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Critical temperatures of classical n-vector models on hypercubic lattices
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The critical temperature T,(n, d) of a classical n-component spin model on a d-dimensional
hypercubic lattice is expanded in powers of 1/d to fifth order. In the spherical-model limit, n ~ Oo,

the expansion is derived exactly to all orders and shown rigorously to be only asymptotic, although

T, (ao,d) is analytic in d for 2 g d & af}.

I. INTRODUCTION

Among those nonuniversal parameters describ-
ing a critical point, the critical temperature T, is
perhaps the most significant. Some time ago Fish-
er and Gaunt showed that the critical temperature
of an Ising model with nearest-neighbor interac-
tions on a d-dimensional hypercubic lattice, of co-
ordination number q =a+1 =2d, could be expanded
in inverse powers of d. Fisher and Gaunt carried
the expansion to order 1/d'. The expansion ap-
peared to be of asymptotic character although this
could not be established definitely. As a matter of
fact, truncation of the expansion at the smallest
term gave reasonable estimates even for d=3 or
d = 2.

In this paper we extend the work of Fisher and

Gaunt to general classical spin models with n-com-
ponent spins s = [s'] (n = 1, 2, . . . n) of fixed length

I s I =n "2.' We calculate the 1/d expansion for
general n, obtaining

T,(n, d), 2 n, 4n
To

= 1 —g —t'ft 1+
2

—g 3+

(21n+ 32)n 2n

( ~ 2P ( 2)( 4))
(129n + 422n+ 340)n-q ' 102+ ),

16n
6)

(n+ 2)(n+ 4)
where

T, = qZ/k~ = 2dJ/ks (1.2)
is the mean-field critical temperature. For n =1
this reduces to the Ising-model result of Fisher
and Gaunt. ' For n =0 it is equivalent to the result
obtained by Fisher and Gaunt for p/q, where p, (d}
=lim, (c,)"' is the self-avoiding-walk limit [c,(d)
being the number of self-avoiding walks of l steps
from the origin of the hypercubic lattice']. This
is precisely in accord with expectations4' that the
self -avoiding-walk problem should be described by
the limit n-0. Our result can be regarded as the
first explicit demonstration of this identity for a
nonuniversal critical parameter, although it is im-
plied by the proportionality of the self-avoiding

walks c, to the high-temperature series-expansion
coefficients a, (n, d) of the susceptibility when n-0,
as demonstrated recently by Bowers and McKer-
rell. '

In the result (1.1) we may also take the limit n

As shown by Stanleys this limit should corre-
spond to the spherical model. ' For this reason
we have made a separate analytical investigation
of the critical temperature of the d-dimensional
spherical model. This first demonstrates the ex-
istence of a I/d expansion. Second, it confirms
the expansion (1.1) for n- ~. However, the analy-
sis also shows how to calculate the general expan-
sion coefficient of T,(~, d} and hence establishes
rigorously that the expansion is, in fact, only as-
ymptotic. (The magnitudes of the coefficients
grow factorially fast. ) On the other hand we also
prove that T,(~, d) extends to an analytic function
of d in the whole interval 2&d&~. This result is
inconsistent with a recent speculation of Baker to
the effect that T,(1,d) might have an essential sin-
gularity at d =4. It is remarkable that the critical
temperature T,(~, d) varies analytically through d
=4 even though the critical exponents are nonana-
lytic at d=4 [e.g. , y(~, d) =2/(d-2) for 2&d~4
but y—= 1 for d~ 4].

The layout of this paper is as follows: In
Sec. II we discuss the critical temperature of the
spherical model analytically. In Sec. III the
graphical methods used to expand T,(n, d) for gen-
eral n are expounded. The results are examined
numerically and discussed in Sec. IV. An Appen-
dix explains some of the computational details.

II. SPHERICAL MODEL

The critical point of a spherical model with near-
est-neighbor interactions of strength J on a d-di-
mensional hypercubic lattice of coordination num-
ber q =2d may be writtenv'

K,(d) = J/k~ T,(~, d) = W~(0), (2. 1)
for d& 2, where the generalized Watson functions

1 " ' " ' d8id8p ~ ~ ~ d8g
(2v)' ~, .0 z+ P', ,(I —cos8;)

(2. 2}
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can be writtenv'

W, (z) =-,' e '~2[e 'I,(s)]"ds,
0

(2. 3)

where we have integrated by parts. Now, from the
expansion

in which I2(s} is the Bessel function of zero order
and pure-imaginary argument. This last expres-
sion provides an appropriate analytic continuation
in d (see Sec. DI) and yields

(2. 13)

we obtain by termwise integration the desired 1/d
expansion

K,(d) =-,'
J~ e '"ds,

0
(2.4) K,(d)= —Zf n~! /d =Q K i'q".

m= j. m=1
(2. 14)

where

g(s}= s —lnI2(s) .
From the integral representation'

e-sI (s) = 2-' e-"'"-"de0
0

(2. 5)

(2. 8)

Reversion of the series for g(s) derived from (2. 5)
yields explicitly

2dE, (d) = T', /T, (~ d) —1+q '4- 3q '+ 12q 2+ 80q
4-

+ 355q + 2380q + 174 30q + 134 190q

+ 1 027 656q + 6 922 146q-so+ 21 248 073q

g(s}=-, lns+ —,
' ln2v+ o(1),

and thus one can find bounds of the form

g(s) —ln(s+ c )" + II= y(s)

(2 'I)

(2. 8)

e S(*)~ g/(S+ C2)1-/2 ge-S(s)
y (2. 9)

where A., B, C, and c are constants.
Now by differentiating (2. 4) with respect to d we

obtain

we see that g(s} increases monotonically from g(0)
=0. Furthermore, as s- ~ we have'

—601 744 143q —20 802 115620q

(2. 15)
which, indeed, checks the result (1.1) in the limit
n- ~. The terms become positive again at order

-20

From (2. 14) we see that if the expansion for
K,(d) is to have a nonzero radius of convergence,
say I 1/d I =1/d, one must have If m! I

-d or
f -d /n/! . Thus a necessary condition that the
1/d expansion have a circle of convergence is that
f(z) is an entire function. To show that f(z) cannot
be entire we look for zeros of the derivative of the
inverse function, namely, '

—= —(s) = 1 —I,(s)/I, (s) .dz. dg (2. 18)

I g(s)] e~""ds
0

(gde-ZB
'

y
m~-(d-2 ) y dy

70

(2. 10)

with yo =lnl c I + B~ 0. Extending the lower limit of
integration to zero, yields

q.(d)/sn! = C'e-22(d —2)- -' . (2. 11)

=—d J f(z)e "'dz,
2 0

(2. 12)

lt follows from this bound that K,(d) has an expan-
sion about any dimensionality d2 (with 2 & d, & ~)
with a, radius of convergence of at least (d, —2).
gince K,(d)- ~ as d-2+ the radius of convergence
cannot exceed (dh —2}. Hence we conclude that
E,(d) is analytic in d for 2&d&~. Evidently E,(d}
is also a monotonic function of d in the same inter-
val.

To obtain an expansion for large d we set z =g(s),
with inverse s = f(z), and obtain

K,(d) = — e "—dz1,"",df
2 "o dz

Equivalently, since I,(s) and I,(s) have no common
zeros, we may look for zeros of

L(s) = I,(s) —I,(s) . (2. 11)

If s =s2 is such a, zero then f(z) has a branch point
singularity at z2 =g(sh).

Now L(s) is an entire function of order (of
growth) unity. " It follows by Hadamard's theo-
rem" that L(s) has a representation of the form

L(S) = eh(s) II (1 —S/S )es/s; (2. 18)

where h(s) = h2+ h, s is a linear function of s while
the product runs over the zeros s;, if any, of L(s).
From the power series expansion for lnL(s} we find
h(s) = ——,s. However, I.(s) is clearly not equal to
e '; thus the canonical product over the zeros
cannot be empty. Hence L(s) has at least one finite
zero, implying a finite singularity in f(z), which
cannot then be entire.

To find an upper bound on the radius of conver-
gence p of the expansion (2. 13}for f(z}we have
determined numerically several of the zeros s; of
L(s), which occur in complex-conjugate pairs.
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l =
I.pzfj 1 =

[.I ~ 82dl 1 ~ (2. 21)

Thus in three dimensions it is reasonable to trun-
cate the series (2. 15) after the fourth-order term.

Finally we may note that one may construct an
expansion about d = 2 for d —2 & 0 by (a) splitting the
range of the integral in (2. 4) at s =1 and (b) sub-
tracting off the asymptotic piece of the integrand,
which varies a,s (2zzs) ", in the integral for s & l.
This leads straightforwardly to

T,(~, d)/ T,'= pz(d —2) —
/ ', (d —2)z+ 0((d —. 2)'),

(2. 22)
where Py = zTJ and

p2
———'m 1 —ln2m +

p

1 —ln2m+lim 2 1 ——,'q & 1 ——,'e +Ei
(~p

= 4zz[1+ 1n(8/zz)+ ysj

= 1.972863. .. , (2. 23)

'I'A+LE I. Zeros of the function I.(s) = I() (s) - I( (s) &nd

corresponding singuis. r points zz=g(sz)of s=ftz ). '

The pair of zeros nearest the origin can also be
determined by application of the formula

(r~) lnI( t, (2. 19)

which follows readily from (2. 18) for zzz ~ 2. In
Table I the first five pairs of zeros are listed to-
gether with the corresponding singular points z;
=g(s;). Although we have no formal proof, it
seems most likely that the closest zeros s,' do, in
fact, also determine the nearest singularities z,
in the z plane. These singularities, in turn, de-
termine the radius of convergence of the expansion
for f(z). Accepting this, the expansion coefficients
for K, (d) vary as

iK. i
=»z!(2/p) k. , (2. 20)

as n~-~, where p=1.62006 and IA I

' -1. From
this explicit estimate it is again clear that the se-
ries for K, (d) can only be asymptotic.

From the expression (2. 12) one concludes that
one may reasonably truncate the expansion in pow-
ers of 1/d at that term, l = l, for which the maxi-
mum of the integrand z'e ' lies within the radius
of convergence of the f(z) expansion. This yields
the prescription

where ys =0.577. . . is Euler's constant, Ei(x) is
the exponential integral, K(k) is the complete el-
liptic integral, and 8(x) is the unit step function.

III. GENERAL n-VECTOR MODEL

We consider now the general n-vector spin mod-
el with nearest-neighbor interactions, as described
by the Ha.miltonian

3C= —I s; ~ s; —g p. &H s; . (3. I)

As mentioned, the spin vectors s; have n compo-
nents and are of fixed length I s I

=n" . The re-
duced zero-field susceptibility above T,(zz, d) is
given by

Xo =Xrks T/g ps=n 2. (so ~ sz) . (3. 2)

In order to find the critical temperature we fol-
low Fisher and Gaunt' by calculating the high-tem-
perature expansion

yo =1+ Q azK', K=X/ks T .
E=1

(3.3)

If the coefficients az(n, d) are all positive, the radi-
us of convergence, and hence the critical tempera-
ture, is given by

InK, (n, zf) = —lim sup l '
Imz z(zz, d) .

$~ ao

(3.4)

We aim to calculate the az(zz, d) to leading order in
d for all l.

A systematic graphical method for calculating
the susceptibility coefficients az(zz, zf) has been de-
veloped by Stanley and Kaplan. ' Following Ref.
12c we may write

zz, (zz, d) = 2 Q (G'„.Z, )A(zz; G', ), (3. 5)
c2

where the sum runs over multigraphs" G, of l
lines or edges (counting multiedges with appropri-
ate multiplicity) which (i) are connected, (ii) have
precisely two vertices of odd degree (as indicated
by the superscript 2), and (iii) the graphs Gzz'

formed by joining the two odd points by an addition-
al (wavy) line are stars; i.e. , they have no articu-
lation points (or cut vertices). " The symbol
(G; Z, ) denotes the weak lattice constant per site'
of the graph G in the hypercubical lattice Z, of di-
mensionality d. The graphical weights A(zz; G, )
satisfy the recurrence relations

He(s ])

1.27960
1.61872
1.81887
1.96146
2. 07231

Im(s &)

+ 2. 98038
+ 6. 17515
+ 9.34196

~ 12.49851
+ 15.65010

ge(z;)

1.52405
1.85140
2. 04831
2. 18954
2. 29968

Im(z ))

+ 0. 54943
+ 0. 63872
+ 0. 67651
+ 0. 69787
+ 0. 71176

A(zz; G, ) = N (zz; G, ) —Q'If(zz; G, ,)A(zz; G„,),
G2

(3.8)

where the sum runs over all proper subgraphs G„
of G~& which fulfill the same conditions as G,. Then
G, , denotes the complementary subgraph of l —k
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lines (and no odd vertices} such that G, , UG, =G, .
Note that G, ~ may contain articulation points and,
in general, is not even connected. The basic
graphical weights N and M are defined by

&(G,' ) =1 —(/ —3)o —(2/ —13)cr ~

, (-,'l ~&+107)o '

+(2/ —83/+895)(r '+O((r 6) . (3.10)

(3 7)

where ( ~ )0 denotes the noninteracting statistical
average (i.e. , taken at K=0 or 7'=~) normalized
so that (l)0 = 1. The vertices of G are labeled i,
j, . .. and the products run over adjacent pairs of
vertices (/j); the two odd vertices of G2 carry the
labels 0 and 1. The multiplicity of the edge (/j) is
denoted by n~;&.

Following Fisher and Gaunt we now select those
graphs of l lines which have lattice constants of
highest order in d, the dimensionality. According
to this criterion the graphs of largest diameter are
the most important. In leading order these are
just the l-step chains or self-avoiding walks C&

=G,", see Fig. 1ca), whose lattice constant c,(d)
=2(G,'";Z, ) on the hypercubical lattices is known'

to fifth order in 1/(r, where a = 2d —l. To leading
order one easily sees that c, (d)= (/a' . According-
ly we define the reduced lattice constants

(3.9)

where the significance of the tilde and correspond-
ing summation will be explained shortly; for
chains, both are to be ignored. From the ca,lcula-
tions of Fisher and Gaunt IRef. 1, Kq. (5.15)] we
thus obtain

[o] [b] [c] [d] le] 8] [g]

The next most important graphs are (/ —2)-step
chains with one triple bond G,"', see Fig. 1(b); the
lattice constant is clearly just c,~(d). Such graphs
did not arise in the Ising-model calculations since
repeated bonds or multiedges are not needed when
v = tanhK is used as expansion variable. It is shown
in the Appendix that the weights of such graphs are
independent of the position of the triple bond along
the chain of (/ —2) links. More generally this is
true for any distribution of bonds amongst the free
"tails" of a graph. Thus we may class all such
graphs together under one generic graph G,"' and
take the sum in (3.9) over the particular graphs
which are members of the same generic class. In
the present case this simply means multiplying the
single lattice constant by (/ —2) to account for the
different possible positions of the triple bond. Thus
we obtain

& (Gr ) = (/ —2)o —(/ —7/+ 10)cr 4

—(2/ —21/+ 34)(r 5+ O((r 6) . (3.11)

The class of graphs of next significance, G,"',
consists of a square with a double bond and two
tails, see Fig. 1(c). These tails must intersect
neither themselves, each other, nor the square.
Let the lengths of the tails be k and k', with k, k'
~4. The first step of each tail (starting at the
square) can point in o —1 possible directions. In
leading order the number of possible tails is hence
((r —1) o", but this overcounts by allowing the
following possibilities: (i) each tail forms a square
loop with the original square, giving 2(2(r —4)
x((r —l}o '" =4o '; (ii) the two tails together
form a square loop with the original square, giving
2(a —2)cr'" '=2o ' '; (iii) one or the other tail
contains a square loop giving -(/r —3+ 0' —3)o" '.
To relative order o these are all the possibilities.
Collecting them together gives

(r
' [I —2(r i —(/'r + k' —l)(r ~+ O(cr )j,

Ej]

fs]

where k+0'=l —5. This is to be multiplied by the
number of ways of choosing k and k' with k, k' ~ 4,
namely, k+ k' —7 = I —12. Similar considerations
can be applied when one or the other tail has a
length 1, 2, or 3. The final result, which also in-
cludes the lattice constant of the original square,
is then

FIG. 1. Generic graphs 6't' needed to calculate the
susceptibility expansion coefficients to relative order
1./d5. 'The graphs gr) and g) also include the cases where
the triple bond shares a vertex with the double bond,
since, as in the case of (f) and (g), the weights are the
same.

X (Gr' ) = (/ —4)o' —3/0 —(/ —12/)o, (3. 12)

where terms of order l in the coefficients of o.

and o ' have been neglected, since they cannot con-
tribute to the final expression for E,(d) to order
I/a '.



10 CRITICAL TEMPERATURES OF HYPERCUBIC n- VECTOR MODELS 4701

qK, (n, d) = (q/a) exp —lim sup l ' ln Z It(G)A(n, G)
f m att

G

By considering 1/a as a small parameter one may
expand the logarithm. In this process all explicit
dependence on l cancels and one may formally take
the limit l- ~. This step is only formal since the
expansion, as such, is valid only for I/aa « I.

TABLE II. Hednced lattice constants X(GttI} and cor
responding graphical weights A(n, G ) needed to calculate
the susceptibility coefficients a&(n, d) to relative order
o 5. Graphs labeled [t] are shown in Fig. l.

[d]
[e]
N+ [I]
[h]
[&]

[i]
[0] + [l]

[m]
[n]
[o]
[g]

7]

p]

[s]

y(alt ))

to-4 —3ta-'
tC

-4

—,'(t' - 9t)~'
4tcr —23la '

-5

la-'
(t. —1Ot)a-'

lo-'
4lo-'
to.-'
2lo ~

"I& v

&5

.—ta-'
o

A(n' GCe&)

—(5n+ 4)n/(n+ 2)'
2n'/(n+ 2) (n+ 4)
n'/(n+2)'
—3n/(n+ 2)
—6n/(n+2)
—(7n +12n+ 8)n/(n+2)
3n'/(n+ 2)'

10n'/(n+ 2) (n + 4)
—(5 +4) /( -»'
—6n/(n+ 2)
—2(5n+4)n/(n+ 2)
—3n/(n+ 2)
—6n/(n+2)
—6n/(n+2)

The calculations of the other lattice constants
needed to orders I/o' and I is somewhat simpler
since they are all of order I/a4 or higher, so that
only I/o corrections are needed. The required
graphs are shown in Fig. 1 and the results are
summarized in Table IL

Table II also lists the corresponding class
weights A(n; G); these data must be supplemented
by

A(n; G,"') = 1,
A(n; G,"')= —n/(n+2),

A(n; G,"')= —Sn/(n +2). .
The calculation of these weights is straightforward
if performed with the aid of the Funk-Hencke theo-
rem. " The crucial steps are sketched in the Ap-
pendix. It can be seen from (3.13), from Table II,
and, more generally, from the Appendix that the
weight A(n; G) for every class of graphs except the
self-avoiding chain G&" = C, is proportional to n and
hence vanishes when n =0. This represents an al-
ternative derivation of the Bowers-McKerrell re-
sult' referred to in the Introduction.

On combining (S.9) and (3.5) in (3.4) we obtain
finally

Thus one must not be surprised if the final expan-
sion is only asymptotic. Lastly we may replace
1/a by q (1 —q t) and expand the exponential to
obtain

= —' =1+q +q 2+ +q 6+

n 136 80 12
q

' 157 ~
2

198 — ~ ~ . ),)n+2 n+2 n+4 (n+2

+0(q s} .

On taking the reciprocal this yields the result al-
ready quoted in (1.1).

IV. DISCUSSION

As observed in the Introduction, the results (1.1)
and (S.15) reduce to the previous Ising-model ex-
pressions' for n=1 and to those for the self-avoid-
ing-walk or excluded-volume problem for n = 0. '4

In the limit' n- ~ the exact spherical model expan-
sion (2. 15) is recaptured to order I/q'. It is also
evident, from the fact that n dependence enters
only in the I/q and higher-order terms, that the
critical temperatures for large q =2d are less sen-
sitive to n than in lower dimensionalities. As n
——2 or —4 (and, presumably, —6, -8, . . . ) the
coefficients of the 1/q expansion diverge. It is in-
teresting that these values of n are also just those
at which pure Gaussian behavior is expected, at
least for continuous-spin systems. '

In Fig. 2 the critical temperatures T,(n, d) pre-
dicted by (l. 1), with truncation after lc terms, are
plotted vs n/(n+2) for various values of d (solid
and dashed lines, which are almost straight in this
representation}. The circled dots indicate the ex-
act critical temperatures ' or best series esti-
mates, based on series expansions' '; the dotted
lines serve to show the trend of these precise data
but have no other significance. When the criterion
I, =l', following from (2. 21), is used, the results
improve with decreasing n. Improvement with in-
creasing d is, of course, to be expected.

It is interesting that the 1jd' series do not always
yield the best numerical values when truncated at
the sn~allest term. For example, the exact spher-
ical model result for d=4 is T,(~, 4)/T, =0. 806&0.
Truncation at fifth order, following (2. 21), yields
T,/ Ts = 0. 81497. The best value is obtained by in-
cluding the sixth-order term, giving T,/T,
=0.80925, but truncation after the smallest term,
which is the eleventh, gives T,/T, =0. 78941. Ev-
idently the criterion (2. 21) is fairly reliable al-
though inclusion of a following term or two may
improve the accuracy.
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Thus integration over s;
) introducesin the other neighbor

th
th s =s;, being e

dh....„duces the lengt
h' lt ' t ll ' tone. This resuQ

bt db P lof a lemma o aidifferent form o
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Stan]ey and. justifies the grouping of graphs into
classes used in Sec. III.

The P weights of the remaining chain-free dia-
grams may be calculated in a similar way by
choosing parts of the integrands as surface har-
monics. For the weights shown in Table II .&e

needs the values k =0, 1, and 2 and l =0, 1, 2, and

2 in (A4). Finally note that one always has m = k
+2l~ l, so that it follows from (A4) that XP(n)-0
as n-0 unless m =k=1. This is sufficient to show,
in agreement with Bowers and McKerrell, that the
only graphs contributing to the susceptibility ez-
pansion when n-0 are the self-avoiding chains
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Thus with the exception of P(n, P&) = n, where P& denotes
a self-avoiding ring or polygon, all the p(n, G ) of {Al)
are of order n or higher as n-0. Hence by (3.7} and

(3.8) the weights I and N are at least of order n for gll
graphs except the chain for which N(n, C&) = 1. The result
then follows from (3.6).


