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A group-theoretical method for construction of vibronic wave functions of required symmetry is

developed. The method is applied to investigate relations among Ham's reduction factors in Jahn-Teller

systems of cubic (or tetrahedral) symmetry. Three special cases are discussed in detail: {i) in the case
of linear Jahn-Teller coupling of an F. electronic level with many F. -type crystal vibrational modes, it

is shown, on the basis of a detailed symmetry analysis, that the relation q = {1+ p)/2 between the
reduction factors holds for linear coupling to a single mode pair (in agreement with Ham's result) but

not in general otherwise; a detailed symmetry analysis made for this system allows dynamic effects to
be disentangled from effects of symmetry; {ii) for Jahn-Teller coupling of a T electronic level with

many E vibrational modes, it is found that the relations among the reduction factors, as given by

Ham for linear Jahn-Teller coupling, are valid under general vibronic coupling; (iii) in the case of
coupling of a T electronic level with a single vibrational mode triplet of T, symmetry, the relation

K{E)= 1 —3[K{T,) —K{T,)]/2 is shown to be valid in the weak-coupling regime for vibronic states

correct to fourth order in the vibronic coupling constant but not for vibronic states correct to fifth

order.

I. INTRODUCTION AND CONCLUSIONS

Our understanding of the Jahn-Teller effect has
been greatly increased recently. ' In particular, the
reduction factors first introduced by Ham" play
an important role in various experimental investi-
gations of the Jahn-Teller effect in crystals. The
importance stems from the fact that the effect of
Jahn-Teller coupling on the response of a system
to weak perturbations can usually be described
adequately in terms of reduction factors.

The reduction factors for the (nearest-neighbor)
cluster model have been studied by various au-
thors, and also reviewed in recent years. ' ' In

the case of linear Jahn-Teller coupling of an orbit-
al electronic doublet in cubic symmetry, Ham'
was able to establish a relationship between the
reduction factors p and q, namely, q =-,'(1+p).
More recently, interest in the Jahn-Teller effect
has been directed mainly toward the case in which
the coupling is with a continuous spectrum of pho-
nona rather than. with just a few vibrational modes.
In a many-mode variational calculation, Fletcher'
pointed out that the relation q =-,'(1 + p) is valid for
his choice of the variational ground-state wave
functions. Subsequently, O'Briene concluded that
this relation is in general valid also for the many-
mode linear Jahn- Teller interaction. More re-
cently, Halperin and Englman' as well as Gauthier
and Walker" have found that q =-,'(1+p) holds gen-
erally only for the single mode-pair case.

It is the purpose of this paper to investigate the
relations among the reduction factors under very
general conditions, which include coupling with a
continuous spectrum of phonons as well as higher-
order Jahn-Teller interactions. %'e use a common

approach, involving two steps. The first, which
our work emphasizes, is to find the symmetry re-
strictions on a property, in this case the reduction
factors, using the full symmetry of the Hamil-
tonian including dynamical symmetry (symmetry
in addition to space-time symmetry). The second
step involves using considerations beyond sym-
metry.

A group-theoretical approach for constructing
vibronic wave functions of required symmetry,
introduced by Abragam and Bleaney (p. 814-815
of Ref. 5) for application in the case of an E elec-
tronic doublet coupled to a single E-type vibration-
al mode pair, is developed for a general system
in Sec. II. By a general and detailed group-theo-
retical analysis the symmetry restrictions on the
vibrational parts of a vibronic wave function are
determined, and a method for constructing vibronic
wave functions consistent with these restrictions is
described. The method is applied in Sec. III to
the Jahn-Teller effect of an orbital electronic
doublet in cubic symmetry. %'e find that under
very general vibronic coupling mentioned above,
Ham's relation q = ~(1+P) is in general not satis-
fied; rather, q ~2(1+P); these results were ob-
tained by Abragam and Bleaney. ' Although their
brief discussion was given in terms of a cluster
model, it applies when the coupling is to any num-
ber of modes. Further analysis shows that q
~2 (1+P) remains true even in the special case of
linear Jahn-Teller coupling to many modes, con-
trary to O'Brien's conclusion, ' but in agreement
with the conclusions, obtained by different ap-
proaches, of Halperin and Englman" and of Gauthi-
er and Walker. " A detailed analysis of the sym-
inetry of a system with a linear Jahn-Teller Hamil-
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tonian is presented in Appendix A. The results
of this analysis can be used to disentangle dynamic
effects from effects of symmetry.

In See. IV, we treat the case of a triplet elec-
tronic level in a cubic environment. Again we

begin with a general analysis of the relations
among the reduction factors, and then examine
some particular cases. In the case of coupling to
E-type vibrational modes only, we find that the
relations K(E) =1 and K(T, ) =K(T,), first discovered
by Ham, ' are valid quite generally. In the case of
coupling to a single vibrational mode triplet of

T, symmetry, no simple exact relation among the
three reduction factors K(E), K(T,), and K(T, )
exists for the ground vibronic triplet; however,
the relation K(E) =1 —-', [K(T,) -K(T,}]is shown to be
a good approximation in the weak coupling regime.
The case of equal linear coupling to an E-mode
pair and a T, -mode triplet of equal frequency is
also discussed.

We have limited ourselves in this paper to the
discussion of relations among the reduction factors
in Jahn-Teller systems of cubic symmetry. We
should emphasize that the method can be applied
to various other systems. Also, the method for
construction of vibronic wave functions is of gen-
eral applicability for the study of vibronic inter-
action.

where f (q, Q) is any function of Q and q, and 8 '
denotes the inverse of R. Accordingly, we have

0 y()() y(P)D(&)
t =y

)f

$ X, .C.'"'D'")(&}.. .
t =I m =1

(3)

where D' '(ft} is the matrix in the &th irreducible
representation corresponding to the symmetry
operation R. On the other hand, operating on the
right-hand side of E(l. (1) with Ds gives

n

0~It(- '= X, R 'Q 0~$'"'
m=],

fl ll

R-&@ tI}(P)D()f) g
Nt=t, 8t =].

(4)

Since (qf) and q are independent coordinate spaces,
it follows from Egs. (3}and (4} and the linear
independence of the g'"), m =1, 2, . . . , n„, that

ft p
tt y

gX,.(& 'Q)D'"'(~). =Z & .(Q)D'"8), ,t'=I

Following Hamermesh, "we define the unitary
operator O„corresponding to an element R of the
group G as,

o,f(Q, q)=f(& 'Q, & 'q), (2)

II. CONSTRUCTION OF VISRONIC %AVE FUNCTIONS

The vibronic Hamiltonian incorporates the Jahn-
Teller interaction of the vibrational modes with a
set of degenerate electronic wave functions

g,'"', g,'"), . . . , g„'"„' which transform as basis func-
tions for the p. th irreducible representation of the
group G. This Hamiltonian is necessarily invariant
with respect to G. It follows that the vibronic
eigenfunctions belonging to a given energy eigen-
value can be chosen to be partners forming a basis
for one of the irreducible representations of G

(apart from accidental degeneracy). Within the
Born-Oppenheimer approximation, extended in the
usual way to allow for degenerate electronic states,
the vibronic wave function which transforms as
the Lth row of the ~th irreducible representation
can be written

+("(()e) gx (q),()! =(e). "

Here, y, (Q) is the vibrational factor associated
with the electronic wave function g'~)(q), and we

have denoted the electronic coordinates and the
vibrational coordinates collectively by q and Q,
respectively. We want to determine the most
general form that the gt and hence the 4t'~' can
assume consistent with the symmetry.

Multiplying by D'"'(R) ' and summing over m',
we obtain

O~yt~= yt ~ D'"' R, , D'"' R ' . 6
ts m

We see that )(t transforms according to the Kro-
necker-product representation D'~) ~D'"', where
D'"' is the representation adjoint" to D'"';
D(~) (R) ~ =D(") (&) ~~ . The product representation
can be decomposed into irreducible representations
in the usual way"

D(),) )(D()f) c D(~)

where c, is the number of times that D"' is con-
tained in D' "'xD'"'. Accordingly, linear combina-
tions of the yt can be formed which transform as
the D"' appearing in E(l. (7),

ff y f1~

P", = P g y, c(lm, os', ), s =1, . . . , n,
t m

(Sa)

where 7, =1, 2, . . . , c, and the c(lm, os7 ) are con-
stants. It is possible, and often convenient, to
choose the c(lm, osv, ) so that all the P',) are mu-

tually orthogonal. The inverse of the transforma-
tion (Ba) gives the y, , in terms of P", ,
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Cg ff g

X)m = X,", '.U, ~r".Tg-
g

Substituting Eg. (8b) into (1), we obtain

(8b)

y(X) Q Q y(k)
g Tg

Jtp ff g=~ ~X'" C'"'U
l ggTg ~ ~ g ~ T % g7n1 ~ Tg'

(9a)

Cg ffg ff

x"' y.'") U;.", (12a)

where

g( ) g( ) (12b)
Tg

The most general form for the vibronic wave func-
tion 4', ") consistent with the symmetry is thus
given by (12a) in which the (X,",) }, ~q =1, . . . , c,
are independent basis sets each having the most

Since for given cr and v' the y™,",'„s=1, 2, . . . , n,
transform only among themselves, we see that not
only 4,("' but also 4,'",', must transform as the Lth

row of the ~th irreducible representation. It also
follows that the matrix elements U,'",~T are closely
related to the (Clebsch-Gordan) coupling coeffi-
cients. "

It can be readily verified that c, is also equal
to the number of times that D'"' is contained in
D"'&D™.This shows that for given a and r„c,
independent sets of partners (4 I",',„ I =1, . . . , n)},
v'q=1, . . . , c, each transforming as D'"', can be
constructed from the set of product functions
bta) )I)'")}by means of the coupling coefficients

Ag

@,()) ~ ~ X(o) q(p) Ugp & (10)l gT yTg ~ ~ SyTg fft 870!l yT)
'

nt

Here (U,'", ,„},w), =1, . . . , c„are the c, distinct
sets of coupling coefficients associated with the
decomposition of the direct product D"'~D'"' into
c,D'"'; they have been chosen to couple orthonor-
mal functions to produce orthonormal functions
and have been extensively tabulated by Koster
et a/. "for crystallographic point groups. The
most general basis set which transforms as D'"'
and which can be constructed from the b,",' g„'"'}
with given o and v', is then a linear combination of
the 4I",', , As a special case )I'I„', in Eq. (9b)
can be represented this way; thus, a (possibly
singular) matrix a~«can be chosen so that

Cg

(11)
TX

In case c, =1, the matrix can be chosen unity by
suitably redefining g,").

Combining Eqs. (9a), (9b), and (11), we obtain

III. ORBITAL DOUBLET LEVEL IN CUBIC SYMMETRY

In this section the electronic level coupled to the
crystal vibrational modes belongs to the irreduci-
ble representation E of the cubic group 0 (or the
tetrahedral group T, ) and has eigenstates
(~gze), ~P)). Within the framework of the Born-
Oppenheimer approximation, the vibronic Hamil-
tonian, which must necessarily be invariant under
the group 0 (or T,), takes the following form:

3C(E) =3C(A, )a+3C(e)~, +3C(~)~, +3C(A, }Ct,. (12)

Here 8, %,e, ~, , and 8, are the electronic opera-
tors or their corresponding matrices [8 = (0 0),
'ue =(0' o}, u, =(0 0},Ct2=(0 0'}], defined by Ham, "
while 3C(A, ), 3C(e), 3C(e), and 3C(A, ) are operators
in the vibrational coordinate space, which trans-
form under the group 0 (or T,), respectively, as
A„Ee, E, , and A, . We remark that 3C(E) is the
most general form consistent with the symmetry
and includes as special cases the Hamiltonians
discussed by various authors. ""'"We consider
only vibronic E levels, since they are of particular
interest as ground levels.

The normalized eigenfunctions of 3C(E}for an E
level must, according to the method of Sec. II,
take the form

+e = (x") —xe)le+ (x"2+x', )0'„

'P& = (-X 2+Xg)le+ (X '+Xe)kei

(14a)

(14b)

where X"), X"2, and hse, Xs) are, resPectively,
basis functions of the irreducible representations
A„A„and E of the group 0 (or T,). Following
Ham, ' the reduction factors P and q for a vibronic

general form. The y„"T'„can be specialized ac-
cording to (12b} so as to express the actual vibronic
eave function.

It is sometimes convenient to deal with vibronic
wave functions containing orthogonal vibrational
parts. The function 4,'"' takes this form if the
P", are chosen mutually orthogonal and (12b) is
substituted into (12a}. In this form the coefficients
a,', appear explic itly.

The method just described can be generalized
to construct the most general form of vibronic
wave function of given symmetry involving N elec-
tronic levels, each of which belongs to a certain
irreducible representation of G. This form con-
sists simply of a summation of terms of the type
(12a), one for each electronic level. This form
can be applied, e.g. , in the study of the pseudo-
Jahn- Teller effect. Even more generally, exact
vibronic wave functions can, in principle, be rep-
resented in this form if the summation includes
all electronic levels.
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E level can be defined as

q =-&4eeleel@ee&.

(15a}

(15b)

e = &x"ilx"i& - &x"2lx"'&,

I= &x"'Ix"'& + &x"'Ix"2) + &xelxee&+(x', Ixf&,

which yields the following relation:

q = a(I+ p) —2&X 2IX 2& ~

(16b)

(16c)

Thus, quite generally, q ~-,'(1 + p), and q =-,'(1 + p)
if, and only if, X"&=0." Equations (14)-(lV) cor-
respond to equations (21.61), (21.63), (21.64), and
(21.65) of Abragam and Bleaney, ' and extend the
scope of the latter to apply to general vibronic cou-
pling to many modes of all symmetries. In par-
ticular, one can be assured that q ~-,'(I + p) holds
not only fcr an XF,-type cluster, but also quite
generally for more realistic models of a Jahn-
Teller ion embedded in a crystal.

Linear coupling

In order to examine how y"2 enters into the vi-
bronic wave function, we have made a more de-
tailed analysis for the case when only linear Jahn-
Teller interaction is present. In this case addi-
tional symmetry which is present allows the vi-
brational functions y 1, y"2, ye, and X~ appearing
in (14a} and (14b) to be expressed in more explicit
form.

The Hamiltonian R(E} in Eq. (13) now assumes
the form

N

5'(E) =Q(2p;) "[P„.'+P,'+V*,~', (Q,', +Q„'))8
j=1

+ ~~@8~ '~8+ ~)@.~ '~s (16)

where (Qe, , Q„;i =1, . . . , N) are the vibrational
coordinates with each pair (Q e, , Q„) belonging to
E; (Pe, ,P„) are the momenta conjugate to (Qe„Q„);
p, , is the effective mass of the ith mode pair and

, . is its frequency; and V, is the linear Jahn-Teller
coupling coefficient between the degenerate elec-
tronic states and the modes with coordinates Q«
and Q~g.

%'e observe that the pseudo-ar@ular-momentum
operator

It can be seen immediately on using Eqs. (14a) and

(14b} that

p = (x"'I x"'& + &x"'Ix"2& —&xel x;& —(x', I
x', &,

(16a)

N

f~(. . . , p, , 8, , . . .}= Q c( [m, })De' &es, (22a)
{m)) j=1

N

g, ( . . , p, , 8, , .. . .) = d([m,})IIe' ~'~, (22b)
Ill j=1

where the m~'s are integers, the c's and d's de-
pend on f p,}, and the summation is restricted so
that Q, m~ =L It is shown . in Appendix A that the
c's and d's can be chosen to be real. It is further
shown in Appendix A that (4„,4„}is a vibronic
doublet belonging to E of the cubic group for M
=-,'+3k and -', +3k, k being a non-negative integer.

The M=-,' case is of special interest since the
ground vibronic level of 3C~(E) has been found to
have M=-,' in the one frequency case,""and evi-
dence presented by other authors" suggests that
this is true in. the many-frequency case. As shown
in Eqs. (A34a) and (A34b) in Appendix A, the wave
functions for the E vibronic doublet with M= & can
be chosen to have the forms (14a) and (14b) with

X"& = W2 Ref„x"2= &2 Imf„

)p, = -&2 Reg„X sV2 Img, .
(23a)

(23b)

Hence the relation q =-, (1 + p) is valid if and only if

Im 0=0. (24)

with I, = (Qe, P« -Q«Pe, )/ff commutes with 3C~(E).
Also, the operator

(20)

commutes with 3C~(E) and anticommutes with Z, dt

being a reflection in the Qe, axis in each of the

(Qe, , Q„) subspaces [dt: (Qei «Q«) (Qei ~ ~«)~.
Finally, the Hamiltonian 3C~(E}, being real, is
invariant under time reversal and hence commutes
with the complex-conjugation operator K. A de-
tailed analysis of the symmetry properties of the
Hamiltonian is included in Appendix A.

Since [3C~(E),&] =0, eigenstates of 3C~(E} can be
chosen to be also eigenstates of J. Solving the
eigenvalue problem for 4 we find that eigenvalues
of J are half odd integers given by M=L +-,', where
L is an integer, one of the eigenvalues of Q, I, .
An eigenfunction of 4 with eigenvalue M has the
form

+~ = (fe-i/a+ gu+ila)+s+ ( 'f~-aim+ 'go+i lm~&e.

(21)

where fz and gz are eigenfunctions of Q, /, with
eigenvalues L,. In terms of polar coordinates
(Qe, =p, cos 8, , Q„=p, sin 8, ; i = I, . . . , N), they have
the form
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We shall first examine the case of coupling to a
single mode pair (N=I). Then,

Imfo= g c(m„) sinm, 8, =0, (25)
m&

which shows that q =-,'(1 + p) is valid for the single
mode-pair case. This provides an alternative
proof of Ham's relation, and shows clearly that
Ham's relation is purely a consequence of sym-
metry. However, for the many mode-pair case,
no such conclusion about Imf, ean be drawn by
symmetry argument alone. " Moreover, for the
ground level, dynamic properties of the system
also do not lead in general to Imf, =0, since Imf,
is, in fact, nonzero unless all frequencies are
equal, as can be seen from a perturbation calcula-
tion described in Appendix C. This calculation
shows that the second-order perturbed ground E-
level wave functions (with the coupling as a per-
turbation) contain a nonzero A, vibrational part of
second order in the coupling coefficients, demon-
strating that Imf, 40." This agrees with the fact
that p and q, expressed to fourth order in the
coupling coefficients on the basis of a perturba-
tion calculation, "explicitly satisfy q &-, (1 + p).

For an E level with M &-,', symmetry does not
require )I"2 =0 [as can be seen from Eqs. (A34a),
(A35a), and the form of (A9b)], so that q &-, (1+p)
unless y"2 =0 results as a special dynamical prop-
erty of the system. In addition, the reduction fac-
tor q is zero. From Eq. (16b) this is equivalent to
(y"'~)t'"') = (y"2~X"2), which follows from the ex-
pressions (A34a) and (A35a) for y"& and y"2, and
the fact that if L, w 0, the transformation 6)&- 8&

+v/2I, converts (Refz~Refz) into (ImfJImfz) and
converts (Regz~Regz) into (ImgJImgz). On the
other hand, in case M =-,', q can be expressed as

p =2(X"2IX"2) —1--1, (26')

where the inequality holds unless X"& =0 as a spe-
cial dynamical property of the system.

An immediate consequence of q =0 is that the
Zeeman effect of an E vibronic level with M +-,'

is isotropic. This appears to have interesting
implications for experiment, e.g. , (i) a vibronic
level observed to have an isotropic Zeeman effect
is not necessarily a vibronie singlet, and (ii) if an

q = 2(2r)" g ~ ~ ~

(m)) 0

~ 00

c([m ])c((™y))pg
'

pN dp dpi'

(26)

which is, in general, not equal to zero. We thus
conclude, on using q = 0 in Eq. (17), that for an E
level, with M&&,

observed vibronic level identified as an E level
with M&-,' is found to have q40, the magnitude of
q may be interpretable as a measure of the extent
of nonlinear coupling.

By choosing energy eigenfunctions of the form
(21) the Schrodinger equation for the Hamiltonian
(18) can be expressed as a system of partial dif-
ferential equations in the c's and d's of Eq. (22).
The Schrodinger equation written in this form
takes explicit account of the symmetry, which
includes the fact that the c's and d's can be chosen
real. The same is true of an expression [such as
Eq. (26)] for a physical property given in terms of
the c's and d's. The dynamic properties of the
system are determined by determining the c's and
d's as functions of p» p». . . , p» a d these c-
tions are determined as solutions of the differen-
tial equations. Study of the properties of these
functions should be a useful approach to under-
standing the dynamic properties of the system.

IV. TRIPLET ELECTRONIC LEVEL IN

CUBIC SYMMETRY

In this section we treat the case of a Tj or T2

electronic level in cubic (or tetrahedral) symme-
try, coupled to the crystal vibrational modes. We
assume the most general form for the vibronic
coupling within the framework of the Born-Oppen-
heimer approximation, so that our discussion
would be applicable for a vibronic Hamiltonian of
the form

36(T) =H(A, )8+H(8)g, +H(e)$, +H(() v,

+H(q)V„+H(g) 7, +H(x) g„+H(y) g, +H(;) g,

(27)

Here, H(A, ), (H(8), H(e)), (H(g), H(q), H(g)), and

(H(x), H(y), H(z)) are operators in the vibrational
coordinate space belonging, respectively, to A„
E, T„and T„while the electronic operators (or
their matrix representations with respect to the
electronic triplet) 8, Se, g, , 9 „f'„,
S„and Z, have been defined by Ham. '

We confine our discussion to vibronic levels of
X(T) of T, (or T,) symmetry for the case when the
electronic level is T, (or T,); such vibronic levels
are of particular interest as ground levels. "" To
be specific we assume a T, electronic triplet in
0 symmetry" and investigate the relation among
the reduction factor K(E), K(T, ), and K(T,) defined
below. In accordance with Sec. II, the most gen-
eral form for the normalized vibronic wave func-
tions 4'~&, 4'~& and 4'~i transforming as partners
for the T, irreducible representation are given by
Eq. (1) with the y,„,y„,y„given in column matrix
form by
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X ' —2Xe +5~3 Xf

-(I/v2 ) X."+(I/~2} X~

(I/~2) x„"+(I/~2) x„' )
1 2 XI+1 2X

X '- 2Xe —aux&
—1 2 X„'+1 2

(-((A& )x„"~ ((/~&)x„'*)

4' '= I (I/~2)x '+(I/~2)x"

(28a)

(28b)

(28c)

a.mong the three reduction factors. This is analo-
gous to Ham's relation q =-,'(1+P). The question of
when f(T,) =0 holds, is of some interest. This
question is discussed below for two special cases.

In the case of coupling only to vibrational modes
of E symmetry, denoted by (Qe„Q„),(Qe„Q„),. . . ,
(Qe„,Q~), no function of (Qe„Q„,Qe„. . . , Q,„)of
T, or T, symmetry can be constructed (Appendix
8}. Accordingly, in Eqs. (28a)-(28c),

T T T F T T
X„=X3 =Xg =X( =Xq =X( =Op (40

and hence f (T, ) = f (T,) =0. In this case not only is
(39) satisfied but also, from (33) to (36),

K(E) =1,K(T,) =K(T,). (41)

Here the X's denote functions in the vibrational

(X&', X„',X&') transform according to A„(e,e) in

E, (T„,T„T,) in T„and (T&, T„, T(} in T„respec
tively. As a consequence of their transformation
properties, we have

&x,"Ix,'& = f (&)6.86„, (29}

K(E) =-(4','lh, lq', 'i,
K(T, ) = z (q, 'I 2, I 4,'),
K(T,) = -&4."I &, iq, '&.

(30}

(31)

(32)

Making use of the expressions (28a)-(28c) for the
vibronic wave functions and (29), we obtain

K(E) =f(A, ) f(E) .'f(T, ) 'f(T.-),---
K(T, ) = f (&,) 'f (E)+ 'f (T—,-) l f (T-,), —

K(T.) =f(&,) 'f(E) 'f(T, )—+-'f(T,)—--
Using these and the normalization condition

1 = f (&,) + f (E) + f (T, ) + f (T,)

(33)

(34)

(35)

(36)

to eliminate f(A, ), f(E), and f(T,), we arrive at
the following relation between the reduction fac-
tors:

K(E) =1 ——,'[K(T,) —K(T,)] —3f (T,). (37)

This is analogous to (17) for the electronic doublet;
T, is the antisymmetric part of the direct product
T, ~ T, just as A, is the antisymmetric part of
E~E. If

f(T, ) =0 (i..e. , X,
' =X„"=X,'=0),

Eq. (37) reduces to the relation

K(E) =1 - -', [K(T,) -K(T, )]

(38)

where f (n) is a normalization parameter depending
on o only.

Following Ham, 2' the reduction factors K(E),
K(T, ), and K(T,) for a T, vibronic state are defined
as

The results (41) were first derived by Ham" for
the ground vibronic level in the case of linear Jahn-
Teller coupling to E-type vibrational mode pairs.
The above analysis shows that these results apply
as well to any T, vibronic states depending on T,
electronic states, even if the coupling is nonlinear.

We next consider the special case of linear cou-
pling to only one T, vibrational-mode triplet
(Q&, Q„,Q~} described by the Hamiltonian'

36'(T}=368+ y'r(Qc ~(+Qn ~n+« ~d (42)

where X, is given by

36, = (I /2g)(Pt'+P„'+P, ')

+ 2i( &'(Q~+Q„'+Qp. (43)

We note that the reduction factors K(E}, K(T,},
and K(T,) for the T, ground vibronic level as cal-
culated by Ham"' to second order in V~ satisfy
the relation (39), which indicates that f (T, ) =0
for the first-order perturbed vibronic wave func-
tion. This suggests the possibility of finding an
operator, analogous to J of Eq. (19), which com-
mutes with the Hamiltonian (42). Such an operator
might be expected, for example, to lead (by an
analysis similar to that in Sec. III} to the conclu-
sion that for a ground vibronic T, level, the T,
vibrational parts in Eqs. (28a)-(28c) do not appear,
so that f (T,) =0. We have not been able to find
such an operator. Nevertheless, there is some
evidence suggesting that such an operator "almost
exists, " that is, an operator exists whose com-
mutator with 3C~(T) of Eq. (42) is small in some
sense.

With the vibronic coupling as the perturbation,
the perturbed ground-level wave functions contain
a T, vibrational part in fifth order, but not in lower
order. This result, derived in Appendix D, ex-
tends to fourth-order Ham's result that f (T, ) =0
to first order, but demonstrates that the relation
f (T, ) =0 is not exact. The fact that f (T, ) =0 for
wave functions correct to fourth order indicates
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that the relation (39) is a good approximation in

the weak coupling regime.
%'e note that according to Caner and Englman,

K (E) =K (T, ) = 0, K (T ) = —',

in the strong-coupling limit, " these values also
satisfy Eq. (39).

Finally, we consider a special case of (2V) for
which X(T) is invariant under the three-dimen-
sional proper rotation group 0'(3). In this case
the vibronic wave functions transform under 0'(3)
according to an irreducible representation D&~',

I = 0, 1, . . . . %e consider here only vibronic
states which belong to D~'~. Regarding the elec-
tronic T, states as belonging toD ", we conclude
that the vibrational functions (}("',yes, }(s Xr&, }(ri,
Xri, ymr2, yr2, }(&r2) of (28) must form a basis for the
representation I" =D'" +DO'+Di" of 0 (3), withthe
correspondence D "-A„D"-T„and D ' -E + T,.
This determines f(T,)/f(E }. The functions (Xe, X„
}(r' Xr' }(&~')then form a basis forD&" and transform
as[2''-x'-y', WS(x'-y'}, 2v3 yz, 2v3 gx, 2v3xy].
Consequently, f(T,)/f(E) = —,

' and, from (33}and

(35), K(E ) =K(T,).
A particular case for which X(T) is invariant

under 0 "(3) occurs for equal linear coupling to an

E mode pair and a T, mode triplet of equal fre-
quency and equal effective mass. In this case the
function space of the vibrational factors in Eqs.
(28a)-(28c) does not contain a DO& component, as
pointed out by O' Brien" and by Romestain and
d'Aubigne, "so that f(T, ) = 0 and (39) holds. Com-
bining (39) with K(E) =K(T,), we obtain K(E) = -',

+ -', K(T, ), a result found earlier. "'4 In case of
more than one such linearly coupled D"' =E+ T,
vibrational mode quintet, K(E) = K(T,}, but the

above symmetry argument"'~ used to conclude
that f(T, ) = 0 does not apply.
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APPENDIX A: SYMMETRY PROPERTIES OF THE LINEAR

jAHN - TELLER HAMILTONIAN FOR ORBITAL
ELECTRONIC DOUBLET

%e shall study in detail the symmetry properties
of the Hamiltonian Xi(E), given by (18), on the
basis"*" that the operators J, @, and K commute
with Xi(E), where [see Eq. (19) and following text]

(A1)

t = -g%.e— 8 0

0 -8,
K = complex-conjugation operator,

which can readily be shown to have the following
properties:

g2 g K =8 (A4)

(AB)

(AB)

where

fi =- Q c((m,.j) cos Q m, &, .
(m.j

I
f;-=Q c((m,])sin Q~n, e, , .

jm,.)
(A9b)

and gi and gi are defined similarly. If 4'„ is an

eigenfunction of Xi(E), then so are 4"„and 4'„,
since —,'(1 +4'} commutes with Xi(E).

Similarly, if 0 „is an eigenfunction of Xi(E),
then so is 6'0 „;moreover, J6" =-6'4 implies that
6'4„ is an eigenfunction of 4 with eigenvalue -I,
and is orthogonal to 4'„.

Time inversion symmetry, [K, Xz(E}]=0, implies
in addition that if 0'„ is an eigenfunction of Xi(E),
then the c's and d's in (22a.) and (22b) can be chosen
to be real. This can be seen as follows. Since
Xi(E), 6', and K commute with each other, an

eigenfunction 4'„' of Xi(E) and (P can also be chosen
to be an eigenfunction of K, that is, real or imagi-
nary. From the linear independence of the trigono-
metric functions appearing in the f 's and the g's
in (ABa), one can show that for 4„' to be real, the
c's and d's must be real functions. If one requires

A. Eigenfunctions of K (E), J, 6'. and E

Eigenfunctions 4„ofJ with eigenvalues M (M =1.
+-,', 1. an integer) are discussed in Sec. III; their
form is given by Eqs. (21), (22a), and (22b}. Since

[Xi(E),Z] =0, an eigenfunction of Xi(E) can be
chosen to have the form of 4„.

Eigenfunctions of 6' even and odd under 6' ca.n be

constructed by using the projection operators
—,'(1 ~(P). In particular, we have

4„'=-2 '"(I+d')+ 4 -=-i2 "'(I -6')4 (A7)

These functions are given explicitly by

hf (fN-1/2 +go+1/2)i e (J .N 1/2 +Af+1/2-)4El

(ABa)

VN-1/P. +IF+1/2)~6 ( ~M-1i2 g& "i }~/2e &

(ABb)
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4'„' to be imaginary, the result differs only by a
phase factor. We shall henceforth assume that
the c's and d's are real. With this choice of phase,

fr, =Refr„ fr, =Imf~,

gg =Regr, gI =Imgg. (A10)

Also, 4„ is invariant under K6', so that

4'~=@2 Re@'~, 4'~ ——v2 Im@'~.

(A11)

(A12)

B. Symmetry group of K (E)

The group" 9 of the Hamiltonian 3C~(E) is gen-
erated by the elements e '~~, 6', and K,

9 = {e-"i',6,K}, (A13}

where Q is any real number. The group element
e '~~ has the explicit form

U(P) = exp(-i JQ) = exp[-i(g I, )g] exp(& i8,$)

=exp[-i(QI„)P](cos~ &+ i8, sin~ p), (A14)

showing that

C. Symmetry of the eigenfunctions of K~(E)

q'(Q, q) =x, (Q)0&(q)+x, ( Q)4, ( q) (A19)

appropriate to Kz (E); R is an element of the cubic
group, Q = (Qe„Q„, . . . , Q,„},and q represents the
electronic coordinates. Accordingly, we write

We now regard (4'„,4'~) as a pair of degenerate
orthogonal eigenfunctions of K~(E) such that 4'„*=(P4'„
and JC „*=-M4'„*. Thus, each energy level is doubly
degenerate (barring accidental degeneracy).

We first identify the irreducible representations
of 9' generated by the basis functions (4'„,4'„*).
From U(P)q„=e ' ~q„, 6'4'„=q„*, etc. , we deter-
mine the representation and its characters, and
that (4'„,4'„*) transform according to the irreducible
representation E„' of 9' shown in Table I.

We next make connection between 9' and the cubic
point group (0 or T, ) We .show that each operator
representing an element of the cubic group can be
expressed as an element of 9', as far as the opera-
tor's effect on a vibronic wave function is con-
cerned. In this sense the cubic group can be rep-
resented by a subgroup of O'. To show this, we
examine the effect of the operator O„on a general
vibronic wave function

U(y) =—U(/+2lr) = -U(&j)}, U(y+41r) = U(y). o, =o, (Q)o, (q), (A20)

Also, as a consequence of Eq. (A6), we have

U(e}5' =6'U(-y),

U(Q)K =KU(Q).

(A15)

(A16)

(Al 'I)

The subgroup of 9 generated by U(P) is isomor-
phic to the double group C„of the two-dimensional
rotation group C„. However, the group

9I [eks4 g}
is not isomorphic to the double group C„„ofC„„
= LC(g), ot, even though the property C(g)o„
= v„C(-g), analogous to (A16), holds. The order
of the group element 6' is two: 6" =8, while the
order of o„ in C„„is four: v2„=8, 04=E. Thus, the
correspondence 6'- r„does not yield an isomor-
phism. The difference between the groups arises
from the fact that C„„is related to two-valued
representations of C„„and to spinors, while the
state space of X~(E) involves no spinors.

The character table for 9' is given in Table I.
Every irreducible representation of 9' can be
chosen real by suitable selection of basis func-
tions. Table I also gives the irreducible represen-
tations of C„„if U(P}-C(P},(P-o„, even though
9' and C„„are not isomorphic. In contrast, in the
case of the analogous finite groups 9,' = IU(-', v},6'}
and C,„, the character tables are different.

If we write the vibronic wave function %(Q, q) in

TABLE I. Character tables for Q' and C„„;E
= U(2~); L is a positive integer and M is a positive
half-odd integer.

C „
gl

~(y), c(-e)
U(IIt ), U(-III})

C(4)~„
U (ft) )6'

A(
A2

gl

1
1
2

-2

1
1

2 cosLQ
2 cos Mft)

1
-1

0
0

where Oz(Q) and Oz(q) operate respectively on the
vibrational and electronic coordinate spaces. Both
the basis sets (ge, g, } and (Qe„Q«) generate the ir-
reducible representation E of the cubic group
(with the same representation matrices). We have

2

o.(q)C. = g C. D'(R). .. (A21)
m =j.

where g, =pe, g, =g, and Ds(R) is the representation
matrix. Operating on (A19) with (A20) and using
(A21), we obtain

o„q'(Q, q)=[D (R)„o (Q)x, +D (R),o (Q)x, ]tI|,

+ [D'(R }„o,(Q) x, +D'(R)„o,(Q) x,] 0,.
(A22)
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the form of a column matrix, Eq. (A22) takes the
form

=D & OR@ (A23}

We assume that the representation D~ has been
chosen real unitary, so that every element 8 of the
cubic group can be represented as a rotation (h4&, )
in the electronic function space (&i&„g,) and in each
(Q»„Q„)vibrational coordinate space, where p,
specifies the angle of rotation and 8 takes the
values 1 or 2 denoting respectively proper or im-
proper rotations. Thus,

D'(R)=D'(64 )= (~)
sinQp cosQp

=v(h}e 'coca,

with

v (1)=8, ~(2) = -~.

(A24)

(A25)

Next, we introduce polar coordinates (p„0,}for
each (Q~„Q«}. Consistent with the specification of
D (hp, ) in (A24), we find that

Os(Q) =0(zq &(Q) =B(&g)exp iy, Q-l, , (A27)

with

B(1)=1, B(2) =61. (A28)

Combining Eqs. (A23)-(A25), (A2'7), and (A28) gives

o„=o(z ) w(&&exp -iy, Ft) exp(-isa, &,

(A29}

with

~(1)=8, m(2) = -die, =6'. (A30)

Since y, in Eq. (A26) is a periodic function in each
e, with period 2w [consistent for example with

Eqs. (22a) and (22b)j and since D (8&i)is &periodic
in f3')p, we can write O, ~& ) in the more generalp)
form

0&z» =&(h}exp ig l, &i&'+8,$"-
p

(A31)

0.(e)X=O„...(e)X(e„,8„.. . , B.)

=X(+8, -4., "., ,8.4, -, + .B"-.y.),
(A26)

where the upper and lower signs correspond re-
spectively to proper and improper rotations.
Hence,

(P(&J& ~ PD(&J&(R)+ 0 (A 32)

to obtain the transformation properties of 4„' and
&1'„given by Eqs. (ABa) and (ABb). We find that
for M = z +3k, (&i&„', -q&„) transform as basis func-
tions (Ee, E,) of E; for M =-', +3A,', &li„' belongs to
A „and 4'„ to A„and for M = 2 + 3&&&, (0'„', &i&„) trans-
form as partners (Ee, E,).

The analysis for the group O„differs from that
for 0 only in that (ge, g, ) transform as E or E„
while only (Qe, Q, ) which transform as E, can occur
in Xz(E,) and &z(E„).

D. Transformation properties of the vibrational parts

in 4~ and 4'„

The vibrational parts of 4'„and 4'„are shown in

Eqs. (ABa) and (ABb). According to Eqs. (A9a),

TABLE H. Generators for 0 and Td mth correspond-
|ng values of (SfIIO) and elements of 9'.

Generators R
Td 0

pressed as U(P) =e ', if g = P' =-2P", that is,
tf Po=-4»(n'+2n"). This is a necessary condition
for expressing O„as an element of 8'.

We need not consider all elements of the cubic
group; it suffices to treat the generators of the
group, since these determine the group. Suitable
generators for the groups 0 and Td are listed in
Table II. The threefold rotation C, is taken to be
about the [111]axis: C, =C„„„,so that 0„f (x,y,z)
=f(y, z, x), where f is some function. Similarly
for R =C„, Osf (x, y, z) = f (y, -x, z).

Values of (g&i&0) for operators Os corresponding
to generators of 0 and T„are also given in Table II.
For each of these values, (1,—', ») and (2, 0), it is
possible to express O„as an element of 9'; such
elements are also shown in Table II. These ele-
ments of 9', 0&&,„~»= U(—', ») and 0&, ,&

=6', gen-
erate a subgroup 9 of 9'; 9" is isomorphic to D3,
a subgroup of 0, and to C,„, a subgroup of T, . The
irreducible representations of 9' can be decom-
posed with respect to those of its subgroup 9".
Proceeding in the usual way using character tables,
we find that E,'~„», E,'~„», and E5&„» with k a
non-negative integer decompose respectively into
E A. y

+ A 2 and E Basis functions for A. „A„
and E of 9"generate representations of 0 and T,
which are also irreducible and denoted by A„A.„
and E.

As a further step we use the projection operator

where Q Qp + 2~ Q fp + 27% and n' and n"
are integers. Jn the form (A31), 0« &

can be ex-
p

C3
iC4

C3

C4
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(A9b), and (A26), f~ and f3~ transform under C„„
as

O(e81(Q)fr —f~ cosL41 ~ f~ srnL41, (ASSa)

0&88, (Q)fr, = fr, -si nL41+ f~ cosLQ, (A33b)

where the upper and lower signs correspond to
8 =1 and h =2, respectively. g~ and g~ transform
in the same way. We see from (ASS} and Table I
that f;, f,', and (f~, f~) belong to the irreducible
representations A, „A.„and E~ of C„„, where I
is a positive integer. With the aid of Table II we
see also that (fz, f~) generate a representation
of the cubic group. By working out the characters
for different classes we find that for I.=3k, 1+30,
and 2+3k (k is a non-negative integer), (f~, f~)
belong, respectively, to A, +A» E„and E of 0
and T~.

Next, we again use the projection operator (A32),
but with On replaced by On(Q). We find that for
L =3k, f~ transforms as A, and f~ transforms as
A, of 0 and T~; for L =1+3k, (f~, f~) and for I.
=2+3k, ( f~, f~) tr-ansform as partners (E8, E,}.

We are now in a position to express the E vibron-
ic wave functions in the forms (14a) snd (14b). We
find by inspection that for M = 8 + Sk, (4'„', -4'„)
have the forms of (14a) and (14b) with

The Hamiltonian for two-frequency linear Jahn-
Teller coupling is given by

Sc =sc, 8+ (I', Q., + I,Q„)&.+ (I',Q„+I', Q„)u„(CI)
where

+ ~2(P8;+f;,')+ au', (Q8,'+Q„') (C2)

To simplify the notation, we denote by ln„n„n„n,.&

the normalized eigenfunction X,, (Q8, ) X,, (Q„)x,,(Q8, }
&&X„, (Q„) of SC8 with eigenvalue (n, +n, +l)u,
+ (n, +n, + 1)~„where k =1 and the X's are the usual
simple harmonic oscillator type wave functions.
Using the method of Raleigh-Schrodinger perturba-
tion theory, we find the following expression for
the second-order perturbed ground vibronic wave
function i%88&"' of SC:

where Q~m, =L, and L takes on integer values.
These functions, for given I, are special cases of
fr', and ff defined in Eqs. (A9a) and (A9b). We saw
in Appendix A, subsection D, that the latter func-
tions can form basis functions only for the irreduc-
ible representations A, „A.» and E of 0 or of T, .

APPENDIX C: X"24 0 FOR A TYCHO-FREQUENCY K (E)

X"' =12 f11, , X"' =~2f;1, ,

X8 = 1I2 tgsa+» Xf = 1I2 gsa+11

(A34a)

(A34b)

while for M = 8+3k, (4'„', q'„) have the forms of
Eqs. (14a) and (14b) with

~.&)

lq, & =loooo)+ p, llooo&+ p. loolo&

+ p', (l2ooo&+ l0200&)/&2

(CS)

X'11 = v2 g X
12 = —~2

x:= ~&fl„.. x', =~&f;, .
(A35a)

(A35b)

Recall that from (Alo), f~ =Ref~ and f3~ =Imf~.

where Q(„}denotes summation over distinct sets
of integers (m„m„. . . , m„}, and the k's are func-
tions of the p, 's. E is a linear combination of the
functions

cos w~ 8~ and sin lpga
~ e~,

APPENDIX B: SYMMETRY OF FUNCTIONS OF
E - MODE COORDINATES

We show here that no function of (Q8„Q„,. . . ,
Q8„,Q,~) can transform as a basis function of T,
or T, symmetry for either of the cubic point groups 0
or T„. Consider the multiple Fourier series expan-
sion of afunction Eof (Q8„,Q„, . . . ,Q8„,Q,„)interms of
polar coordinates (p„8„.. . , p„, 8„),

E(p„8„.. . , p„, 8„)= Q k((m, })ge' ~8&,

(m~)

+ p2(l 0002) + l0020&)/v'2

+ p, p, (lolol&+llo1o&), (C3a)

l q, &
= -p, loloo& —p, loool&

—((ta1 —~2)/(~1+ ~2)1 p1 p2(I0110& —I1001&),

(C Sb)

and a similar expression for lee&"'; here p,
(y2 /2~3)1/2

Comparing with Eq. (14a}we see that X"2 to
second order is the terra in lg, & involving l0110&
—l1001), which is proportional to

Q61 Q82 Q81 QCR pl p2 ( 1 2)'

This shows that, if &, 4 „ then X"2+0 already
in second order, and q =-,'(1+p) is not satisfied.

APPENDIX D: PER URBED TRIPLET VIBRONIC
GROUND STATES WITH f(T

In this appendix, we describe a calculation of
the perturbed ground vibronic wave functions of
SC~(T) [see Eq. (42)] to show that vibrational parts
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of T, symmetry actually enter in the fifth-order
perturbed wave functions. We first express the
linear Jahn-Teller perturbation ~ as follows:

~ =2-&(2k(A+A'), (Dl)

A =a&%'&+a„W„+a&&&, (D2)

where a&, atL. , etc. , are the usual annihilation and
creation operators [a, = i(2gg~) &('(P& ip-su@, )]
of the simple harmonic oscillators, and k
= (k/g&)' 'Vr. Next, we observe that the vibronic
states of the unperturbed Hamiltonian K08, given
by Eq. (43}, can be classified into discrete energy
levels characterized by the eigenvalue n of the
number operator

x = (k~) '(x-, ',a—~)-8

=(a&a&+a„a„+a&a~)8. (Ds)

([o&) ( 0
q ( o

q
lr )"'=

0 0 0)

It is not difficult to verify that if f&(l4'„} =»l% „},
then Atlq'„) and All„) are respectively eigen-
states of N with eigenvalues n+1 and n —1. This
shows that the perturbation mixes only states with
n differing by one, which greatly simplifies the
analy s ls.

The ground vibronic level of X,8 is a vibronic
triplet transforming ss T, (assuming that the elec-
tronic triplet is T, }, and is given by

(x,8 —w, )le)"' = -2-"k(A+ A')l T„&"', (D6)

which yields the solution for l&k)'" given by

l
&I }"' = -x Atl T, )"' (DV)

le}"&=-,'~'[-At3+ sA'] lr„}&'&, (Dl 1 )

l&l&}' ' = ~'~». [A +2AA ' —16A '] lT„)' ', (D12)

w, =-, k /(k~)',

l'll}"' =+~&&.'[-3A ' —5AA ' —10A AA '

+lsoA" —2voA'] lr, „&&».

(D13)

(D14)

By expressing the perturbed wave functions in
terms of the unperturbed wave functions, one can
readily see that they have the form of Eq. (26a).

The only contributions through fifth order to T,
vibrational parts of l4} arise from the terms in
l&k)'" proportional to

where». =k/&(2 k&u. The second-order equation is
given by

(x,8 -w)lq }"&=2 '"k»(A+ At)Atlr, „}"'
+w, lr, „)"&

and has the solution

W, = —k'/1&v, (»)
l

&11) 2 &&2At2l T &
0 (Dl0)

Here we have used the fact that AAtl T„)"'=2lT,„)"&.
Continuing our calculation to fifth order, we find

I4 &'"' =[AA" +2A'AA"] lr,.&"'; (D15)

+ +w lT„}' ' (D5)

Using the properties of w mentioned above, it can
be proved by induction that l4'}"& is a linear com-
bination of unperturbed states with n equal to
s, s -2, s -4, . . . , 2 or 1, and 8', =0 for odd s.
Moreover, it is convenient to work directly with
the set of equations (D5). We shall illustrate the
method for the first and second order. In first
order, we have

(D4)

where lo) denotes the ground state of X,. Since
the perturbation is of cubic symmetry, the states
l T,„)' ',

l T„)' ', and lT„)' ' are not mixed by the
perturbation, and nondegenerate perturbation theo-
ry can be applied to each of the three unperturbed
states.

We now proceed to find the perturbed state lT„)
to fifth order With l4. '}"'and W, the sth-order
contribution to the perturbed state and energy,
respectively, we have from standard perturbation
theory

(x.8-w, )l )"'=(w, -~}le&"-"+w,le)"-"

to see this we first use the following result.
For n a non-negative integer, A "lT„)"'contains

no T, vibrational part. This can be understood as
follows. Since lT„)'o' involves only an A, vibra-
tional part, A "lT,„)"'can have a T, vibrational
part only if A "does. Now A~ is a cubic invariant
with a symmetric matrix representation. Con-
sequently, A~" is also, and can therefore be rep-
resented as

At" =O(A, }8+0(8}he+0(e) h, +O(5}V',

+O(&})V'„+O(g }g, . (D16)

There is no T, electronic part in (D16) because
the matrix is symmetric. To be a cubic invariant,
the vibrational operators O(A, }, (O(8},O(e)), and

(O($), O(&i), O(f)) must transform as basis functions
for A„E, and T„respectively. Thus, A "has
no T, vibrational part and neither does A "lT„)'o'.

Through fifth order the only terms in l&l) not of
the form A "lT„)"'are the terms in l&I }"'pro-
portional to AAt'l T„)"' and the terms in l4}"'
proportional to l4}'"&, as is seen by inspection.
An examination of the explicit form of AAt'l T,„)'"
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in terms of harmonic-oscillator wave functions
reveals that it has the form of (28a) with non-
vanishing A„E, and T, vibrational parts, but no

T, vibrationa1. part. Consequently, only the terms
~4')'s' proportional to ~4)'~s' can contribute T, vi-
brational parts to ~4) through fifth order. In terms
of standard harmon. ic oscillator wave functions X„
we have

28XI XI Xg

12~8X.X.X, + I&~2X.X, X, +17~2X, X, X,

»~8X.X, X, +»v2 X.X, X, +»~2X, X, X,f
(D17)

where X~, Xa, Xn, is an abbreviation for Xn, (Q&)Xn, (Q„)
&&Xn3(Qt). The vibronic wave function (D17) can be

expressed in the form (28a) with

X ' = 28Xg XI XI 2 Xe = Xg =0~

-2 '"x."=-~&(x.x.x, -x, x, x, ),

2 "x&' =12~&x,x.x, +18~&(x.x, x, +x, x.x, ),

2 '"x„'=v2 (-x.x, x, +x.x, x.),
2 '"x„'=»~&x.x, x.+18~&(x.x, x, +x, x, x,).

(D18)

%'e thus conclude that in the case of linear Jahn-
Teller coupling to a single T, vibrational-mode
triplet, the ground-state wave functions actually
assume the most general form (28), so that f (T, )
x0.
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