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Librational excitations in phase II of solid CD,
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An attempt has been made to study the librational excitations in the partially ordered phase II of
solid CD4. The only parameter of the theory is fully determined by static properties of the system. The
time-dependent Hartree approximation has been used to calculate the frequencies of the excitations. It is
shown that the ordinary harmonic theory is not a good approximation for the system under study.

I. INTRODUCTION

In many molecular crystals the energies of the
internal modes (involving deformations of the
individual molecules) are much higher than the
energies of the external modes (involving displace-
ments or rotations of practically undeformed mole-
cules). If one is only interested in the external
modes, it then is a good approximation to treat the
individual molecules as rigid units. ' For the trans-
lational modes the harmonic approximation is
usually a sufficient tool; only for the very lightest
molecules such as H„HD, and D, are more elabo-
rate techniques necessary. For the rotational
modes two extreme cases can be distinguished:
(i) If the moment of inertia of the molecules is
large and if the rotational potential is strong, the
harmonic approach is also a good starting point
for the rotational motion, "i.e., one expands the
potential energy for small rotations out of equilib-
rium. (ii) If the moment of inertia of the molecules
is very small and if the rotational potential is
weak, one starts from free-rotator wave functions
and treats the potential as a perturbation. '

Solid CD, fits in neither of the two categories.
At 27.0 K it undergoes a phase transition from a
rotationally disordered high-temperature phase
into an orientationally ordered one. At 24.5 K the
mean angular displacements are 16'.' If an angular
localization of this order were to be accomplished
by an expansion into free-rotator functions the
series would have to contain many terms. On the
other hand displacements of 16 are much too big
to be handled in a harmonic approach. The time-
dependent Hartree approximation~ appears to be
extremely well suited for rotational excitations and
its application to solid CD, is the main aim of this
paper.

In Sec. II the structure of CD, in phase II (be-
tween 2l.o and 22.1 K) will be outlined and the
model to be used in the calculations is introduced.
It contains only one adjustable parameter, the
octupole moment of the CD, tetrahedron. A sum-
mary of the approximations made is also given.

In Sec. III, for reasons of later comparison, the
harmonic theory for the model is developed. The
Hartree solution for the static properties of CD,
is presented in Sec. IV. The time-dependent Har-
tree approximation finally is given in Sec. V and
the results are compared with those from the har-
monic approach.

II. MODEL

The structure of methane II is shown in Fig. 1.
This structure has been predicted by James and
Keenan' on the basis of molecular-field theory
and it has been verified in a neutron scattering
experiment by Press. ' In CD, phase II is realized
from the plastic to ordered phase transition at
27.0 to 22.1 K where CD4 undergoes another phase
change. CH, probably stays in phase IIfrom 20.4 K
down to zero temperature. The main features of
phase II are summarized as follows: The struc-
ture is fcc with eight molecules in the unit cell.
Six of them are ordered orientationally in a way
analogous to the order of the spins in an anti-
ferromagnet. The cage of "antiferromagnetically"
ordered molecules does not produce a field that
interacts with the octupole (the lowest-order elec-
trical multipole of a tetrahedral molecule) of the
CD, molecules on sublattices 1 or 2. Thus these
molecules are still disordered with an equal proba-
bility distribution of the deuterons on a sphere
around the C nucleus (apart from a slight modula-
tion due to higher-order multipole interactions).
Figure 1 shows only the equilibrium orientation of
the ordered molecules. Owing to zero-point mo-
tion and thermal excitations, the molecules will
make excursions around their equilibrium orienta-
tions. The proton distribution for the ordered
molecules therefore will be smeared out on the
sphere with pronounced peaks at the equilibrium
proton positions.

Besides the assumption of rigid molecules, some
additional approximations will be made, to simplify
the calculations. (I) It will be assumed that the
centers of mass of the molecules are bound to a
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monies for a rotation of the coordinate system by
Euler angles :

& .(e', 0') = g & „(e,4) U„".'( ) (2.3)

I"IG. 1. Orientational arrangement of the molecules on
the eight sublattices in phase II of solid CD4. This
structure corresponds to the minimum of the free energy
(from 27.0 to 22.1 Kl and to a local minimum of the po-
tential energy of the octupoles. The octupolar field at
sublattices 1 and 2 vanishes.

rigid lattice, i.e., all translational degrees of
freedom are neglected. This amounts to a restric-
tion to librational modes only. Translational pho-
nons and the effect of phonon-libron interaction
thus are neglected from the start. (II) A further
approximation is the total neglect of excitations
at the sites of the disordered molecules. In the
harmonic approach there is no way to include these
particles. In the time-dependent Hartree approxi-
mation they could be adequate1. y described by free
rotators. For simplicity it has been chosen, how-

ever, to replace them by inert units not showing

any transitions to excited states. Thereby an

important damping effect has been omitted, namely,
that the energy of a, libron may be transferred to a
disordered molecule which is excited into one of
its rotational levels. (III) The James and Keenan'
Hamiltonian

III. HARMONIC APPROXIMATION

In this section we follow a calculation by Stock-
meyer' in which he obtained the librational fre-
quencies for a hypothetical methane structure with
all molecules parallel. A vector angular displace-
ment A,

' is introduced (a = 3, . . . , 8}with components
(X,') (& =x, y, z) that denote small rotations of the
molecule (i, a) around the respective coordinate
axes. In equilibrium X,' =0. The Euler angles are
functions of X,'

(u', = u)', (i', ) (3 I)

For shorthand the notation U~", (e) =u„(~) will be
used. (C,'~~)„„ is a dimensionless 7&& 7 matrix for
every pair of nearest neighbors. Approximation
III is justified by the successful description of
static critical phenomena at the 27-K phase transi-
tion of CD4 with use of the James and Keenan Ham-
iltonian. '

In the harmonic approach two additional approxi-
mations are made: (IV} The potential energy is
expanded about its minimum. Because of the large
excursions out of their equilibrium orientations the
deuterons are smeared out on a sphere around the
molecular center. Therefore the effective angle-
dependent interaction will be reduced. This effect
is neglected in the harmonic theory (V) .Finally
in the harmonic theory the expansion of the poten-
tial for small displacements is terminated after
the second-order term. The approximations (IV)
and (V) are avoided in the time-dependent Hartree
approximation.

x,„=—g g V.",
g y$=1 Ozb=l

(2 I)
and the equilibrium Euler angles are denoted by
~,' =&a,'(X,'=0}. The cubic rotator functions are ex-
pressed in terms of X,'.

I2

P, II=1

if molecules (i, a) and (j, h) are nearest neighbors
and V,', =0 otherwise. I, is the octupole moment
of the CD, tetrahedron, R is the nearest-neighbor
distance, and &,' denotes the set of Euler angles
that describe the orientation of molecule (i, a).
U'„'J(&u) is a cubic rotator function that is defined
by the transformation properties of the cubic har-

(2.2)

is used for the ang1e-dependent interactions. In-
dices i and j run over all unit cells, indices a and
b over the eight sublattices. V,'~b is restricted to
nearest-neighbor octupole -octupo1e inter actions:

u„(~,') =u„(~.'(&.'))

and expanded for small values of X,';
3

u„(~,'(X,')) =u, (~,')+P, ,", (a,')„
(~a&a

1 ~ 8'g„
2 K (x') s(x')

t

(3.2)

(3.3}

The derivatives in Eq. (3.3) have to be taken at
equilibrium, i.e. , at X', =0 or ~', =~,'. They do not
depend on the cell index i and therefore the follow-
ing abbreviations may be used:
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A. '„= u „(&,'), (3.4a)

62' ((gl(P))
a(xI} s(~,'). -„~,

Equation (3.3) now reads:

(3.4b)

(3.4c)

1

ne0=1

Equation (3.5) is inserted into 3C,„(2.1}. The con-
stant term is uninteresting. There is no term
linear in X,' as the expansion is about a minimum of
X,„. The second-order term is denoted by fI|2:

7 7

Q (X,'$11Pq (((C,'t)„~Mp g(X~)8+ —Q Q A'„(C,"~)„„1„g,(&q)8 (&,),
n, =1 ]I, v=1 ja, jb =1 )I. v=1 ja,j 5

(s.6)

As an example the matrix M' for a =7 is shown in Table I. Using the results of J'ames and Keenan for C,
the second term in (3.6) is simplified to

357

Going over to spatial Fourier transforms by

(~.') = g ~'(q)e""

it is observed that M does not depend on the cell index.

2 2 x'(q) M't5 g+ghf'„, c'„„(q)M,, s) l~s(i).
a&, ns q )I~ V

(3.'t)

(3.8)

If the kinetic energy of the rotation
A.'„(q, t) =e'„(q, F)e' " "' (3.11}

(3.9}

-8i'„(q)= ', g 3576, +giVP, „C'„gq}M'„, &',(q)R7
)Is V

is solved by the Ansatz

(3.10)

TABLE I. The matrix MT& n denotes the linear change
of the seven functions u& for small-angle rotations from
the reference position.

0
0

--,'~i5
0
0

+—12
0

0
--,'~].5

0
0
1

0
0

-2
0
0
0
0
0
0

(where 8 is the moment of inertia of the molecules
and P =8%,') is added to P„ the Hamiltonian func-
tion of the system is obtained. The equation of
motion

e'„(q, $}are the libron coordinates and ~(q, g) are
the corresponding frequencies. g is the branch
index. The libron frequencies are obtained from
the solution of the secular equation

~'(q, k)e'. (q, h)

2
357&' + M'„„C'„,qM, & es q, g.

(s.12)

The libron frequencies along the [100] and [111]
directions in reciprocal space are plotted in Fig.
2. I', /R'8 is the only adjustable parameter of our
theory. If I2/R' is estimated on the basis of the
phase-transition temperature of CD, ': I',/R'
= —,', ksT, = 2.12ks; and if )f'/8 is calculated from
the known C-D distance: k'/8 = 7.59ks, the energy
scale in Fig. 2 is found from e = (I'I', /R'8)' '
=4.0k~. A better estimate for I',/R' is obtained
when quantum effects are included into the calcula-
tion of T,.'0 However, to stay consistently within
classical theory, the improved value of I',/R'
should not be used in this section.

IV. HARTREE SOLUTION

For the description of the single-molecule rota-
tion it is convenient to transform from Euler angles
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The cubic rotator functions [Eq. (2.8)] are also
expressed in terms of quaternions,

If ( )
(&}= U( ) (~) (4.3}

20 ///r
Jrr

/ /
r

if 7 and &o are related to each other by Eq. (4.1).
If the notation h„(r) =H„",'(~) is introduced, the
octupole-octupole interaction [Eq. (2.2)] becomes

(4.4)

The seven functions h„(v) are listed in Appendix A.
Guided by the classical solution of the molecular-

field equations for methane phase II' and its ex-
perimental verification' the orientational density
matrix is approximated by the Hartree density
matrix, a product of single-particle density ma-
trices:

[0—
&, =1 a=1

(4.5)

a runs over the eight sublattices in phase II and i
runs over the N unit cells. M =8M is the total
number of molecules in the crystal ~ p,' is expected
not to depend on i. The time-independent Hartree
density matrix fulfills the equation

i I i

[I„,X]=0,

with the Hamiltonian

(4.6)

IO O.e QS Qq Q2 0 O.i 02 Q~ 0+ QS

FIG. 2. Libron frequencies for the f100] and [111}
directions in reciprocal space (full lines, twofold de-
generate; dashed lires, single). The energy is given in
units of g =(]]2 I /g e) The band distance g(dp (357)
is due to the Einstein term in Eq. (3.12). Frequencies
along t110] are in the same energy range.

+ =(a, p, y)" to quaternions. " The quaternion

elements are defined by:

. P= sin sin1 2 2

. P ~-y
T2 = sin —cos

2

P . ~+y
T = cos sin3 2 2

P &+y
T = COS —COS4 2 2

(4.1)

(4 2)

and they fulfill the condition ~, r', =1. In terms
of quaternions, the kinetic energy of a CD4 mole-
cule becomes'

x = z~+ — v.'j„
ia iajb

(4. I )

where K,' is found on replacing v by v,' in (4.2).
From (4.6) the single-particle equations

[pl ~ l (H)] (4.8)

are obtained, where the Hartree Hamiltonian is
given by:

+& (H) pi+yt (H)
a a (4 8)

(4.10)

The integration is performed over the surface of
the four-dimensional unit sphere. For the solution
of Eq. (4.8) that has been found experimentally,
p,' and the Hartree potential V,' '"' do not depend on
i. V,' '~' vanishes for a =1 and a =2 (disordered
molecules) and is proportional to -h„h„-h„h„
-h„and h, at sublattices 3, 4, 5, 6, 7, and 8,
respectively. It is convenient to use an individual
primed coordinate system (8', p') for each of the
six sublattices 3-8. These coordinate systems are
fixed in the crystal but rotated with respect to
crystal axes by +&w and -4m around the x axis for
molecules 3 and 4, around the y axis for mole-
cules 5 and 6, and around the z axis for molecules
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A(T) = — ', d7 p(v, v)h, (7),
357 I',

(4.12)

where the single-particle density matrix in (4.12)
in turn depends on A(T) via the relation

p(7, 7) =exp[-PX'"&(f)]/Tr[exp[-P3t'"'(f)]).

(4.13)

For the calculation of the trace we restrict our-
selves to the ground state and the first excited
states of the Hartree Hamiltonian. The mave func-
tions (N, and N, are normalization constants)

~000) = exp(f', /n', )/N„

~100) =7,7, exp(V,'/n', )/N„

~
010) = f',T ~ exp (7~4/n'&)/N„

~001) =i,f, exp(f. ', /o'&)/N„

(4. 14)

(4. 15)

are used in a variational approach with &p and
as variational parameters, determined from
BE,(o.,)/Bo., =0 and BE, (&&&,)/Be, =0. E, and E& are
the expectation values of the Hartree Hamiltonian
in the ground state and first excited state, re-
spectively. The wave functions (4.14) and (4.15)
have to be symmetric with respect to an inversion
in 7' space (7 - 7}, as-7 and -f correspond to the
same set of Euler angles. The limiting forms of
the wave functions are free-rotator wave functions
(a„n& -~}for a shallow potential and harmonic-
oscillator wave functions (&z„a&-0}for a deep
Hartree potential. Equations (4.14) and (4.15) rep-
resent so-called pocket states, "where the wave
function is concentrated in one of the twelve equiv-
alent minima of the Hartree potential. Level split-
tings due to overlap between different pocket states
have been estimated and found to be negligible.
Integrals over the surface of the four-dimensional
unit sphere, appearing in Eo and E„have been
performed term by term after expansion of the
exponentials. If I', /R' were known, Eqs. (4.12)
and (4.13) could be solved self-consistently, yet
no direct measurements of I, exists. Therefore
p(f, 7) will be evaluated for different values of
A =A„,. The value of A~& that yields the experi-
mentally observed width of 16 of the deuteron
distribution at T =24.5 K' mill be chosen as

7 and S. Rotations of a molecule with respect to its
primed coordinate system are described by qua-
ternions 7. In these individual coordinate systems
the Hartree potential has the same form at the
six sublattices:

(4.11)

From Eq. (4.10) and the numerical values of the
matrix C (Ref. I, Table V and Erratum) a self-
consistency equation for A(T) is derived:

V. TIME-DEPENDENT HARTREE APPROXIMATION

In the application of the time-dependent Hartree
(or random-phase) approximation' to the problem
of rotational excitations in CD, phase II, we mill
follow very closely the formulations of Fredkin
and Werthamer' and of Schmidt. " To the Hamil-
tonian of the system a small time-dependent ex-
ternal disturbance Ht(t) is added:

(5.1)

The expected elementary excitations are librational
motions of the molecules and therefore we shall
calculate the response of the system to a torque
applied to the individual molecules:

H, (t) = -M,' (t) '~,'.
M,' (t) is the applied torque and }&& describes a
rotation of the molecule with X,' as rotation axis
and a rotation angle ~)&&~. In terms of quaternions

(5.2}

(&&&) = arcsin[2(v&) (v&),],
which for small rotation angles is approximated
by:

(5.3}

The perturbing term in the Hamiltonian will change
the equilibrium density matrix by a small amount
to

p,'( t) =p, +p,'( t), (5.4)

which in turn will give rise to an additional term
V,'(t) in the Hartree potential:

x«'&(t) =x' &"'+v', (t), (5.5}

V&(f) = Q Tr(V&~ p~~(t))„.
jb

(5.6)

A(T =24.5 K). F/R' may then be extracted from
Eq. (4.12). For A„;,. = -240h'/Be the ground state
has an energy ED = -118.9I'/88 and a width a&
=0.227. The first excited state has an energy
E& = -44.0h '/88 and a width o.

&
= 0.240. From these

numbers at T =24.5 K a rotational amplitude of
16.2' is obtained. The thermal expectation value
of h&(f) is found to be: gdT p( &, 7) h&(f) =0.696.
From Eq. (4.12) we find: I',/R' =3.86h'/8e =3.6'Ihe
(+10% for an estimated experimental error of 1')
which differs by a factor 1.73 from the classical
estimate in Sec. III. Our result is very close to
the value of 3.40k~ obtained by Kataoaka and Ya-
mamoto' in their quantum-mechanical version of
the James and Keenan paper. It should be stressed,
however, that our value of I',/R' does not suffer
from the uncertainty in the determination of the
critical temperature in molecular-field theory.
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Tr( }»denotes the trace over the states of mole-
cule (j, b}. The von Neumann equation for the
single-particle density matrix (5=1)

In the Hartree representation with vrave functions

li, a, s) describing the sth energy state of the (i, a)
molecule

s
pi(t) =[pt(t), x,,'~"i(t)l (s.v) &i, a, slX;'"'li, a, s'& =E,s. .. ; (5.9)

is linearized with respect to the external distur-
bance:

also p' is diagonal:

i —t p,'(t) =[p,'(t), 3c''"'l [+p„v,'(t)l+[P„H,'(t)1.

(s.8)

&i, a, sip'li, a, s'& = f, s. . .

and a matrix element of Eq. (5.8) reads

(5.10)

a&i, a, sip,'li, a, s') =(H, —E, )(i, a, sip,'li, a, s') +(f, —f )(i, a, slV,'li, a, s'&+(f, —f )&t, a, slH,'li, a, s').
(5.11)

In (5.11) Fourier transforms with respect to time have been used:

(5.12)

From (5.6) we find for the matrix element of V,'

&i, ,alVs.'li, ,a&s=Q Q &t, a, s;i, b, rlV!~li, b, r';i, a, s'&&j, b, r'lÃsli, b, r&.
g, b t'sr

With the explicit expression for V,'~ [Eq. (4.4)] one obtains

(s.13}

(5.14)

(5.15)

2

(~ —E, +H, )&i, a, sip,'li, a, s') = ', (f, —f ) g ggH' (c",) „N'„„„&j,b, rlpqlj b, r'&
y'I~ Psb Ps I

&i, a, s; j, b, rlV,'q~lj, b, r';i, a, s'& = ', +&i, a, slb&(&,')lt, a, s'&(c,'~)q &j b rib (~~y)lj, b, r').
fly It

The matrix elements of b„(7",}do not depend on the cell index i and are denoted by

X„' „.= &i, a, slb, (~,')li, a, s'&

An explicit calculation of the matrix N is performed in Appendix B. Insertion of Eqs. (5.13)-(5.15) into
(5.11)yields the result

+(f, —f,)(i&a, slH', li, a, s'&.

%'ith use of the spatial Fourier transform

(5.16)

(i, a, sip,'li, a, s') = — e' "op'„(q),
q

Eq. (5.16) may be written

(&u-E H, )p', (q)=; (j', - j', ) g g g H'„„.C'„'„(q}H'„„,P"' (q)+(f —f,)H'„(q).
b

(5.17)

(5.18)

As in Sec. IV the actual calculation is restricted to the ground state l0& and the triply degenerate first
excited state of the Hartree Hamiltonian. A state ls = a&, with a =x, y, or z corresponds to an excited
state with one of the crystal axes as the rotation axis. (See also Appendix B.) The only nonvanishing ma-
trix elements of N then are N'„,„and 8'„~. The elementary excitations of the system are found from the
homogeneous version of Eq. (5.18). With use of &u, =E„—E, it reads

(~ -~.) p~(q) = H'7 (f.- fn) Z Z Z H'„, ~c'„'(q)[H' s, Ps~, (q)+H' , sp .8O(q)lO
8 b P II

2

(&+4&,) p,' (q) = H'-, (f -f ) ZZ 2 N'„,. C'„'.(q)[N'. ,s.ps. (q)+H'.,s Sos(q)l.
8 b g, v

(5.19)

(5.20}
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The angle of rotation by which the mo1,ecules respond to the applied torque is:

((Z,')„& = 2 ((7,') (r','), &
= 2 g (i, a, yl p,'li, a, y' &(i, a, y'

I (T,')a(&,'),Ii, a, y &

Y7'

= 2c[(i, a, u( p,') i, a, 0& + (i, a, 0( p,'[i, a, ~&],

where c is shorthand for a matrix element:

(i, a, y'~(7t)„(~,'),~i, ay& =c(&„,5~ „+&~ 5„,).
With use of (5.21) and N'„, =N', „, Eqs. (5.19) and (5.20) can be combined to one single equation:

(5.21)

(5.22)

(5.23)

Equation (5.23) is the random-phase-approxima-
tion (RPA) analog of the classical equation (3.12).
In the classical limit 8 —~ and for T = 0, Eq. (5.23)
must become identical with (3.12). In this limit
p(T, 7) is a & function at 7 = (0, 0, 0, 1) and Eq. (4.12}
yields: A(T =0) =+I',/R' The c.lassical fre-
quency &o, is obtained from an expansion of (4.11)
for small values of x, ' if v = (r, 0, 0, [1 —x'] '~') or
A,, =2g.

357 I',
7 +~RA, (5.24)

~0 = h/8 = 357I', /R'8 then coincides with the classi-
cal value in Eq. (3.12). For the comparison of the
right-hand side of Eq. (5.23) with the corresponding
term in (3.12), use is made of the fact, that the
matrices M and N differ only by a factor ,'5 (see-
Appendix B). Inserting the classical value for &u,

and putting f, =1 and f„=0, the right-hand side
of (5.23) becomes

(5.25)

where M is the transpose of M The matrix ele-
ment b is defined in Eq. (B1). In the classical limit
h„(r) again has to be expanded around equilibrium
(h, = —47, = -2X,). If the wave functions are re-
placed by harmonic-oscillator wave functions 5
= (2h/~, 8)'I' and the large square bracket in (5.25)
becomes 1. If we compare the RPA result from
Eq. (5.23}with the classical result, the following
improvements are noted: (1) From the solution
of the Hartree equations an improved value for
the parameter I',/R' has been found. This value
differs by a factor 1.73 from the classical esti-
mate. (2) The frequency &o, is given by h&o, =E,
-E,. Contrary to the classical case, it is tem-
perature dependent, as the Hartree potential it-
self depends on temperature. (3) @to, has been
obtained by a variational approach from the full
Hartree Hamiltonian whereas the result of Sec.

III depends on the harmonic approximation which
is unreliable for a shallow rotational potential.
At T =24.5 K, the combined effect of temperature
and anharmonicities overcompensate the factor
1.73. The value 8, =71k~ is slightly below the
value (357)'I'c (75.6hs) obtained in Sec. III. (4) The
right-hand side of Eq. (5.23) responsible for the
width of the libron band and for libron dispersion,
differs from its classical analog by a factor
1.73b'~, (fo —f„)B/2h, where 5, ~„and f, —f„
depend on temperature. For T =24.5 K, the whole
factor is 0.74. Thus the main effect of the RPA
approach, relative to a consistent classical ap-
proach, is a reduction of the band distance hp ln
Fig. 2 by a factor 0.94 and a reduction of band-
width by a factor 0.74. It should be noted however,
that the reduction factors are 0.54 and 0.43 if our
best estimate of the interaction strength I',/R'
=3.67k~ were used also in the harmonic approach.

VI. CONCLUSIONS

Libron frequencies in the partially ordered phase
II of solid CD4 have been calculated. In this calcu-
lation the translational modes have been discarded
from the start by assuming a rigid center-of-mass
lattice. Furthermore, possible excitations at the
sites of the disordered molecules were not taken
into account. For the orientation dependent inter-
action of the molecules, use was made of the
James and Keenan' Hamiltonian, which has the
obvious advantage that it contains only one ad-
justable parameter, the octupole moment I, of a
CD4 molecule. The octupole-octupole interaction
provides the mechanism for the 27.0-K phase
transition and I, therefore may be estimated from
the phase-transition temperature. An alternative
approach, that is free from the uncertainties of the
molecular -field approximation to the calculation
of the critical temperature, has been adopted in
this paper. I, is related to the known width of the
deuteron distribution at 24.5 K.

Contrary to the case of translational modes, the
use of the time-dependent Hartree approximation
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TABLE II. N~& is the transition matrix of u& between
the rotational ground state and the first excited states.

0.2

0.2 O. b 08

FIG. 3. Matrix element 5 [see Eq. {Bl)]as a function
of 0',, when ~q =0.'o.

0
0

-g~lsb
0
0

+ ly
0

0-&~iso
0
0

-gb1
0
0

0
0
0
0
0
0

is essential for the calculation of libron frequencies
in CD, . If the same interaction constant I, is used
in a harmonic approach, these frequencies are
overestimated by roughly a factor 2 ~ (For transla-
tional modes both theories agree within a few per-
cent. ")

The total neglect of the disordered molecules
is a crude approximation. If these molecule s are
treated as free rotators, their inclusion into the
RPA seems to be straightforward. The main dif-
ficulty however is not the problem of an additional
molecule with a free-rotator spectrum The main
difficulty is that these molecules belong to three
different spin-symmetry species (A, E, and T")
which differ in their excitation spectrum. As these
symmetry types are randomly distributed over
the lattice, an inclusion of the disordered mole-
cules destroys the translational symmetry of the
lattice. For the same reason the method of this
paper cannot be transferred to CH, without pre-
cautions. Larger zero-point motions and con-
sequentially a shallower Hartree potential lead to
a substantial overlap between different pocket
states. Thus spin symmetry might be essential
for the excitation spectrum of the ordered mole-
cules and therefore also the system of the ordered
molecules lacks the translational symmetry of the
lattice.

A first attempt to observe librational excitations
in CD4 by thermal neutron scattering" was un-

successful. This may be due to two reasons: (1)
The inelastic structure factors may be too small
to allow the detection of these excitations. (2) The
combined effect of anharmonicities, the coupling
to translational modes, and the coupling to the
disordered molecules may result in heavy damping
of the excitations. The modes might be too broad
to be resolved from the background.
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APPENDIX A

The symbol H'„J'(v} is used for the cubic rotator
functions U'„'„'(~}when given in terms of quater-
nions v [see Eq. (4.2)]. The seven functions
UI„"(&}=u„(&}have been listed by James and Kee-
nan. ' (Termed tetrahedral rotator functions in
Ref. V. ) Here the same functions H'„", (v ) =h„(v)
are given in terms of quaternions:

h, (v) =16(v', +v,'+v', +v', ) —20(v', +v,'+v4+v,')+5,

h, (v) =-,'~15 {v,v, [(v', —v', ) —2(v', —v', )] + v,v, [(v', —v', ) —2(P —v', )]]',

h, (v) =-,'v15 {v,v, [(v', —v', ) —2(v', —v', )]+v,v, [(v', —v', ) —2(v', - v', )Q,

h, (v) =-,'~15 {v,v, [(v', —v,') —2(v', —v', )]+v,v,[(v4 —v', ) —2(v; —vl)1]',

h, (v}=4{v,v, [5(v', —v', }—6(v', —v",}]+v,v,[5(v', —v', ) —6(v,' —v', )]],

h, (v) =4{v,v,[5(v; —v', ) —6(v; —v;)1+ v,v, [5(v; -v;) —6(v; —v', )]],

h, (v) =4{v,v,[5(v,'—v', ) —6(v', —v')]+v, v,[5(v; —v', ) —6(v', —v;)]].
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APPENMX B

To calculate the matrix elements K„' „.defined
by Eq. (5.15) one starts from the primed coordi-
nate system of sublattice a, which is fixed in the
crystal but rotated around one of the cubic crystal
axes by an angle +—,'m. Rotations of the molecule
relative to this coordinate system are described
by quaternions 7, the librational ground state by
looo) and the p states for librations around the
x', y', and z' axes by I100&, I010&
[See Eq. (4.14) and (4.15).] To calculate the ma-
trix elements

&loolh„(~)looo& = -55„
&olola, (~}looo& = -55„„
&ooll a„(~)[000&= -55„„

(B1)

l7, x& = ~ (l100& —lolo&),
1

17, y& =
~2

(lloo&+lolo&),
1

l7, z& = lool&.

(B2)

the exponentials in the wave functions are expanded
and the resulting polynomial is integrated term
by term (on the surface of the four-dimensional
unit sphere). In Fig. S the value of fp is plotted
aga nst ~0 for th special case ~1=~O

Out of the P-state wave functions linear combina, —

tions are formed that describe rotations around the
cubic crystal axes. For sublattice a = 7 these
combinations are written down explicitly:

The matrix elements between these states and the
ground state are

&7, xlh„(T)looo& = (b-/v'2 )(5, , —5„6),

&7, yla„(~)looo& =-(5ivz)(5„+ 5„,),
(7, sly„(f)looo& = -t.

(as)

K„(e",y") =+K,.(e, 4)H&.", (~),

or with a detour via the primed coordinate system
rotated by —,'m relative to the unprimed system:

K„(e",y") = g K„(e', y') H,",'(7)
p=1

= Q K„(8,p)H&,"(~,)H",'(f) .(B5)
pga=l

~, describes the —,'m rotation that relates the primed
and unprimed coordinate systems. Equations (B4)
and (B5) are combined to:

h. (~) = g H&.',&(~,)a,(f).

H&s~ is obtained from an expansion of K, (8', 4&') in
terms of K„(8,p)

Cubic rotator functions depending on v, i.e. , on
rotations with respect to the unprimed coordinate
system can be expressed as linear combinations of
cubic rotator functions depending on T. Denoting
the polar angles in a coordinate system that is
rotating with the molecule by 8" and P", K»(8",P"}
may be expressed in terms of K„(8,&t&) directly:

K„(e', y') = QK,.(e, 4) H.",'(~,), (B7)

0 0 0 0 0

0 +v15 +v15 0

0 + ~15 -v15 0
1H"'(7, )= ~ 0 0 0 + ~32 0 0 0 (B8)

0 + ~15 -415 0

0 -v15 -~15 0

+1 +1

0 0 0

From (83) and (86) the matrix N'„„0 is obtained. It is listed in Table II. It differs from M'„which was
obtained in Sec. III only by a factor &b.
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