. Circled dots show the exact (or best-estimate)
critical temperatures.

Although we were able to show that 7, (~,d) was
analytic in d for 2<d<«, we cannot do the same
for general n; however, such analyticity seems
very plausible for »>-2. For this point, recall!
first that each lattice constant (G;, £,) which enters
into the high-temperature expansion can be written
as a finite polynomial in the dimensionality d, of
degree ! or less. Hence the susceptibility expan-
sion coefficients a,;(n, d) are also polynomials in d
of degree /; as such they have a unique, natural
analytic continuation to all real (and complex) d.
This continuation is what we have implicitly used
in deriving T.(n,d) from (3.4). The analytic con-
tinuation for the spherical model provided by (2. 3)
is easily seen (by expanding in powers of z™!~ K)
to conform to the same prescription. Thus it is
reasonable to expect similar analyticity properties,
at least from positive integral ».

Finally we note that although the first five 1/d
expansion coefficients are positive for »=0, this
cannot be true for all higher-order terms since the
spherical model expansion (2. 15) contains terms of
both signs and the coefficients remain continuous
as n—o,

J
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APPENDIX

In order to calculate the graphical weights
A(n; G) we need the averages M(n; G) and N(n; G)
defined in (3.7) and (3.8). To this end, note that
we only have to evaluate weights of the form

P(n; %) <LI) @ - §f)“~'>0 , (A1)

where G°is a graph of even vertices only. Fur-
thermore, if G is the union of connected graphs
Gly, Gl, ..., then P(G%)=P(G})) P(Gly) - - - .
This factorization property also holds for the
pieces!® G¥;, and G{;;, of a graph relative to an ar-
ticulation point at, say, the vertex 0; by holding
the spin vector §; fixed while all others are inte-
grated over, the final result is seen to be indepen-
dent of §; and equal to the product of the separate
graphical weights P(G{;)) and P(G¢;;)). This is, of
course, a direct reflection of the isotropy of the
spin coupling.

In addition, every chain of single edges connect-
ing two points can be reduced to a single edge con-
necting the points by use of the Funk-Hencke theo-
rem! in the form

[ 49@) GBS E) e tmSE),  (a2)

where dQ(8;) is the element of area of the unit n-
hypersphere of total surface area w,, while S,(S)
is a surface harmonic of degree 2. The eigenvalue
is given by

WA (1) = Wy CR(1)]
1 - -
x [ amcln (1 - 222 ax, (A3)
-1
where 7= in—1 and C? (x) is a Gegenbauer poly-

nomial. After a k-fold integration by parts'* we
obtain the explicit result

~ LG -2)TEn+ k-1 (En+k—3)0(k+ 21+ 1)I(1+3)
N m) = 2" I‘(a%)l"(én -2)T(GEn-1)T(n+2k - 2)T(Gr+k+)T(21+1) ° (a4)

for =0, 1, 2, ... .

The most valuable result is A}(z)=1. Then in
integrating over the spin §; in a chain of single
bonds the scalar product with the neighbor §;,, may
be considered as a spherical harmonic of degree

r
unity, S;(8;)=8;- 8;,;- Thus integration over §;
(with §, =8;_; being the other neighbor) introduces
the coupling 8;_, - §;,; and hence reduces the length
of the chain by one. This result is actually just a
different form of a lemma obtained by Paul and
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Stanley'® and justifies the grouping of graphs into
classes used in Sec. II.

The P weights of the remaining chain-free dia-
grams may be calculated in a similar way by
choosing parts of the integrands as surface har-
monics. For the weights shown in Table II, ae
needs the values #=0, 1, and 2 and /=0, 1, 2, and
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3 in (A4). Finally note that one always has m=Fk
+21=1, so that it follows from (A4) that \](n)-~0
as n—0 unless m=k=1. This is sufficient to show,
in agreement with Bowers and McKerrell,*® that the
only graphs contributing to the susceptibility ex-
pansion when n— 0 are the self-avoiding chains
Gi*l=c,.1

IM. E. Fisher and D. S. Gaunt, Phys. Rev. 133, A224
(1964).

2The systematic study of the » dependence of classical
spin models was initiated and developed by H. E. Stan-
ley, (a) Phys. Rev. Lett. 20, 589 (1968), (b) J. Appl.
Phys. 40, 1272 (1969), (c) Phys. Rev. 179, 570 (1969),
(d) Phys. Rev. 179, 570 (1969); see also (e) H. E. Stan-
ley, A. Hankey, and M. H. Lee, Proceedings of the En-
vico Fermi Summer School Course LI, Critical Phenom~
ena, edited by M. S. Green (Academic, New York,

1971), p. 237.
3For theoretical discussion of the variable » see (a) R.

Balian and G. Toulouse, Phys. Rev. Lett. 30, 544
(1973); (b) M. E. Fisher, Phys. Rev. Lett. 30, 679
(1973); (¢) H. J. F. Knops, Phys. Lett. A 45, 217 (1973);
(d) R. Abe and A. Hatano (unpublished).

‘P. G. DeGennes, Phys. Lett, A 38, 339 (1972); see also
J. des Cloizeaux, Phys. Rev. A 10, 1665 (1974).

R. G. Bowers and A. McKerrell, J. Phys. C 6, 2721
(1973).

SH. E. Stanley, Phys. Rev. 176, 718 (1968). See also M.
Kac and C. J. Thompson, Phys. Norv. 5, 163 (1971).
The spherical model was originally introduced by T. H.
Berlin and M. Kac, Phys. Rev. 86, 821 (1952).

'G. S. Joyce, in Phase Transitions and Critical Pheno-

mena, edited by C. Domb and M. S. Green (Academic,
New York, 1972), Vol. 2, p. 375.

8G. A. Baker, Phys. Rev. B 9, 4908 (1974).

M. N. Barber and M. E. Fisher, Ann. Phys. (New
York) 77, 1 (1973); see Eqgs. (2.26) and (A4).

see, e.g., A. Erdélyi, Higher Transcendental Functions
(McGraw-Hill, New York, 1953), Vol. 2,

11, V. Ahlfors, Complex Analysis (McGraw-Hill, New
York, 1966), Chaps. 5.2 and 5.3.

2(3) H. E. Stanley, and T. A. Kaplan, Phys. Rev. Lett.
16, 981 (1966); (b) H. E. Stanley, Phys. Rev. 158, 537
(1967); (c) H. E. Stanley, Phys. Rev. 158, 546 (1967).

Bwe follow the graph theoretical terminology of J. W.
Essam and M. E. Fisher, Rev. Mod. Phys, 42, 271
(1970).

14See Ref. 10, p. 247,

L. Onsager, Phys. Rev. 65, 117 (1944).

16G, Paul and H. E. Stanley, J. Phys. (Paris) Suppl. 32,
350 (1970). -

"Thus with the exception of P(n, P;) =n, where P; denotes
a self-avoiding ring or polygon, all the p(n, G°) of (A1)
are of order #° or higher as n—0. Hence by (3.7) and
(3.8) the weights M and N are at least of order » for all
graphs except the chain for which N(n, C;)=1, The result
then follows from (3.6).



