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We consider a model for granular superconductors consisting of an array of small superconducting
particles interacting by Josephson coupling through insulating barriers. %'e obtain systematically the

various critical regions, critical temperature shifts, and crossover regions between zero- and

three-dimensional behavior as functions of measurable sample parameters. The qualitative behavior of
the system in the various regimes is analyzed and results for the specific heat and fluctuation

conductivity in the Gaussian region above T, are obtained. The possibility of obtaining large critical
regions is emphasized. The conditions for observing the phase-locking transition distinct from

quasiordering within the grains are found. Theoretical predictions are compared with existing

experimental results.

I. INTRODUCTION

The physics of small superconducting particles
has recently attracted considerable attention. The
behavior of isolated, so-called zero-dimensional
(O-D), particles is quite well understood theoret-
ically, at least insofar as their size is not in the
microscopic limit. ' The predictions for the
magnetic behavior have recently received a beauti-
ful experimental confirmation. However, our un-
derstanding of systems that are composed of small
and weakly coupled particles is of a rather pre-
liminary nature. The reason for the interest in
such systems is that by varying both the particle
size and the interparticle coupling one may span a
very wide range of physically interesting situations.
In particular, the crossover between 0-D and 3-D
(or 2-D for thin films) criticai behaviors may be
systematically studied. Recent theories' have
emphasized the dependence of the critical behavior
on the dimensionality of the system, and the im-
portance of understanding the crossover between
different dimensionalities. Furthermore, there
is evidence that the systems under consideration
can be realized experimentally with grain sizes
and inter-grain couplings kept under control.
One can therefore hope that theoretical predictions
may be directly checked by experiment.

The calculations that we present here are a. de-
velopment of two preliminary notes' '" where the
basic physical ideas and the relevant model were
presented. Here we emphasize the similarity of
our model, based on Landau-Ginzburg theory
for the grains and Josephson coupling 4 among
the grains, to modern general models for
critical behavior. In fact, the granular sys-

tems appear to be a physical discrete realiza-
tion of the field-theoretical. models used by
Wilson' and others, with widely varying ranges
of the parameters. In this paper we do not em-
phasize the critical behavior (e. g. the values of
critical indices), we focus our attention on ques-
tions like what are the magnitudes of the various
regions and shifts of the critical temperature due
to fluctuations, "' and what determines whether
the system is 0-D or 3-D. These questions will
be dealt with in Sec. II and III. It will turn out
that, from the theoretical point of view, the dis-
cussion presents a number of relevant cutoff prob-
lems, our answers for which can be checked ex-
perimentally. The most relevant result is per-
haps that we compute the critical region as a func-
tion of measurable quantities and show that one can
easily make it large enough to be experimentally
accessible for a superconducting system. We al-
so discuss the possibility of two distinct transi-
tions' and give well-defined criteria for its occur-
rence. In Sec. IV we calculate the specific heat
and the paraconductivity in the Gaussian regime
and discuss the 3-D to 0-D crossover. Section V
is devoted to a summary and to some concluding
remarks.

II. THE MODEL, CORRELATION LENGTHS, AND THE
VARIOUS TEMPERATURE REGIONS

Our model (see Fig. i) for the granular system
has the following'3 free energy a.s a function of the
order parameters of the grains, g, :
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FIG. 1. Model for granular systems: a lattice of
metallic spheres embedded in an insulating matrix.

where the last term, operating only between
nearest-neighbor grains, is a Josephson-type
coupling among the grains, "V, is the volume of
the ith grain, and g and b are the usual Landau-
Ginzburg coefficients characterizing the grain
material, including some T, renormalizations due
to surface effects, dielectric barriers, etc. but
no fluctuation effects, a= a(T —T,)/T, at with t-
the usual reduced temperature, a= N(0), the elec-
tronic density of states at the Fermi level, and
b=0. 106N(0)(ksT, ) '. For simplicity, we take the
grains to be equivalent, and to form a cubic lattice
of N lattice points with a lattice constant d so that
V, = V-ds and C, &

= C. We shall consider the case
where the lattice is 3-D; the 2-D case, relevant to
thin films of large grains, can be similarly dis-
cussed. We notice that the model (1) looks like a
discrete version of, e. g. , Wilson s field-theoretic
x-y (or n=2) like model,

Eg —— dx[a ~/(/)
~

+ b~l/J(g)
~

+ c ~v—y~ ], (2)

C/da for T & T
&(T)'=

—C/2da for T& TP .
(3)

with c-C/d.
As long as the Gaussian approximation holds,

one can calculate easily the order-parameter cor-
relation function (using a normal-mode transfor-
mation for the "harmonic" model'3). This yields
the familiar (kP+ $ P) ' form for the Fourier trans-
form of the correlation function, which is thus of
the Ornstein-Zernieke type and is characterized by
a correlation length $(T), where

Note that although this correlation length has the
same temperature dependence as the supercon-
ducting Ginzburg-Landau (GL) correlation length
4L(T) = )oL(0)t '~P, its magnitude is very different,
and itis typically much smaller than )oL(T). )o„(0)is
onthe order of the coherence length g, for clean ma-
terials, and ()pl) ~ for dirty (l «Q where l is the
electronic mean free path) materials. Here l re-
fers to the mean-free-path characteristic of the
material of a single grain. We shall assume
throughout this article that )o„(T)»d. This is the
condition for a separate grain to be zero-dimen-
sional (O-D), so that the order parameter is ap-
proximately uniform within each grain, as is as-
sumed in Eq. (1). The correlation length, Eq. (3),
can be shown to be of the same order of magnitude
as that found in Refs. 7, 10, and 14 from entirely
different considerations (which led, for ~ «1, to
$(0) -)pl, ff with l„,=dr, w is the transmission
coefficient of the barrier, C «7 ).

Let us now characterize the strength of the cou-
pling C in terms of the ratio between ((T =0) and
d by introducing the following terminology. We
shall refer to our system as being "strongly cou-
pled" or weakly coupled" according to whether
({Q)»d or $(0) «d which is equivalent to whether

C» ~a ~Vor C«~a ~V,

respectively. Furthermore, as long as $(T )» d,
the sample will be referred to as 3-D, while if
((T) «d, the grains are decoupled, and the system
will be referred to as 0-D. Clearly, a strongly
coupled system will be 3-D for any T & T, and for
a large temperature region above T,. A weakly
coupled system will become 3-9, in the Gaussian
approximation above T, [wherein I J I in (1) is
neglected], close enough to T„once (t) «t, where

t, =C/aV.

The estimate (5) will be valid, however, only if
t, » t~ where t, is the critical region~5'~6 inside
which the Gaussian approximation breaks down.

The size of the critical region, t~, depends
strongly on the physical range of the parameters
of the system. For the 0-D cases-s the Gaussian
approximation for a single grain breaks down in-
side the critical region t, where~ s

I N(0)k T,d

This defines a characteristic length dp —{1/
N(0)kTp)~tp where large grains (d»dp) will have

t~ «1 and in small grains (d & d„ t~p & 1) size effects
are so important as to completely smear out the
supercondueting transition for a single grain. do
is of the order of magnitude of 30 A for typical
metals (kz-2 A ~, TP-1 'K). For the 3-D case,
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the situation is more complicated. As long as
g(0)» d (strong coupling), we are allowedt''~ to
use the Ginzburg criterion, which yields, in 3-D:

kT b ' {kT k)aV
ge —2P (0)3 + C8

kT b kT bd
s= &ay(0)8 &1/2C3/2 rs (10)

This calculation does not apply in the weak-cou-
pling case. Since there 1/d «I/g(0), a reasonable
assumption is to repeat the above calculation using
1/d as a cutoff. This yields

kT~b k~T b 1
a $(0) d Ca Cks T,

For t«« t, «1, one can also arrive at the same
order of magnitude as the result {11)from a mo-
lecular field or from a. Bethe'~ type approximation
on (1), noticing that the single grain terms con-

For the weak-coupling case we are on much shakier
theoretical grounds. The Ginzburg criterion em-
ploys a I/g(T) cutoff on k-space summations.
This cutoff was justified~6 only for $(0)»d. For
weak coupling [$(0)'«d], a necessary condition for
the relevance of the I/f(T) cutoff is that $(T)»d
at t,. Making the physically plausible assumption
that this is the relevant condition for the validity
of (7), it is equivalent to the condition that at f,
the system is 3-D, or that

t, » t„or C'»kT, bV .
Note that (8) is also the condition for the validity
of the estimate (5) for f, . From (5), (7), and (8)
we find that the weak coupling range, where (8) is
valid is

(a V)a»Ca»kT, bV .

By (8), a range like this will exist only for large
grains (t~o«1). For small grains, kT, bV» (a V)a.

If they are strongly coupled, we can use the Ginz-
burg criterion (7) anyway, as discussed below. If
the small grains are weakly coupled, then the in-
equality f, » f, as well a.s our estimates (5) and

(7), do not hold. We shall return to this case
after the discussion of T, shifts.

It should be kept in mind that the above esti-
mates for the critical region t, are valid~" with

t being defined with respect to the true transition
temperature T, & To (renormalized by fluctuation
effects). We shall now estimate this T, shift,
t, = (To —T, )/T, .—According to Hohenberg~~~ ' it
appears that this may be estimated for g(0)»d,
by calculating the fluctuation ( I P(a) in the Gauss-
ian approximation and equating it to I at/5, where
a cutoff I/P(0) is employed for Z„(l g„l ). This
yields

strain g to be a temperature-dependent "spin" with
a coupling C. The inaccuracy of the molecular
field T, can only multiply (11)by an O(1) factor.
Thus, at least for t~ «f, «1 the result (11) is
valid. In the case 1&t,»t~ the situation is of a.

great interest since the system would appear to
show two transitions~~: a strict phase transition
at T„and a smeared quasitransition around T,',
whose width, however, is much less than T, —T, .
Thus the two transitions are quite distinct. The
condition t, » t is

C'«kT, bV, (12)

which we recognize as the opposite inequality to
the one in (8). One important consequence of the
above results is that for weakly coupled small
grains C «kT, bV and therefore t, » t,o. Now,
the small grains have t,o-l. This implies that
t, »1. It should be kept in mind however that all
the critical regions and shifts we are considering
are meaningful only insofar as they are smaller
than unity. Thus it would follow that in this case
the system would either not order at all, or order
at a temperature much lower than T, .
III. ENUMERATION OF THE VARIOUS REGIMES FOR A

GRANULAR SYSTEM

We would like now to obtain systematically the
various ratios among the parameters t,o, t, , t„
and t~3 in the weak-coupling case. In the strong-
coupling case the situation is simpler, and we
shall return to it later. Assuming Eq. {9)to be
valid, which justifies our estimates (5) and (7) for
the weak-coupling case and denoting

t, /f 0= n =(C /2bVkT, )
/

we find

(18a)

t=n ' =n' and ' =nt

tgQ tgo t~o
(Isb)

If Eq. (9) holds, it follows from it that t, /f 3»1
and n» 1, which implies t, » t~o» t, » t~~. This
means that the 0-D Gaussian system will become
3-D Gaussian at t, , then it will become 3-D criti-
cal at t~~. It will never become 0-D critical.

In the case o. «1 our expressions (5) for f, and

(7) for /, 3 do not hold. Then, for the interesting
case of large grains we expect the system to com-
plete its 0-D quasitransition before it makes the
3-D transition. For this to be valid we would also
like t, « t, so that the system will stay 0-D through-
out the 0-D critical region. We note that the only
relevant cutoff in k space is 1/d in this case, which
means t, =—t~3; and since t, « f.„,we shall also
have t, «t, . Also, in this case it will turn out for
the large-grain situation that the magnitude of t,
will be of interest. This can be estimated as fol-
lows. At T „which is just around the edge of the
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critical region, the correlation length is given both
by $(0)/t', i using the Gaussian expression, and by
Q/t, using the "critical" expression, s where v

is the critical index for the correlation length and

Q a constant with the dimension of length. This
determines that (g - $(0)t, 'is. Now at t, , f (T) -d,
which implies

I /~ ( 0 1/u PT y Nv 1)/av

R„~d R„R„4
s/3 d 3

tl/2 n for R «Rs g3 n f,

' (":)'":=":(:)"'
for Rn»Ra ~

(7')

(10')

where we used the strong-coupling expression (11)
for t,. Note that in this case t, ~C /" '. We em-
phasize that to get (13) we used the Gaussian ap-
proximation around T„ the justification for which
is less clear here than in the case 0, &1.

We shall now express our theoretical parameters
in terms of measurable quantities and give some
illustrative orders of magnitude. C is given in
terms of the junction normal resistance R„by
(R„' is also proportional to the transmission coef-
ficient of the barrier, r):

re
16e R„k~7,

10'
R„[a]k,T, (15)

109
vu'F

(15)

where we used a =N(0) for the first equality and a
free-electron picture for the second one. R,
ranges from -10 -10' Afar d- 30 A to -0, l.—1
0 for d-1000 A. The corresponding resistivity is
p, R, d, or p, [Qcm]-B/ds with B 1-10, wh-ere

d is measured in A. The second resistance value,
R» is the one for which t, - I~3 or a- 1; i.e. , for
R„&R3 the system becomes 3-D outside of the 3-D
critical region. Rs is given by C (Rs) =kT, bV;
using (15) we find

ps =—p~[3ks T, N(0)V]'is

p (d/d )s/s p /f (17)

where ds [cf. Eq. (5)] is the order of magnitude
of the length distinguishing between large and
small grains.

For convenience we express below the various
critical regions, etc. , in terms of the resistance
R„and the grain size d. Equations (5), (7), (10),
and (11) are respectively rewritten ignoring O(1)
numerical constants as

where R„[G]means R„measured in ohms. There
are two relevant orders of magnitude for R„. The
first, which we call R, , separates the weak-
from the strong-coupling regime and is given by
C(R, ) =aV, thus

1.5x10 3X104Er/ksTs
ksT, N(0)V Vkss

The parameter a [cf. Eq. (13a)] is simply given
by

a =R,/R„.
We can now completely characterize the qualita-

tive behavior of the various regimes of the gran-
ular systems as follows:

a. Large grains (d»ds-30 A), ps» p|. For
p„»p2. Two transitions; the shift given by Eq.
(11'). For pt «p„«ps. A single transition; f„
t, , and t, are given, respectively, by (11'), (5'),
and (7 ), with t, » tss» f~s. For p„«p, : Strong
coupling, 3-D system, t, given by (10'), t, s by
(7').

b Smal.l grains (d«ds-30 A}, ps«p, . For
p„»p, : Superconductivity either does not exist or
it exists only at very low temperatures (T,«T s).
For ps «p„«p, : Equations (5') and (7 ) are in-
applicable but Eq. (10 }holds for the T, shift.
For p„«ps. Equations (5 ), (7'), and (10') are
applicable, t, » t~.

The case d-do-30 A is also of interest. Here
p~

=pi and the region pa «p„«p& does not exist.
To analyze the case of small grains, we note

that for p„«ps we get for the shift from Eq. (10 )
that t, becomes of O(1) for p„-p, (ds/d) '. This is
on the order of 10 ~-10 3 0 cm for d- 20 A, in
qualitative agreement with the results of Ref. 8.
In the case where t, & 1, we predict a critical re-
gion proportional to R„, which is in a fair agree-
ment with the experimental results of Ref. 8.
Another result that follows from Eq. (7') is that
for d-30 A, tss will be of O(1) once p-ps, again
in a fair agreement with experiment. '

A further important order of magnitude for R„
occurs when it is low enough such that $(T) in the
3-D regime is of the same order of magnitude as
the coherence length of the clean superconducting
material. For this we need

C/d =N(0) $s

which yields, using (15),

mt 5 103

Se ksT, N(0)( e ke4 k„$s

t, Rz/R„, (5')
This is independent of d, and on the order of
magnitude of -10 Acm, similar to the resistivity
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of a simple normal metal with a mean free path
equal to g» (which is, roughly, - k/k3&, e3$,). In
such a way the "3-D" system approaches, when

ff„ is so low that (19) holds, the clean continuum
limit. Replacing $0 in Eq. 19 by JOE (where l is
the sample mean free path, assuming l «Eo) will
similarly yield the dirty continuum limit. A com-
plete discussion of these questions, which de-
pends both on intrinsic properties of the grain ma-
terial and on the properties of the barrier, is be-
yond the scope of this paper.

IV. THE SPECIFIC HEAT AND PARACONDUCTIVITY IN THE

GAUSSIAN APPROXIMATION

In this section we evaluate the specific heat and

paraconductivity in the Gaussian approximation
(or outside of the critical region) above T,. We
assume R «R~ so that the 0-D to 3-D crossover
occurs in the Gaussian regime. Here the quartic
terms in (1) can be neglected and what remains
is diagonalized by a normal-mode transformation
in the same way as for a harmonic lattice. De-
noting the normal modes by q~ and the eigenfre-
quencies by ~» (Ref. 13) (ur»=—aV+s k', s3=2Cd3
for k «z&/d), we find for the partition function
[with P=-(ksT) zj

Q= ( IIdq»e ~ " = J,g 3 z&3 && const. (20)

where ~c is on the order of the mean-field specif-
ic-heat jump a/2bT, .

(b} In the 0-D case ({T) «d and s k3 «a V over
the integration region, which leads to

c(T) = tzc{t~/t)', (24)

in agreement with the single-grain result. '
The two expressions (23) and (24) merge into each
other at t, , where ((T) =d.

Using the time-dependent Ginzburg-Landau
(TDGL) picture, z' which in 1-D, 2-D, and 3-D
gives similar results to the Aslamazov-Larkin~'
(AL) microscopic calculation, one can obtain the
paraconductivity outside the critical region above
Tc' This is given byao

z& = (2e)' Q (n, (k)) (25)

where (&z,(k)) is the average fluctuating superfluid
(pair) densitywith a wave vector k and r, (k) its relax-
ation time. (n, (k)) is proportional to ( l &l&» l )where the
normalization of our order parameter is such that it
has the dimension of' an energy gap while in order
that (l &l&» l ) represent pair superfluid density, the
field g has to be normalized such that the coeffi-
cient of I V&l&l is tf /4m Thi.s yields

From this, we can evaluate the specific heat per
unit volume

2m)(0) ksT 1
e'XV~ 1+k'g' (2&)

kz& g 2aV T (aV) T
2NV p (d„Tc ~a T c

(21)

(aV)
"

u dz&

4+s3(aV)1&2 {I+a2)2 (22)

where u=sk(aV) ~ . As might be expected, the
Gaussian specific heat behaves like t '~, as in
the continuum case. From (7) one also finds that
(22) can be written as

c(T) =—tzc(t, 3/t)z&3 . (23)

one is easily convinced that the important term
for the leading singularity in c(T) is the last one.
To compute c(T) we replace the sum by an integral
and use a Debye-type approximation'3 ~~ =a V

+s k with a cutoff, k ~-I/d. The result depends
on the effective dimensionality of the system,
namely on the ratio ${T)/d.

(a) In the 3-D case, $(T}»d and we can to a
good approximation replace the upper limit of the
integral by infinity:

(aV) T k "" kdk
( V+ 'k')'

where XV is the total volume. For ~,(k) one gets
from the TDGL equation' ' (this is independent
of the normalization of &l~):

3A

I&k,T(I+k3)')t '

Thus

e'w~(0)' ~
4' Vft t' „(1+k'(')'

e'&zan(0)' "' ' d'k
( „3,) 3

t h .', (2&z)'
(2&)

where we assumed the grain to be dirty (should be
valid for d & (0 and realistic grain surface) and
used (&). o is the normal conductivity of the
grain, o =—ne l/z&sm.

Let us first use this formula for the case of a
single isolated 0-D metallic grain of a volume
d = V. The coherence length $ in (28) must then
be replaced by fo~(T). When d «goL(T) one can-
not replace the summation over k by an integra-
tion since most of the contribution to (2&) comes
from the k = 0 term; thus

b,o3 n(single grain) = -o, (29)
e mE (0)
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e'v((o)'
0 D 4@V &n (3o)

where we have used (8} and (15). o„ is the sample
conductivity cc„-I/Rg. Although (29) and (30)
both pertain to 0-D cases, they differ (their ratio
is o /o„» 1) due to the fact that the (2«(0) appear-
ing in (29) is appropriate to the metal, while ((0)
is the (P,. P, ) correlation length of the granular
system. The ho2 (single grain) of Eq. (29} is the
fluctuation conductivity just of the metallic grain
while cr2 n of Eq. (30) is the fluctuation conductivity
of the whole sample. The fact that their ratio is
equal to o /o„ is also very clear. Since in the
granular system the grains are connected by high
resistance barriers, a relative increment &a /o
in the grain conductivity will have a much smaller
effect on the network conductivity which is dom-
inated by 1/R„d, the much smaller barrier con-
ductivity. In fact, the simplest expression for the
network conductivity is (I/o +R„d) '=o„. Since
Rnd»0~, the change &on induced in o„due to
a change ho„ in o is given by 4o„/o„- (4o /o )
&& {o„/o„). The enhancement of o„due to this ef-
fect was recently measured~2 and found to agree
with Eq. {30).

(b) 3-D, g(T)»d: Here, similarly to (23) and

(29);

no, ,- o„(f„/f)"' . (31)

Equations (30) and (31) merge into each other at
the 0-D to 3-D crossover at t, .

It is instructive to note that Eqs. {30)and (31),
as well as (23) and (29), are related by an inter-
dimensional-scaling -type argument. Imagine
the 3-D case as consisting of "supergrains" of
size $(T), the effective t& of the supergrains will
be given by [N(0)k T,g(T)2] '~ = t~,«. Let us use
this I'gQ ff in the O-D form:

1/2
P~ cc 1 V t~

P N(0)kT, )(T)2t $(0) f'i

where we used (3) a.nd (7). In the same way the
Gaussian-type singularities can be derived for
1-D and 2-D, e.g. , from the 0-D one.

Our results (29) and (30) for the 0-D case need
some cautionary comments. Arguments have
been put forward in the literature against the k =0
contribution to the superfluid current on the
grounds that: (a) The k=0 state carries no cur-
rent, 23 and (b) the microscopic2~ AL-like theory,
and for that matter also the TDGL with the Kubo

formula approach, give a different expression

We now return to the case of a granular array,
here the integral in (28) is the same as for the
specific heat, and we obtain the following two limit-
ing cases:

(a) O-D, ~(7)«d:

for the paraconductivity. In the latter expression,
the term (1+k2$2) ' in Eq. (28) is replaced by
(4/d)k $'(1+k ( (1+k $ } 2, where d is the space
dimensionality. This gives the same result for
o as (28) as long as the cutoff k, over k-space sum-
mations satisfies k,g»1, which is the case in
1-2-3-D systems. However, the microscopic ex-
pression weights down strongly the k -0 contribu-
tion, and therefore its results do not agree with
those of (28) in O-D.

As far as (a) is concerned, the k =0 state does
indeed carry no current, but the calculation of the
conductivity is done for the limit of zero current.
For a small but finite current, the k =0 state will
be slightly modified such that it will have a small
gradient in the order parameter that will corre-
spond to the assumed current. This remark may
also be a partial answer to (b), although a com-
plete answer is difficult at the present stage. The
difference between (28) and the microscopic re
suit is that between a physically motivated but
quite unfounded phenomenological expression
and an incomplete microscopic theory. Related
to this is also the question of the Maki terms
in the microscopic theory. They were evaluated
for O-D by Hurault, Maki, and Beal-Monod, 33'"'

giving a result different from our Eq. (29). How-
ever, the Maki term contribution depends strongly
on the T, shifts due to pair-breaking mechanisms. '
While one contribution to this was taken in Ref.
23(b), others were not. For example, the large
shift between T, and T, due to the fourth-order
terms in the GL free energy is an important "pair-
breaking" effect which will have to be considered
in the future fully renormalized theory of fluctua-
tion conductivity. This shift, neglected in the
present stage microscopic theory, is &, [Eq. (11)]
in 3-D and renormalizes T, to T, = 0 in the pure
0-D case. In view of these comments, one has to
regard the O-D results of this paper as well as the
microscopic ones both of the AL and of the Maki
diagrams as being of a rather tentative nature.

Our formulas (30) and (31) also take into account
in the appropriate temperature range the reduction
of R„due to an incipient Josephson effect caused
by fluctuations. This physical idea was used in
Ref. 17, together with the theory of Ref. 26 to
obtain the total fluctation conductivity. On first
sight it might seem that our result (31) does not
agree with this idea. For example, at t, the
average barrier Josephson coupling energy is of
the order of k~T, which should'~'2' result in a
relative enhancement of o„by a finite O(l} factor
while our Eqs. (30} and (31}predict an enhancement
factor of 1+ (t2/t)2~2 whose difference from unity
is much smaller than 1. However, it turns out~2'+

that the latter situation, as described by our Eqs.
(30) and (31) is valid. For t ~ t, the fluctuations in
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different junctions are to a good approximation de-
coupled. Qne can now calculate the enhanced con-
ductivity of the junction~ by the Kubo formula
using the current correlation functions f (t). Now,
the time decay of f (t) is due to two reasons:
fluctuations of the relative phase across the junc-
tion, and fluctuations ef the order-parameter am-
plitudes 4~ and 42 in the two sides of the junction.
If one of those fluctuations is much faster than the
other, then it will dominate the decay in time of
f (t). Kulik finds that the characteristic fre-
quency for the phase fluctuations is

=
k Rk"= 2k' (33)

R'„' =R„[l—(y/I') O((t&/t)')] . (s5)

Equation (34) is valid for t « t, while Eq. (35) is
valid for t»tj where t~ is defined by y=I' or

t, = (»e'/sa) R„R„R,/R-,'t, 10 '-R„[-n] . (S6)

where for t, we took (11'), the weak-coupling re-
lation. We notice using (5), (15), and (17) that
t,/t, - (R„/R,}'«1for the case of interest. Thus
for ta&t, Eq. (35) holds. Around t„(y/I' )t2
-(t&/t, )t, =(R,/Ra) =t~, using (5'), (16), and (17).
Thus, around t, Eq. (35) does agree with Eqs. (30)
and (SI). On the other hand, for t » t, the inter-
grain coupling is much less than kaT and the O-D
conductivity enhancement due to fluctuations in-
side the grains is much larger than the incipient
Josephson effect (35). For t «t, the grains are
no longer independent, and therefore different
barriers are coupled; thus neither (34) nor (35)
hold. For this region the correct conductivity en-
hancement (as long as t » t,) is given by our ex-
pression (31). In summary, it is only around t,
where the incipient Josephson effect should be
both calculable using independent junctions and
important for the fluctuation conductivity of the
whole sample. Just around t, , our expressions do
match with Eq. (35) obtained from this fluctuation

(which is not be be confused with the y of Refs.
17 and 26). While the characteristic frequency for
the amplitude fluctuations is 1 = r(t& = 0) ' [see Eq.
(37)]. Thus the modified barrier resistance will
have two regimes: For y»1, phase fluctuations
dominate the conductivity; in the calculation of
f(t), n, 42 can be replaced by the static average
(& ) for a single grain„. the theory of Ref. 36 is
applicable and yieMs for the reduced resistance
of the junction R„' for t&t, ,

R„=R„[1—0((t, /t)2)] . (s4)

R„ is the normal quasiparticle junction resistance.
Qn the other hand, for y « I', ampl. itude fluctua-
tions dominate, and a calculationa~'+ similar to
that of Ref. 24 yields for t&t, ,

Josephson effect. However, for t« t, one has a
multigrain effect while for t» t, intragrain effects
become dominant.

TABLE I. A Summary of the various regimes of be-
havior for 3-D arrays of superconducting grains.

Large grains, d~&dh, p .-"'fl~

p„&: p, , Two transitions, ts
given kjy (11 '), ts -- ' t
weak coupling.

p2 -' p„& p&. A single transition
weak coupling. Equations
(5'), (7'), (ll ') hold.
t, ~-"tc,„ t 0«t

p„«p, , strong coupling&
:&~0 system. Equations (7 ') and
(10') hold.

Small &&rains, d«do, p&«p~

p„-'.p, . 5'e:tk couplin& .
(po s s i)jiy n& &

t 1'an sit, ion) .
p, « p„'& p~. Qtf ong coupling.

Equations ( j') and (7') do not
hold. ts &~&'ivcn «jv (10').

1"y s 11'0 n g
ctjuplin~ . Equations (& ') and
(10 ') hold.

10'
do =- [.~'({))A.RT,] '/", R, [n]-

F

p ==Rd R) —R) (d!do)'/'

Y. CONCLUSIONS AND DISCUSSION

%e summarize here the various regimes of be-
havior of granular films, this was compared qual-
itatively in Sec. IG with existing experimental re-
sults. Notice that we have treated the 0-D-3-D
case. There are cases where there is, for ex-
ample, only one grain in the film thickness. These
are 0-D-2-D situations. In principle, the treat-
ment there is the same, except that some char-
acteristic powers [cf. Eqs. (7), (9), (10), (11)]
may be different. For the 0-D-3-D situations our
classification is summarized in Table I.

Ne would like to make a few remarks about the
case of large grains with p„» pz. Here the O-D
quasitransition is expected to take place fully
above I„and phase locking should occur at lower
temperatures. Experimentally, the upper transi-
tion can be detected by specific heat, quasiparticle
tunneling, or magnetic-susceptibility measure-
ments. During the lo~er transition the resistance
of the sample should go to zero along with some
structure (presumably a peak or a weak singularity)
in c(T). It should be noted, however, that the
total entropy change is on the order of k~ per grain
for the phase-locking transition and k»(&t/d, )3 per
grain for the 0-D transition.

Recently, Solinsky and Goldman" measured the
specific heat and the resistive transition of films
with grain sizes of 200-1000 A. Their results
might be interpreted as showing two transitions.
However, this interpretation is inconsistent with
our estimates since p„-p~, which means that their
anomalous specific heat cannot be a pure locking
of almost fluctuation free units.

Qne of the drastic approximations in our model
is the neglect of disorder effects-the distribu-
tions in grain sizes and barrier resistances. This
feature can vary widely among different experi-
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mental samples, according to the method of their
preparation. We feel, however, that for narrow
enough distributions (such as may he the case with
some of the samples of Ref. 8) and in cases where
the order-parameter correlation length is much
larger than the characteristic length for the dis-
order —the latter should not be qualitatively im-
portant. . Also, in the O-D case, the only relevant
distribution is that of grain size which can easily
be taken into account. However, one may en-
visage cases where, due to slow spatial variations
of the parameters, or to percolation regions, dif-
ferent parts of the sample may order at different
temperatures and there may even be no ordering of
the whole sample.

Recently, it was suggested that the supercon-
ducting transition becomes weakly first order,
due to fluctuations in the electromagnetic field.
The "size" of this transition is however very small
and is proportional, for dirty samples, to the mag-
nitude of the critical region. If this theory is also
relevant to inhomogeneous granular systems —the
effect may be more easily observable here due to
the large critical regions.

It would be of interest to study, both experi-
mentally and theoretically, further properties of
the model considered in this article. We hope to
discuss in future publications the magnetic prop-
erties, ' ' density-of-states effects, NMR relaxa-
tion times, and electromagnetic properties.
We note that recently Saxena, Crow, and Strongin

found interesting coherent phenomena and mag-
netic field dependence in the response of a granular
superconducting sample to rf electromagnetic
fields, see also Refs. 30 and 31.

Finally, we would like to remark that, although
we treated here the specific case of a granular
superconductor, similar situations can exist also
for other phase transitions. A mell-known case
is that of an array of superparamagnetic particles.
The general problem is that of phase transitions
in a system composed of a large number of weakly
interacting small particles and the crossover from
0-D to higher-D behavior. A simplifying feature
of the superconducting case is the typically large
value of $o. Nonetheless, much of our considera-
tions can be used in these other cases, too. Also
of interest are the related problems of weakly
coupled chains or layers with crossover~ between
different dimensionalities.
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