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A modification of the ac calorimetric technique has been used to test the proportionality of the
specific heat and temperature derivative of the basal-plane resistivity of gadolinium through the Curie
point. Because of a large temperature-dependent background to the resistivity derivative, a direct
comparison of the critical contributions to the two quantities was impossible. It was found, however,
that the background was insensitive to applied magnetic fields so that a direct comparison of the
deviation of the specific heat at a finite field from its zero-field value with the similar deviation of the
resistivity derivative demonstrated the proportionality of the two quantities. In applied fields below 585
Oe, a “kink point” was observed in the specific heat below 7. which moved to lower temperatures
with increasing fields. Such an effect has been predicted to occur at fields and temperatures for which
the internal magnetic field vanishes. The specific heat in several fields above 585 Oe was compared
with the predictions of scaling laws and with the linear approximation to the parametric equation of
state. Reasonable agreement between the data and the specific-heat scaling function predicted by the
linear model could only be obtained by using an unrealistic value of the critical exponent describing the

zero-field specific heat.

I. INTRODUCTION

It is generally agreed that the magnetic contri-
butions to the temperature derivative of the elec-
trical resistivity and the specific heat of a ferro-
magnet should be proportional near the Curie
point, since the temperature dependence of both
quantities is dominated by the short-range part
of the spin-correlation function, !** This prediction,
commonly referred to as the Fisher-Langer the-
ory,! has been quantitatively verified in nickel®
and iron,* quasi-itinerant ferromagnets, and in
B-brass,’® an order-disorder alloy system. How-
ever, a well-localized ferromagnet, on which the
theory was originally based, has not yet been ex-
amined in detail. For this reason the rare-earth
ferromagnet gadolinium was chosen for this in-
vestigation.

The specific heat®=® and electrical resistivity
of gadolinium have been previously studied through
the Curie transition (~18 °C). Because of its hex-
agonal crystal structure, the resistivity of gadolin-
ium as well as other transport properties is aniso-
tropic, requiring that measurements be made on
single crystals if meaningful results are to be ob-
tained. Two measurements are necessary to
completely characterize the resistivity in this sys-
tem, one along the hexagonal axis (c axis) and one
in the basal plane.

The c-axis resistivity of gadolinium has been
investigated in detail by Zumsteg.!? He attributes
a peak in the c-axis resistivity at 7 to the effect
of an anomalous lattice contraction in the c direc-
tion. When this effect is taken into account, the
resistivity that remains is qualitatively of the form
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that one would expect from the Fisher-Langer
theory of spin-disorder scattering.! Zumsteg also
concludes that his measurement of the a-axis re-
sistivity is qualitatively of the Fisher-Langer
form, with no observable thermal expansion con-
tribution. It was therefore decided to focus the
effort of the present experiment on the basal-plane
resistivity of gadolinium, seeking a quantitative
verification of the Fisher-Langer theory.

II. ac CALORIMETRY

Specific-heat measurements through a phase
transition are conveniently made using ac calo-
rimetry.!! In this method a sample is heated by
mechanically chopped light to induce a periodic
temperature variation. The operating frequency
w is chosen such that the sample-bath thermal-
relaxation time 7, > w™, while the sample’s in-
ternal thermal-relaxation time 7,<< w™. When
these conditions are satisfied, the amplitude of
the temperature oscillations is inversely pro-
portional to the specific heat of the sample.

A useful feature of ac calorimetry is that it
lends itself to the simultaneous measurement of
other physical properties. Since we intend to com-
pare the temperature derivative of the resistivity
with the specific heat, we have extended the ac
calorimetric method to resistance measurements. °
Current and voltage leads are attached to the spe-
cific-heat sample and a constant direct current 7
is passed through it. Voltage oscillations are in-
duced across the sample by its temperature os-
cillations. These quantities are related by the
Taylor series
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If the temperature oscillations are given by AT (#)
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frequency component of the voltage oscillations is
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with only odd powers of sin(w?) giving contribu-
tions at the fundamental frequency. A similar
equation is used in magnetic resonance where
field modulation is used to deduce the field deriva-
tive of the resonance line.'? The temperature
derivative of the resistivity a,, independent of
sample dimensions, can be calculated from the
expression
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where Vy=IR, and R, and p, are the room-tem-
perature resistance and resistivity, respectively,
provided that
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It is therefore advantageous to have small values
of T, where the resistivity derivative is changing
rapidly with temperature, as occurs near phase
transitions. Fortunately, this adjustment is ac-
complished automatically, since the increasing
specific heat near a phase transition will reduce
T... The temperature resolution of the resistivity
derivative will ultimately be limited by the size of
Ta, which is typically 10-20 mK.

III. EXPERIMENT

The single-crystal samples of gadolinium on
which the measurements were made were taken
from the source used by Lewis to measure the
specific heat near the Curie point.® From mass-
spectrographic analysis the samples were esti-
mated to have 0.1-at.% rare-earth impurities
and 0. 5-at. % other impurities. Rectangular pieces
were prepared by spark cutting and then thinned
by mechanical polishing. Sample A, on which the
data presented here were taken, had rectangular
dimensions 6.9 1.7 mm?® and thickness 0.15 mm,
with the longer side of the rectangle parallel to
the a axis and the shorter side parallel to the ¢
axis. The orientation of the axes was determined
by Laue x-ray photography and is estimated to be
accurate to about 3°.

Preliminary specific-heat measurements through
the Curie point on both polycrystalline and single-
crystal samples showed severe rounding of the
transition over a range of about 4 °C. Since it has

10 SPECIFIC HEAT AND RESISTIVITY OF GADOLINIUM NEAR ... 4681

been demonstrated in the case of nickel that lat-
tice strains are an important cause of rounding, !*
the gadolinium samples were subjected to an an-
nealing process. Optimum results were obtained
when a sample was annealed between two tantalum
sheets at a temperature of 850°C for 24 hin a
vacuum of 5x 10® Torr. The Ta sheets were re-
quired to minimize oxidation of the surface of the
sample. At temperatures above 850 °C the sample
tended to adhere to the sheets. With the above
annealing procedure the rounding of the Curie
transition was reduced to about 0.1 °C.

After annealing a sample, tantalum current and
voltage leads were spot welded to it such that the
direction of current flow was parallel to the lon-
ger dimension of the rectangle. The amplitude
of the temperature oscillations was measured
with a chromel-alumel thermocouple made by
spot welding together the ends of 25-um-diam
chromel and alumel wires and then attaching the
junction to the back face of the sample with diluted
GE 7031 varnish.

The sample was mounted in the holder shown in
Fig. 1, with each lead connected to a copper seg-
ment by a screw and washer. The top face of the
sample was blackened with Aquadag. A small
factory-calibrated platinum resistance thermom-
eter (Rosemount Model 118F) was thermally potted
within the copper cylinder beneath the sample.
The window cap provided a vacuum seal by crush-
ing a copper washer between two stainless-steel
knife edges. Thermal conductance between the
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FIG. 1. Detail of sample holder for gadolinium.
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FIG. 2. Experimental schematic,

sample and holder was provided by 0.5 atm of
helium gas. The sample holder could be heated
or cooled by adjusting exchange gas pressure or
current to a heater wound as shown in Fig. 1.

A typical heating rate was 0.5°C/min. Near

Tc, the rate was reduced to 0.25°C/min. Even
at these rates, which would be high for conven-
tional calorimetry, the thin samples remained in
internal thermal equilibrium and the measure-
ments were averaged over several hundred periods
of temperature oscillations in the time required
to pass through the rounded portion of the peak
at T¢.

The electronics used in this experiment are
indicated in Fig. 2. The liquid-nitrogen Dewar
which housed the sample holder was located in
the fringe field of an electromagnet. The sample
was mounted so that the direction of the external
magnetic field was parallel to the plane of the

sample in order to minimize demagnetizing effects.

The field at the sample was measured by position-
ing a gaussmeter probe at the sample site.

The temperature of the sample holder was mea-
sured with the resistance thermometer. The dc
temperature of the sample was about 5 °C above
that of the sample holder owing to heating from
the current and the light. This temperature dif-
ference, which varied monotonically by less than
1°C over the range of sample temperatures, was
determined at the beginning and end of a run by
measuring the dc component of the AT thermo-

Nigh et al. (Ref. 9).

couple signal with a microvoltmeter. The linearly
interpolated temperature rise was added to the
sample-holder temperature to calculate the tem-
perature of the sample with an estimated absolute
accuracy of 0.1°C.

To determine the correct operating frequency,
7, and T, were estimated for the gadolinium sam-
ples to be about 1 sec and 107 sec, respectively,
at room temperature. A frequency of 11 Hz was
chosen and was found to be in the center of the
frequency range in which 7, < w™, which is a
necessary condition of the ac calorimetric method.

IV. RESULTS

Initially, a dc resistance measurement was
made on sample A to compare it with the previous
results of Nigh, Legvold, and Spedding® and Zum-
steg.!® This comparison is shown in Fig. 3,
where the resistivity is scaled to its value at 7.
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FIG. 4. Comparison of specific-heat measurement of
sample A with data of Zumsteg (Ref. 10) and Griffel et
al. (Ref. 6).



10 SPECIFIC HEAT AND RESISTIVITY OF GADOLINIUM NEAR ... 4683

The resistivity of sample A appears identical to
the previous basal-plane measurements, within
experimental error.

The specific heat of sample A is compared with
the measurements of Griffel, Skochdopole, and
Spedding® and Zumsteg!® in Fig. 4. The sample-
A data were normalized to those of Griffel ef al.
near 0 °C after an appropriate shift of temperature
scales was made to account for the difference in
transition temperatures. For Zumsteg’s data,
which were expressed in arbitrary units and con-
tained an unknown addendum contribution, a con-
stant was subtracted and a normalization factor
applied to fit his data at the two ends of the sam-
ple-A curve. The specific-heat data of Lewis,?
which also contained an unknown addendum contri-
bution, could not be made to coincide with the
other curves by following the same normalization
procedure. This same problem was encountered
when Robinson and Milstein!* compared their spe-
cific-heat measurements on Gd with those of
Lewis, casting doubt on the reliability of Lewis’s
data. Figure 4 indicates that the rounding of the
specific-heat anomaly of sample A is comparable
to that of Zumsteg’s sample (~0.1 °C) and signif-

icantly better than the rounding displayed by Lewis’s

best sample (~0.4 °C).
Figure 5 shows the a-axis resistivity derivative

ap over a wide temperature range, measured
with the ac technique. Peaks are observed at
both the Curie temperature of 18 °C and at a lower
temperature of —47°C, where a change of easy
magnetization axis occurs. A detailed study of
the resistivity derivative and specific heat at

this lower “tilting” transition has been reported
separately.!® We concentrate here on these same
properties at the Curie transition. The Curie
peak of oy in Fig. 5 is similar in shape to the
specific heat, as reported by Zumsteg.!® How-
ever, the strong temperature dependence of the
background prevents a direct comparison between
ar and C, as was done for B-brass® and iron.*
Rather than attempt to subtract this background
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FIG. 5. Resistivity derivative of gadolinium along the
a axis over a wide temperature range.

mole 'K ™)

(cal

FIG. 6. Specific heat of gadolinium near the Curie
point in a low range of applied fields. Vertical scale ap-
plies to upper curve, with other curves shifted down-
ward. Kinks are due to exclusion of the external field by
the demagnetizing field, as described in the text.

from the curve empirically, measurements were
made in applied magnetic fields in an attempt to
gain additional information on the nature of the
background in Fig. 5. Even if such an approach
proved unsuccessful, the measurements would
still give useful information on the field depen-
dence of o and C,.

Specific-heat measurements in small applied
fields exhibited unusual behavior, as shown in
Fig. 6. In fields between 165 and 585 Oe applied
along the hexagonal axis, the specific heat had
a distinct “kink point” below the zero-field transi-
tion temperature, which moved to lower tem-
peratures as the field was increased. Similar
behavior was observed in basal plane fields.

Such an effect has been predicted to occur
because of demagnetizing effects within the sam-
ple.'®!" For a material in which the external
field is parallel to the direction of uniform mag-
netization, the internal field can be written

H,=H,- DM, (5)

where D is the shape-dependent demagnetizing
factor. Griffiths!” has argued that singular be-
havior should occur in the specific heat at con-
stant external field C, at the temperature 7; de-
fined by M(T,) = H,/D, where M, is the tempera-
ture-dependent spontaneous magnetization. Be-
low Ty, the magnetization assumes a constant
value M= H,/D which makes the internal field
zero. Hence, in this temperature range C, is
identical to the specific heat in zero field C,.
Above T; two limiting types of behavior can occur.
In low fields C, will resemble the specific heat at
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constant magnetization C,. In the high-field limit
C, will look like the specific heat at constant in-
ternal field C4;. The detailed behavior depends on
the form chosen for the equation of state, but in
either limit C, will fall below C, for T2 7;. The
singular behavior at 7; will be most easily ob-
served in fields corresponding to a crossover be-
tween the two cases. Griffiths defines a charac-
teristic internal field H, such that the internal
field is half of the external field at 7= T.. Then
the low- and high-field limits correspond to H,

<« 2H, and H,> 2H,, respectively. H, can be cal-
culated for sample A using the formula of Griffiths

Hy = Hy(1/ BP0 (DMy/ 1,100 (6)

where H; =kg To/Myand the experimental param-
eters E=1.6 and 6=4.0, which characterize the
critical isotherm, are taken from Heller.!® The
demagnetizing factor D=0.67 is calculated by
approximating the sample as a flattened ellipsoid. !°
We find that 2H, =320 Oe, a value consistent

with the curves in Fig. 6. This is believed to be
the first experimental evidence of the “kink point”
in the specific heat.

The specific heat and resistivity derivative of
sample A in fields greater than 585 Oe are shown
in Figs. 7 and 8, respectively. No “kink points”
are observed, and it is assumed that these mea-
surements are in the high-field limit where field
penetration is nearly complete in the vicinity of
Te.

Figure 8 shows that the high-field behavior of
ap does not represent the background contribution
to ay in the absence of an external field, since the
high-field curves lie above the zero-field curve
for T>T;. Instead, the difference between ay
at a finite field and aj at zero field as a function
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FIG. 7. Specific heat of gadolinium through the Curie

point in several fields. Normalization of finite-field
curves has been chosen to give best agreement to the
zero-field curve far from the Curie point.
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FIG. 8. Temperature derivative of the a-axis resis-

tivity for the same fields as in Fig. 7.

of temperature appears similar to the correspond-
ing difference in the specific heat. This is not an
unusual occurrence in ferromagnets. Potter had
previously noted the similarity between the change
in resistance in applied fields (magnetoresistance)
and the change in magnetic energy (magnetocaloric
effect) as a function of temperature through the
Curie point in nickel and iron.%° We make the
same opservation here about the temperature
derivatives of these quantities in gadolinium.

The visual similarity between C,(H, T)- C,(0, T)
and ap(H, T)- ag(0, T) suggested a quantitative
comparison of the two differences. Such a compari-
son is shown in Fig. 9 for three fields, with tem-
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FIG. 9. Deviation of the specific heat in finite mag-
netic fields from that in zero field vs the similar devia-
tion of the resistivity derivative, Temperature is an im-
plicit variable, with temperatures far from T near the
origin, negative deviations mainly below T., and positive
deviations mainly above T.
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perature as an implicit variable. Most of the data
points far from T have been eliminated to avoid
crowding near the origin. The plot shows that
there is a direct proportionality between the spe-
cific-heat deviations and the resistivity-derivative
deviations for each field through the Curie point,
with the same proportionality constant in each
case.

The arguments which led to Fisher and Langer’s
conclusion that the magnetic resistivity derivative
and specific heat are proportional' should also
be valid in the presence of a magnetic field. These
arguments are based on considerations of mo-
mentum conservation and phase-space density,
so there is nothing in them unique to the region
where H=0. Therefore both ay and C, will con-
tinue to be determined by the short-range part of
the spin-correlation function, although the cor-
relation function will of course be altered by the
field. Taking differences between finite-field and
zero-field values of the quantities is merely a
convenient way of cancelling the nonmagnetic but
temperature -dependent background effects. We
therefore take the proportionality shown in Fig.

9 to be a verification, albeit indirect, that the
Fisher-Langer prediction holds for the g-axis
resistivity of gadolinium.

The behavior of the specific heat of gadolinium
in applied fields (Fig. 7) is similar to that of nick-
el.’® Since the nickel data were well described by
the linear-model approximation of the parametric
equation of state, ?! that same model was applied
to the gadolinium data.

The parametric equations are constructed in
such a way that they will inherently satisfy the
scaling-law relations.? In particular, they pre-
dict that the magnetic specific heat at constant
internal field H will scale like

(Cy= Co) R0 =g (t/n/™) , ("

where % is the reduced field MyH/ky Tc, tis the
reduced temperature (7- 7.)/Tc, o, B, and &

are the critical exponents of the specific heat,

the magnetization, and the critical isotherm, re-
spectively, and g(x) is a scaling function which
can be obtained in explicit form from the para-
metric equations.?' The specific-heat data of Fig.
7 are plotted in Fig. 10 according to Eq. (7). Also
shown in Fig. 10 is the function g calculated from
the parametric equations. The constants a=1.03
and 2=0.98 which are required for the calculation
of g were determined by Ho?! from the magnetiza-
tion measurements of gadolinium by Graham.? The
critical exponents @ =0.1 and 8 =0.4 were chosen
to give reasonable agreement between the experi-
mental data and the theoretical curve, with 6=3.75
determined from the scaling relation 2 - ¢ =(6+1).
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FIG. 10. Scaled plot of the specific heat of gadolinium
in three applied fields. Solid line is calculated from the
linearized parametric equation of state. Parameters o
and B have been chosen for best agreement between ex-
periment and theory.

The value of the magnetization exponent 8 is close
to a recent experimental determination of 0. 38,
but the value of the specific-heat exponent o does
not agree well with the findings of Lewis that
a=-0.1(T>T)and a’=-0.3 (T< T,).® Be-
cause of the breakdown of scaling indicated by
Lewis’s result that o # o', we have examined our
zero-field specific-heat data in a way which tests
the scaling hypothesis.?® We find our data con-
sistent with the assignment a=a'=-0.20+ 0.02.
However, when this value of the specific-heat ex-
ponent is used to compare the data with the predic-
tion of the parametric equations, the positive peak
in the data curvesof Fig. 10 becomes more than
eight times larger than the peak in the theoretical
curve. The experimental curves for different
fields do coincide better when a =- 0. 20, indicat-
ing that a single scaling function can be applied
to the data, but the amplitude of the function does
not agree with the prediction of the linear model.
Similar difficulties were encountered in attempt-
ing to fit the data to the Heisenberg specific-heat
scaling function of Krasnow and Stanley.?® At
present we can find no explanation for the poor
agreement between these theories and the data
when the experimentally determined critical ex-
ponents are used.

V. CONCLUSION

This magnetic field study was undertaken to
circumvent the temperature dependence of the
background in the basal-plane resistivity derivative
shown in Fig. 5. We have reached no conclusions
on the origin of this background, but find it similar
to the behavior of the basal-plane resistivity de-
rivative of dysprosium near its Néel point.?” This
suggests a common feature of the basal-plane re-
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sistivity of the heavy rare earths which remains
to be investigated.

The primary result of this study, illustrated
in Fig. 9, is that a direct proportionality exists
between the critical contributions to the specific
heat and basal-plane resistivity derivative of
gadolinium. The generality of the Fisher-Langer
model has thus been strengthened by showing this

S. SIMONS AND M. B.

SALAMON 10

proportionality to hold over a wide temperature
range for yet another system, the ferromagnet
with highly localized magnetic moments.
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