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The superconductive isotope effect in P-phase Ga has been investigated in small single spheres of "Ga
and "Ga. The difference in transition temperatures is b, T, = 73+ 3 mK. Assuming a dependence on

the mean isotopic mass of the form T, —M, this yields a = 0.43+ 0.02. The transition

temperatures are T,' = 6.10 + 0.02 K and T,". = 6.02+ 0.02 K. Our previously published value for

T, in P-Ga is too low owing to an incorrect thermometer calibration. The correct value is
= 6.07+ 0.03 K for natural P-Ga. H, (T) has been measured both for "Ga and "Ga. At T = 0,

the difference in critical field is Ho' —Ho = 5+ 2 Oe, in agreement with the similarity principle.
W'ithin the experimental accuracy, the deviation of H, (T) from a parabola is independent of isotopic
mass, yielding D(t-'),„=—0.021+ 0.004. The slope (dH, /dT)~~ = 155+ 2 «/&, independent of
isotopic mass to this accuracy. These results show P-Ga to be a rather typical weak-coupling super-
conductor.

INTRODUCTION

The study of small single spheres of supercon-
ducting materials using a mutual induction meth-
od has proved to be an excellent tool for investi-
gating superheating and supercooling at the super-
conductive phase transition. " The success of
this method rests on the production of nearly flaw-
less small spheres, permitting the study of meta-
stable states unobservable in a bulk sample be-
cause of inhomogeneous nucleation caused by de-
fects. However, as shown in our previous work
on P-phase Ga, the technique can also be useful
in studying the critical-field curve and the inter-
mediate state. In this case, less-than-perfect
spheres are deliberately selected, because the
large degree of superheating would prevent any
perfect sphere from ever entering into the inter-
mediate state.

Since P-phase Ga is metastable at atmospheric
pressure, and is thus not readily obtained in large
bulk samples, the single-sphere method is very
well suited to the study of its superconductive
properties. In the following, we report measure-
ments of the transition temperature T, and the
critical-field curve H, (T) for P-phase ~9oa and
"Ga. These experiments were partly motivated
by our earlier results on H, (T) in P-Ga, as pub-
lished in Fig. 5 of Ref. 2. These results indi-
cated an anomalous deviation from a parabolic
temperature dependence, resembling the strong-
coupling superconductors Hg and Pb. As ex-
plained in the following, the anomaly arose be-
cause of an incorrect thermometer calibration.
In fact, P-Ga will be shown to be a rather typical
weak- coupl ing superconductor.

EXPERIMENTAL

The sample preparation has been described
earlier. The isotopes, Ga and "Ga, were ob-

tai»ed from Oak Ridge National Laboratory. '
Both isotopes are chemically pure to 99.9'.
Spectrographic analysis shows impurities to be
present at approximately the same levels in both
isotopes. In particular, Fe is present in both
isotopes at the 200-ppm level. Thus impurities
should not influence the measured difference in
superconductive transition temperatures.

In our previous experiments~ on nearly perfect
natural Ga spheres, ranging in diameter from 7
to 26 pm, all spheres turned out to be in the P
phase. In the present experiments, less-than-
perfect spheres of diameters between 20 and 30
p, m were selected. Of the six "Ga spheres in-
vestigated, five were in the P phase, whereas
only three out of eight 6 Ga spheres were in the
P phase. The remaining spheres presumably crys-
tallized in the e phase since no superconductivity
was seen above 2 K, and since these spheres
turned out to be solid at 20'C after being warmed
up from low temperatures. Thus, the P phase may
be more strongly meta, stable in Ga than in natural
Ga, or 'Ga. In a total of 25 Ga spheres investi-
gated in our present and past single-sphere ex-
periments, we have found no evidence for the meta-
stable 5, y and e phases, all reported to be super-
conducting above 4. 2K.

The cryostat and detection system used are the
same as in our previous experiments. However,
we have found an error in the calibration of our
germanium thermometer for temperatures above
4. 2 K. The error has been traced to our original
calibration of this thermometer against a factory
calibrated Ge thermometer. It arose because of
differences in electrical lead dimensions and lead
insulation, causing a difference in thermal anchor-
ing for the two thermometers. As a consequence,
the transition temperature reported for P-Ga,
5. 90 K, is too low. A thorough recalibration
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by extrapolation for each isotope. T, is deter-
mined individually for each sphere from a zero-
field temperature sweep, like that in Fig. 2.

In Fig. 3(c), we have re-analyzed the data on

H, (T) in natural P-Ga which we originally pub-
lished using the erroneous temperature scale.
The results are now quite unambiguous. The
measurements close to T, are consistent with the
measurements at lower temperatures, and there
is no sign of a size eff ect in H, near T„as
originally suggested. Indeed, no size effect would
be expected in a 20- p, m sphere on theoretical
grounds, and the measurements on Ga and 'Ga
give no indications of any size effect. Also, the
field H, reported in Fig. 7 of Ref. 2 has not been
reproduced in the present series of experiments,
although similar intermediate-state curves have
been observed. The entry and expulsion of flux
in the intermediate state varies from one sphere
to the next in a seemingly random way.

Within experimental accuracy, the three devia-
tion curves of Fig. 3 are seen to be approximately
the same. No systematic dependence on isotopic
mass is discernible with the present resolution.
Figure 4 gives the best fit of the deviation curve
D(t~), characteristic of P-Ga. It is a weighted
arithmetic sum of the curves in Fig. 3 and there-
by takes account of all measurements that have
been made. We conclude that for P-Ga
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D(f ') = —0. 021+ 0. 004 .

The uncertainty is mainly due to the + PO-mK ac-
curacy of the thermometer near T, .

The isotope effect manifests itself not only in a.
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FIG. 3. Deviation of Ha(T) from a parabolic tempera-
ture dependence for P-Ga. Solid curves are fitted by eye.
(a) Data for ' Ga. Circles: sphere 71-7 (T,= 6.0221 K,
diameter 23 pm). Triangles: sphere 71-6 (T, =6. 0035 K,
diameter 21 pm). (b) Data for 69Ga. Circles: sphere
69-1 A (Ta= 6. 1005 K, diameter 23 pm). Triangles:
sphere 69-1 B (Ta= 6.0970 K, diameter 23 pm). (c) Data
for natural Ga sphere of diameter 26 pm. The data in (c)
were originally presented in Fig. 5 of Ref. 2 using an
incorrect temperature scale above 4. 2 K .
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Fig. 4 of Ref. 2). The results are presented in
the customary way, as a deviation from a para-
bolic temperature dependence. Ho is determined

FIG. 4, Deviation of Hc(T) from a parabola, best fit
characteristic of P-phase Ga. This curve was obtained
by adding the three curves in Fig. 3(a), (b), and {c),
weighted by the ratios 0. 8:1.2:1. It thus takes account
of all measurements performed.
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FIG. 5. Hatched area indicates difference in critical
fields, QH~=H~ -H~, as a function of temperature.
This difference was obtained by subtracting the curves in
Figs. 3(b) and 3(a). Triangle at T indicates measure-
ment of isotope effect in zero field, as in Fig. 1. Full
curve gives predicted AH~(T) from the measured bT~ and
the principle of similarity (see text).

of course, in a difference AH, (T) in critical mag-
netic field. This difference is usually discussed
in terms of the "similarity principle". ' This
principle requires that the ratio Ho/T, be a con-
stant independent of isotopic ma, ss, and that the
critical-field curves be identical when expressed
in reduced coordinates; i. e. , D(f ) must be the
same for all isotopes. In Fig. 5, ~e have plotted
4H, (T) =H, (T) —H7'(T) as predicted from 0 T,
and the similarity principle. The shaded area in-
dicates the experimental values of ~H„obtained
by subtracting the curves of Figs. 3(b) and 3(a).
The similarity principle is seen to be verified
within the experimental accuracy. In particular,
at T=o

AHO= 5+ 2 Oe,
in fair agreement with the similarity principle,
which predicts AHO= 6. 5 Qe. In absolute terms,
we find

H", =537+5 Oe, Ho =542+5 0e .
The error reflects the 1% accuracy of the magnet
calibration. The best value of Ho for natural P-Ga,
on the basis of all measurements which have been
performed, is

H(~) = 540+ 5 Oe .
Finally, Fig. 6 shows the measurements of H, (T)
very close to T„ for natural Ga (earlier experi-
ments) and "Ga. A least-squares fit to the data
shown gives dH, /d T I r = 153.7+ 1 Oe/K for "Ga

C

and 155.7+ 2 Oe/K for natural Ga. Thus, within
experimental accuracy, the slope is independent
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FIG. 6. Measurements of H~(T) close to T . Circles:
natural Ga, sphere diameter 26 pm. Triangles: ' Ga,
sphere diameter 23 pm (sample 71-7, these data are also
shown in Fig. 3).

Our value for the isotope-effect coefficient in
P-Ga, @=0.43+0.02, is rather close to that found
for e-Ga, 0.41+ 0.02. ' They both deviate signifi-
cantly from the BCS value of 0. 5.

Knowing a a,nd T, for P-Ga, we can compute the
coupling parameters X and p,* which enter into Mc-
Millan's theory of superconductivity. 8 However,
this requires an estimate of the Debye temperature.
No value of e& has been published for P-Ga, but an
estimate can be made from the specific-heat mea-
surements of Bosio et a/. ' They measured the
specific heat of P-Ga relative to that of &-Ga from
150 K to the melting point of P-Ga, , 257 K. As-
suming that the lattice contribution to the specific
heat dominates in both pha, ses and that the specific
heat scales simply withe&, examination of their
results (Fig. 3 of Ref. 9) shows that en of P-Ga
must be about VGA of that of o.-Ga, i. e. :

e~ = 0. 7x 325 K ~ 228 K .
Substituting n, T„and 8& into McMillan's equa, -
tions (Eqs. 25 and 30 of Ref. 8, the approximation
Eq. 29 has not been used), we find that for P-Ga

X=0.75, p*=0. 13 .
Another coupling parameter of interest is N(0) V,
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TABLE I. Thermodynamic properties of superconducting P-Ga.

Quantity

Transition temperature

Critical field at T = 0

Slope of H~(T) at T

Curvature of H,(T) at T=0

Maximum deviation
of H~ from a parabola

Isotope-effect coefficient

Electronic-specific-
heat coefficient

Symbol

Tc

Hp

dHc
dT T.

d Hc
dT p

CdH
47I dT2, p

Value

6, 07+ 0.03

540+ 5

—155+ 2

—31.2+ 0.5

—0.021+ 0.04

0.43 + 0.02

1340+ 20

K

Oe

Oe/K

(Oe/K)

erg/K2 crn3

occurring in BCS theory, '

H(0) V,~, = [ln(0. 65 en/T, )]'= 0. 29

These values of the coupling parameters show that
P-Ga is definitely not a strong-coupling super-
conductor. Rather, it resembles materials like
Sn [X=0.60, H(0)V= 0. 25], In [1=0.69, N(0)V
= 0. 29], and T 1 [X= 0.71, H(0) V = 0. 27]."0

Indeed, the deviation of H, (T) from a parabolic
temperature dependence, Fig. 4, shows P-Ga to
be a weak-coupling superconductor, although the
negative deviation D(f') is less marked than for
&-Ga or for the BCS weak-coupling theory. It is
of interest to estimate the energy gap &(0) for
P-Ga. Our previous estimatea is too high, being
based on the erroneous values of D(f2) and T, .
Using the empirical relationship of Toxen, "we
f ind

This estimate can be checked by using the formal
BCS expression

2& (0) /k T, = ~+8 v Ho/ jy T, = 3. 51= 3. 5 .

Here, y= 1340 erg/K cm3 has been computed
from our data on H, (T). (See Table I. ) The BCS
expression does not predict &(0) very accurately
for real superconductors, but the two estimates
taken together indicate that the energy gap in P-Ga
lies close to the BCS value of 3. 5. However, this
energy gap does not agree with the tunneling re-
sults of Cohen et al. " They found that the phase
which they identified as P-Ga had an energy gap
4(0) = 1.03 meV. With a transition temperature
of 6. 07 K, this yields 2&(0)/kT, =3.9 .

In conclusion, we summarize the thermodynamic
properties of superconducting P-Ga in Table I.
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