
PHYSICAL REVIEW 8 VOLUM E 10, NUMBER 11

Peierls instability in Heisenberg chains
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Dimerization phase transitions for S = 1/2 linear antiferromagnetic chains is investigated by analogy

with Peirels transitions in linear conducting chains. This analogy is very close when the fermion

representation is used to describe the spin system, and the fermion interactions are treated in the

Hartree-Fock approximation. Since the Fermi wave vector can be varied continuously by a magnetic

field, the linear antiferromagnetic chain may be a convenient system for studying questions concerning,

the commensurability of the Fermi wave vector with the underlying lattice which have arisen in

connection with the conventional Peierls transition.

I. INTRODUCTION

We consider a lattice of S =-. linear antiferro-
magnetic chains with magnetic interactions only

along the chains, interacting with three-dimension-
al phonons. To describe the spin system we use
the pseudofermion representation' in which, es-
sentially, a site with spin-down is said to have a
pseudofermion and a site with spin-up is said to be
empty. The Hamiltonian obtained in this way is
similar to that used to describe Peierls transitions
due to the electron-phonon interaction in linear
chain conducting systems. ' It differs by the
presence of a pseudofermion interaction term
which in addition is of the same strength, J, as the
one pseudo fermion term. Howe ve r, if the latter
interaction is treated in the Hartree-Fock approx-
irnation the reduced Hamiltonian becomes formally
identical to that used to describe the conventional
Peierls transition.

In this paper, the pseudo-fermion-phonon inter-
action will be treated in the random-phase approx-
imation (RPA) only. The RPA, which is a mean-
field theory, neglects the effects of fluctuations and

this, as is mell known, is a poor approximation for
pseudo-one-dimensional systems. For a strictly
one-dimensional system, there can be no phase
transition at a finite temperature because of the
fluctuations. The phonons, however, are three-
dimensional, and therefore a phase transition is
possible even when there is no direct interchain
fermion interactions. The transition temperature
is, however, generally much lomer than that pre-
dicted by RPA. ' For the conventional Peierls tran-
sition there exists a considerable amount of work
going beyond RPA much of which can be used in the
discussion of the spin-Peierls transition-

That a one-dimensional system can undergo a
phase transition when coupled to three-dimension-
al phonons has been shown rigorously' for a model
similar to the one considered here, except that the
Heisenberg interaction was replaced by an Ising in-

teraction. In the latter case, all the properties of
the phase transition can be expressed exactly in
terms of a three-di, »~ensiona/ pseudo-spin Ising
model.

One of the most interesting aspects of the
Peierls transition is the prediction of new collec-
tive modes which are particularly interesting when
the Fermi wave vector is incommensurate with the
underlying lattice. While in the usual Peierls
transition the Fermi wave vector is determined by
the electron density, which is fixed, in the spin
case, the Fermi wave vector can be varied contin-
uously by a magnetic field. The antiferromagnetic
linear chain may therefore provide a means by
which the role of commensurability in the Peierls
transition may be examined very directly. In the
absence of a magnetic field, the fermion band is
half-filled. ' With increasing field the Fermi level
is lomered until for fields larger than a critical
field H„gp, ~H, =2J, the fermion band is empty,
corresponding to a ferromagnetic ground state, in
which case no Peierls transition can take place.

It should be emphasized that in addition to treat-
ing the fermion-phonon interaction in RPA, the fer-
rnion-fe rmion inte raetion is treated in the Hartree-
Fock approximation. For the conventional Peierls
transition, the Coulomb interactions can be ne-
glected, at least as a first approximation. This is
not possible in the spin case. The fermion inter-
action is of the same strength, ,f, as the quadratic
fermion term. Neglecting the interaction term
changes the symmetry of the problem from the
Heisenberg model to an XY model.

It is difficult to assess the validity of the Har-
tree-Fock approximation. All the results pre-
sented belom are therefore tentative. A further
discussion of the Hartree-Fock approximation is
given in Sec. IV.

II. HAMILTONIAN

The exchange interaction along the magnetic
chains will be written
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3C = Q J(L, l + 1) (S, ~ S(,, —«)

where l labels the unit cells. %e assume for sim-
plicity that there is only a single magnetic ion per
unit cell. Only nearest-neighbor interactions will
be considered. Ne assume that the exchange in-
tegral depends on the instantaneous positions of the
magnetic ions and expands in. terms of thedisplace-
ments u(l) of the magnetic ions,

J(f, l+1) =J+g [u(l) —u(L+1)] ~ V, J(l, l +1) . (2)

P) —(- 2} S~ S~ ~ ~ ~ Sg q S, ,

defined such that,

In terms of these operators

S l Sl+g tl 4l+&

where

(4)

where e(&q) is the polarization vector and rn the
mass of the magnetic ion. The spin system will be
described by the fermion operators'2

The lattice displacement operators u(L) are ex-
panded in terms of the phonon normal mode coor-
dinates in the usual way:

and

S'=S„+iS

P2X
(3) Making use of Eqs. (1)-(4), the Hamiltonian may

be written

&+a'~a" +f "'
„(k' k")q„p», g„„q~„+Q,g, (kq)) Q(X%) gap~-«

kq)t

g2(k' —k 'q&) Q(%)4]4 &a"'-'a" (8)

mhere

~, = J(coska —1), v„=Jcoskn,

g, (kq~}=-,'g(~q)(1-e *
) [(e*"-1)

+e'"(e '"—1)]

g2(kqX) = g(&q} e'"'(1 —e '"), (s)

where

E~ = p J coskn, g(Xqk) = 2ig(Xq)p sinka

with p determined by the self-consistency condition

e(Xq)
g(Xq) = ), q2 ~ V, J(l, l + 1),

(miV
P = 1 —2 g n, coska, (14)

and a is the lattice constant along the chain. In the
above equations, three-dimensional vectors are
boldface and wave vectors along the chain lightface.
The first two terms describe the rigid Heisenberg
model expressed in terms of fermion operators,
while the next two terms describe the coupling to
the phonons. To this we add the Hamiltonian de-
scribing noninteracting harmonic phonons,

x,„=-gp(~q) p(q, —q)+- P~'(~)q(~q)g(&, -q),
(10)

where

[q(xq), P(z'q')] =is~, 5;;, .

The fermion-fermion interactions mill be treated in
the Hartree-Fock approximation. '" The Hamil-
tonian Eq. (8) for the uniform chain is then approx-
imated by

where

n, =(g', q~„) =1/(e'~" +1) .

The Hartree-Fock Hamiltonian equation (12} is of
the same form as that used to describe the conven-
tional Peierls transition in a gas of electrons de-
scribed in the tight-binding approximation. Fur-
thermore, in the absence of a magnetic field the
fermion band is half-filled. This follows from Eq.
(7) and the fact that (S') = 0 for independent linear
chains. Treating the fermion-phonon interaction
in RPA, we obtain for the renormalized phonon in
the undistorted lattice the dispersion curve

g(k —q, qX)n„- g+(kqX)n, ,
~ —&~-q+ ~a

(16)
The stability limit for the uniform phase is deter-
mined by setting q = 2k&, ~ = 0 in the expression for
the lomest-lying renormalized phonon mode,
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(17}
In the limit, kT «p J, the expression for the tran-
sition temperature is of the BCS form

uT, =1.14PJe"'

where

~=4aV~'o/~o, @=a(%, e=2f&) ~

(18)

and Xo =1/'P Jm is the density of states at k& for the
fermion band. %'e note that PJ here plays the role
of c& in the conventional Peierls transition. The
effect of the fermion-fermion interaction is con-
tained in the parameter P. It is interesting to note
that for T, given by Eq. (18) dTgdP & 0 if P & a
where o = 2g'/&o,'vJ, while dT,/dP & 0 if P & o..

An approximate description of the low-tempera-
ture phase has been given by Beni' using
Bulaevskii's solution of the alternating Heisen-
berg chain with

Jj,p
= J(1+5) . (20)

If in Eq. (8) the phonon normal-mode coordinate is
replaced by its thermal average

q(~) =(q»„„,,
then

& = (2g/~}(Q) .

(21)

(22)

In Bulaevskii's approximation for the alternating
Heisenberg chain the fermion interaction terms are
treated in a non-self-consistent Hartree-Fock-like
approximation. The ground-state energy is given
by12g 13

1 2 2 1—Eo/J = + E(5) +~- —
m 1 —5

&& IE (5) + O'K'((j) —25'K(5}E((j}], (23)

where E and K are the complete e11iptic integrals of
the first and second kind, respectively, of argu-
ment 6 = (1 —(l ) ~ . In the limit of small distor-
tions the gain in energy on distorting is proportion-
al to —(5 ln6) . This differs from the conventiona1.

Peirels transition where the leading term is 52 ln5.
The difference is due to the pseudofermion inter-
action terms. Because the cost in lattice energy
is proportional to ~, the dimerized chain will have
the lower energy. The transition temperature ob-
tained using Bulaevskii's solution with 5 given by

Eq. (22) is the same as that given by Eq. (17).
Thus, when the fe rmion inte ractions are treated in
the Hartree-Fock approximation and the fermion-
phonon interaction in RPA, a dimerization phase
transition is predicted.

Further mean-field results will not be given be-
cause of the important role of fluctuation in pseudo-
one-dimensional phase transitions.

III. FIELD DEPENDENCE OF SPIN PEIERLS

TRAN SITION S

The effect of a magnetic field is to shift the Fer-
mi level ~&, measured relative to the center of the

band from p, = 0 to '

&, =(2s-h) J,
where

h =gpsH/J,

and where

1 1~
PE

2 X

(24)

(25)

(26)

is the reduced magnetization. The Fermi factor is
now

n„=1/(e"EI 'f'+1) . (27)

The field lowers the Fermi level and the band is no

longer half-filled. The singularity in the fermion
susceptibility occurs at a wave vector which can be
varied continuously.

At T = 0 and for h ~ 2, the spins are ferromag-
ne tie ally aligned:

s=-,', p=1.
Thus n~ = 0 for all k and the band is empty. For
h=0, s =0, AD =I+2/w, c& =0 and the band is half-
filled as discussed above. For 0 ~ h & 2, "

2 2
h= 1+—costs sinms+2s, p =1+—costs . (28)r

Thus, for example, the band is one-third filled for
h-1. 1. For this field the chain may be expected
to trimerize rather than to dimerize. For h-1. 5
the band is one-quarter filled and so on. In the
presence of the field, there is a phase boundary
connecting the points h = 2, T = 0, and h = 0, T = T,
outside of which the chains remain uniform. The
nature of the distorted phase depends on the
strength of the field.

The shape of the phase boundary may be very
complicated. As discussed by Schrieffer, ' dis-
tortions incommensurate with the lattice are not
energetically stable and will lock their wavelength
so as to be commensurate with the lattice. Thus,
for example, in a weak field such that the band is
somewhat less than half-filled, umklapp processes
will lock the distortion at r/a. For a sufficiently
large wave vector the lattice distortion will jump
away from v/a to a value closer to 2kI subject to
being a rational fraction of w/a. The stronger the
Peierls instability, the larger the deviations of 2k&

from m/a, which will be tolerated while still main-
taining a distortion of wave vector m/&. RPA cal-
culations as well indicate that the instability re-
mains at v/a until the Fermi level reaches a cer-
tain minimum value. ' The phase boundary may
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FIG. 1. Pseudofermion band {solid curve) and hole
excitation energies {broken curve) for a half-filled band.

therefore be expected to consist of a series of dis-
continuous steps with the number of steps depend-
ing on the strength of the Peierls instability.

In the preceding discussion only the value of q
along the chain, q, has been considered with q,
left arbitrary. The instability will occur at that
point in the Brillouin zone for which g (Xq)/u (Aq)

has its largest value for fixed q. Thus, the form
of the phonon dispersion and the strength of the
coupling determine whether the transition occurs
at (w/a, 0, 0) or (w/a, w/a, w/a), say.

IV. DISCUSSION OF THE HARTREE-FOCK
APPROXIMATION

For the antiferromagnetic linear chain a number
of exact results have been derived. In this sec-
tion, these exact results will be compared with
those obtained in the Hartree-Fock approximation.

An exact expression for the low-lying spin-wave
excitations has been derived by des Cloizeaux and

Pearson. ' The connection between the pseudofer-
mion band as shown in Fig. 1 and the spin-wave
spectrum is readily established. The lowest-en-
ergy excitations for the pseudofermion system are
obtained by adding a particle in the empty part of
the band 0 & k & w/2a and 3w/2a & k & 2w/a or by re-
moving a particle (creating a hole) for w/2a & k
& 3w/2a. The latter process gives rise to the ex-
citation energies traced out by the broken curve in

Fig. l. In calculating the k values of these excita-
tions there is a shift in the origin in k space of &m

as shown in Fig. 2. ' The excitations are de-
scribed by the spin-wave spectrum~~

(29)

At T=O, /=1+2/w. This expression should be
compared with the exact T = 0 spin-wave excitation
spectrum derived by des Cloizeaux and Pearson,

(30)

The two coefficients 1+2/w and ~w differ by about
4%. This form of the spin-wave dispersion
curve has been verified by neutron scattering

experiments" on the linear antiferromagnet
CuClp . 2NC5D5.

In the Hartree-Fock approximation, the ground-
state energy is given by, '

—EQ/j= 0. 669 .
This differs by about 4% from the exact value de-
rived by Hulthen, '

—Eo/J+ln2-0. 693 .
Other approximations have been developed for the
uniform Heisenberg chain for which the ground-
state energy is closer to the exact value.
However, these predict a. gap in the spin-wave
spectrum in contradiction to the exact results of
des Cloizeaux and Pearson.

For a sufficiently strong magnetic field the
ground state for the linear chain antiferromagnetic
will be ferromagnetic. The T = 0 phase boundary
has been calculated exactly by Griffiths, ~~

gp~H, =2J.
This is identical with the result obtained in the
Hartree-Fock approximation as discussed above.

The presence of the magnetic field and the asso-
ciated lowering of the Fermi level have a dramatic
effect on the spin-wave spectrum. The pseudo-
fermion band is folded about the Fermi level as in
the H = 0 case. Two branches are obtained. The
shift in origin in k space depends on the position of
the Fermi level in such a way that the excitations
are always zero at + w/s (for k ~ 2). The resulting
spin-wave spectra for three different values of the
field are shown in Fig. 3. For H = 0 the exact spin-
wave spectrum and that calculated from the pseudo-
fermion Hamiltonian inHartree-Fock agree towithin
current experimental accuracy. " For H&0 no ex-
act calculation of the spin-wave spectra exists.
Thus, as a further check on the predictions of the
Hartree-Fock approximation it may be of interest
to measure the spin-wave spectrum as a function
of magnetic field.

For the uniform chain the Hartree-Fock approx-
imation gives quantitatively correct results to with-
in a few percent wherever comparisons with exact
results can be made. For the alternating chain

&IG. 2. Spin-wave spectrum for I2= 0.
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(b)

0 7r -7r 0 0 lT

FIG. 3. Field dependence of the spin-wave spectra of the uniform chain (a) for a third-filled band h -1.1, (b) a quar-
ter-filled hand h-1.5, and (c) an empty band 6=2.

very few exact results have been derived. In the
limit of complete alternation (isolated dimers)
5 =1, J, =2J, J~ =0, the ground-state energy is
given by

Eo/J=—l .
This limit is correctly reproduced by the Bulaev-
skii approximation. The ground state of the sin-
gle dimer is a singlet and the excited state form a
triplet. For Jz40, Jz&J (0&5&1), the interaction
between dimers gives rise to singlet-triplet exciton
bands. However, no exact calculations of these
dispersion curves are available. In the Bulaevskii
approximation when the chain dimerizes a gap de-
velops in the fermion band at k& and thus also in the
spin-wave spectrum. The unit cell is doubled and

singlet-triplet exciton bands are obtained as shown
in Fig. 4.

The exact magnetic ground-state energy of the
completely dimerized chain is lower than that of the
uniform chain. However, as discussed above, it is
the behavior of the energy for small ~ which deter-
mines whether or not a transition will occur. Nu-
merical calculations on finite chains (N=10) have

been carried out by Duffy and Barr, but the small
5 regime was not considered in detail.

It is clear that the Hartree-Fock approximation
for the uniform chain gives a good description of
the ground-state energy and the spin-wave excita-

tions. The important question which remains un-
answered is how well the Hartree-Fock wave func-
tions approximate the exact wave functions. The
latter are needed in order to calculate the effect of
a small lattice distortion on the uniform chain. An

exact calculation for the alternating chain is, how-

ever, difficult even for small 5. Further finite
chain calculations extrapolated to X- may help
determine whether the predictions of the Hartree-
Fock approximation are qualitatively correct (still
neglecting fluctuations).

The effect of the electron-electron interaction on

the conventional Peierls transition has recently
been considered for approximations going beyond
Hartree-Fock. ' These results are, however,
as yet tentative.

V. EXPERIMENTAL SYSTEMS

Two linear -chain Heisenberg antiferromagnets
have recently been studied by neutron scattering,
(CDB)~NMnC l~ (TMMC) and CuClz ~ 2NC, D,
(CPC). ' The former has S= & while for the latter

1 The spin-wave spectrum of CPC was found
to agree with the prediction of des Cloizeaux and

Pearson within experimental error. " No phase
transition has been reported for this material.
TMMC, on the other hand, undergoes a phase tran-
sition at 0.84'K. This is believed to be a mag-

(a) (b)

FIG. 4. (a) Pseudofer-
mion band of dimerized
chain for k=o, (b) corre-
sponding singlet-trip J.et
excitation bands. Note
again change of —7r in ori-
gin in k space.
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netic transition due to interchain magnetic dipolar
coupling. ' ' Because J plays the same role in the
spin-Peierls transition as e& in the conventional
Peierls transition, even the mean-field transition
temperature may be expected to be very low. Any
three-dimensional ordering temperature would be
further lowered due to fluctuations. Thus, only
where the interchain magnetic coupling is extreme-
ly weak might a spin-Peierls transition be expected
to occur before magnetic ordering sets in.

Transitions of the type discussed here may be
easier to observe in linear-chain organic systems.
These materials have typically very large values
of J, J- (300-4000'K. Consider for example a
system in which the electrons along the chain are
described by a Hubbard model,

K= —t .Q c; c,+ Ugn, , n(, , (31)

e„=—2t coska .

where c,, c~i are annihilation and creation operators
for electrons on site i, ni =c,. c, . t is the transition
integral and U the electron correlation energy of
two electrons on the same site. For the limit
U = 0, we have noninteracting electrons with the
dispersion

%hen the electrons are coupled to the lattice, a
Peierls transition is expected. In the limit t/U
«I, the leading term in an expansion of Eq. (31)
in powers of t/U has the form of a Heisenberg
model

where3~ Z=2t /U. In this case, the spin-Peierls
transition may be thought of as the localized ana-
log of the conventional Peierls transition. U in
fact a dimenization phase transition is predicted
for the Hubbard model in both limits t «U and
t » U, this suggests the interesting but admittedly
very speculative possibility that a dimerization
transition may occur for any relative value of t and
U in the Hubbard model when the coupling to the
lattice is included.

Although a number of materials exist which are
well described as singlet-triplet exciton systems
at low temperature, '~'4 there are, however, at
present no known examples of spin-Peierls tran-
sitions in organic solids.
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