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Impurity-induced Raman scattering in CsBr and CsI
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Measurements of the first-order impurity-induced Raman scattering in CsBr:I and Csl:Br are

reported. Comparison is made with a corresponding phonon Green's-function calculation. Using known

perfect-crystal shell-model parameters, only one additional paranieter, the change in the longitudinal

nearest-neighbor force constant, is needed to describe the dynamical properties of the defect and to fit

the shape of the three independent Raman spectra with 3,„, E„and T. symmetry. Assumptions

about the form of the terms giving rise to the Rarnan scattering permit the fitting of the relative

intensities of these three spectra with one parameter.

I. INTRODUCTION

First-order Raman scattering is not allowed in
pure crystals with CsCl structure since each ion
is at a center of inversion. The addition of an im-
purity destroys the inversion symmetry of all lat-
tice sites except the impurity site itself and first-
order Raman scattering becomes possible. The
impurity also destroys the translational symmetry
of the lattice, breaking selection rules based on
momentum conservation. Therefore, the first-
order Raman spectrum of an impure crystal does
not consist of a few discrete lines but is a contin-
uum, reflecting in a complicated way the density
of states of the perfect crystal and the frequency
dependence of the eigenvectors of the imperfect
crystal.

Measurements" and calculations" of the impu-
rity-induced infrared absorption in cesium halides
have been reported. The present Raman investiga-
tion complements the infrared absorption experi-
ments in the following way. Only some odd-parity
modes of vibration contribute to infrared absorp-
tion. The modes of vibration in which the displace-
ment of the impurity is large are particularly im-
portant in infrared absorption spectra. On the
other hand, only even modes of vibration contrib-
ute to Raman scattering. The motion of the impu-
rity itself does not enter into the problem; there-
fore, all results are independent of the mass of
the impurity.

Impurity-induced Raman scattering in alkali ha-
lides with NaCl structure has already been studied
in some detail. ' ' In the present work, we have
chosen to examine alkali halides with CsCl struc-
ture. Specifically, results are presented for the
complementary systems CsBr:I and CsI:Br . The
data are analyzed by making an appropriate model
Green's-function calculation. ' " Since detailed
neutron scattering"'" and second-order Raman
scattering" measurements have been made on
CsBr and CsI, the phonons of the perfect crystal

are well known. The analysis can, therefore, give
reliable information about the defect-model force
constants and the polarizability tensor expansion
coefficients.

II. EXPERIMENTAL METHODS

The Raman measurements were made at room
temperature using an argon laser and a Jarrel-Ash
double monochromator. The data were processed
using a photon counting system. A scattering ge-
ometry was used with the incident light propagating
along the [001] crystallographic axis Z and the
scattered light propagating in the [110] direction
Y. The three independent Raman spectra, A„, E„
and T,g, can be determined by measuring the
Z(XX)1', Z(XZ) Y, and Z(YX) Y spectra, where the
symbols in the parentheses refer to the polariza-
tion of the exciting and the scattered light, respec-
tively. Since there is an ambiguity in the definition
of the E, component, the reduction formulas should
be written explicitly,

I[Z(XX)Y] =I(A„)+I(E,)+I(r„),
I[z(xz)Y] =I(7„),
I[Z(YX) Y] =SI(E ),

The single crystals were grown from the melt,
adding the desired impurity. A chemical analysis
showed that the CsI crystal contained 13.8-at. g~

Br, and the CsBr crystal 6.2-at. W(, I . Since x-
ray measurements of CsBr and CsI need very long
exposure times, the orientations of the crystals
were therefore determined using a method given
by Maier. " This procedure is based on the fact
that stress applied to a crystal surface of CsBr
or CsI causes plastic deformations which mark the
projections of the cubic axes on this surface. The
birefringence caused by the punch patterns can
easily be observed using crossed polarizers.

The results of the Raman measurements are
shown in Figs. 1 and 2. In each figure, the pure-
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cesium-halide spectrum is compared with the cor-
responding doped-crystal spectrum. The two
curves are expected to be nearly identical for fre-
quencies above the one-phonon cutoff. For the
strongest spectrum, the Haman intensities of the
pure and impure crystals were normalized to be
approximately equal beyond this limiting frequency.
This single normalization then fixes the relative
intensities for the remaining two spectra.

III. CALCULATION

The calculation of the first-order impurity-in-
duced Raman scattering in the CsC1 structure has
been previously discussed. ' '" We repeat here
the relevant equations.

The first-order impurity-induced Raman scat-
tering per unit solid angle 0 is given by'

1(&,~', &) =2» g g ps & EBEs I' 8 &(l)P s.
&

(l') n(&u —+')limImG&z (i, l', &u' —&u" —ie),
aa 88' & y (2)

where ~ and ~' are the frequencies of the incident
and scattered light, n is the unit polarization vec-
tor of the scattered light, E is the incident field
vector, G is the phonon Green's-function matrix
of the imperfect crystal, and n(&o —~') is the ther-
mal occupation number. In this expression, the
polarizability tensor has been expanded in the ionic
displacements u(l ),

Pu& Pn8+ g PaB.y+y(i)+
ly

with the term linear in u(l) giving rise to the first-
order Haman scattering. In the perfect crystal,
this term is zero by symmetry, but in a crystal
with defects, neighbors of the defect no longer
possess inversion symmetry. We shall assume
that this sum need only be taken over first neigh-
bors of the defect, because of the rather rapid
drop-off with distance of the terms which give rise

to the dependence of P on the ionic displacement.
The Green's-function matrix G of the imperfect

crystal can be written in terms of the Green's
function G of the perfect crystal and a matrix I'
describing the defect,

G=G'(I+ FG') ' (4)

We assume that l has nonzero elements only in
the space of the impurity and its first neighbors.

It is then convenient to transform from Cartesian
coordinates to the cubic symmetry coordinates of
the first neighbors, since the assumptions on both
P and I' restrict our problem to this space. Group-
theoretieal considerations then show that only four
of these cubic symmetry coordinates are Haman
active: one A.~, one E„and two T~. These co-
ordinates are pictured in Ref. 10.
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FIG. 1. Measured room-temperature Raman spectra
of pure CsBr (heavy lines) and of CsBrg fight lines).
The difference between these two spectra is due to im-
purity -induced first-order Raman scattering.
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FIG. 2. Measured room-temperature Raman spectra
of pure CsI {heavy lines) and of CsI:Br fight limes).
The difference between these two spectra is due to im-
purity-induced first-order Raman scattering.
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In the cubic symmetry space, then, we may
write,

1(A~) = —d A,

r(E, ) = —~E,
r„(T„}= —,'(—~A +2~a),

r„(T„)= ——,
'

v 2~A,

r„(T„)= ——,'(2n. A+ a E),

(5)

C(A, ) =v2(P„,+2P„,),
C(E,) = P„,-I„„,,
C[T„(1)]=l6P,„,,

C[T,~(2}]=4vSP,„,.

(7)

The numerical constants in Eq. (7) arise from the
definitions of the experimental intensities I(A„),
I(E~), and I(T2~) in terms of the measured quanti-
ties, and of the Green's functions in normalized
symmetry coordinates. The four P 8 &

that appear
are the only distinct ones as a result of symmetry
considerations. They are defined for the first
neighbor of tile defect in the [111]direction.

where 4A and &B are the change of the longitudi-
nal and transverse first-neighbor force constants
from their perfect crystal values, A and 8; and

I (A„)= C'(A„}G(A„),

l(E,) = C'(E, )G(E,),
I(T2 ) =C'[Tm (1)]G1|(T2}

+ 2C[T„(1)]C [T„(2}]G„(T„)

+ C'[T„(2}]G„(T„},
where

To interpret the meaning of the P q ~'s, and to
be able to make assumptions that give relations
between them, we look more closely at their mean-
ing within the framework of the shell model.

Let us first write the Hamiltonian of the per-
turbed crystal,

P=Q Yg4 '(ll')Y, (1O)

where 4 „is the second derivative of the short
range part of H with respect to w, an6 Y, is the
shell charge of ion l. We may expand 4„'„, in a
series to get the form of the first-order term P' z,

H =H'+H' .
H' is the Hamiltonian of the perfect crystal and
H' contains the changes as a result of the defect.
Both can be expanded in Taylor series in the de-
grees of freedom of the crystal, u, the core dis-
placements, and w, the relative shell-core dis-
placements. The quadratic terms in H' give the
perfect crystal frequencies and eigenvectors; the
quadratic terms in H' give the perturbation of these
solutions; and the cubic terms in H' permit first-
order Raman scattering. Since the changes in in-
terionic force constants dominate the changes in
harmonic lattice dynamics for these crystals, the
effect of H' on this part of the problem is well
treated by Eq. (4} used in the rigid-ion approxima-
tion; only the terms quadratic in u, the ionic dis-
placement, are important. For the Raman scat-
tering, however, we require cubic terms that are
at least quadratic in w, since the w's represent the
electronic degrees of freedom and are required to
give the coupling between the light and the lattice
at optical frequencies.

In the shell model, the polarizability is given by

P'., = g P., „(i)u„(i)

lL LL' L"'} L' l

=-g Y, C.—.' g C..„u„(L"}e.',
LL'
eb

where 4 is now the second derivative with re-
spect to w of the harmonic part of H, and the I
are third derivatives, the coefficients of the cubic
terms in H' that give Baman scattering. The sum-
mation over L„L', and L" is restricted to the
space of the defect and its first neighbors, and
also at least two of L, L', L" must refer to the
same ion. We have neglected the terms in 4
as for these crystals [ w [ «( u ( .

4„ is to a good approximation diagonal, as the
shell-core force constant is much larger than the

first-neighbor force constant; the only important
terms in Eq. (11) are those where I= L, l'= L',
o. =a, and P=b. The elements of C„' are propor-
tional to the polarizabilities of the defect or the
first neighbors in the perturbed harmonic system.
There are three kinds of contributions to P'. the
self-modulation of the polarizability of the first-
neighbor ions as a result of their motion against
the defect (L= L' =first neighbor), cross terms
which represent a sort of bond polarizability (L= 0,
I.'=first neighbor), and the term representing the
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C(A, ) = v2(5$" +6a'g" '),
C(E,) =(24"),

C[T,g(1)]=v6(2a'Q" '),
C [T, (2) ] = 4P3(P" + 2a'P" ') .

(12)

The relative values of the C"s are plotted in Fig. 3
a,s functions of x=2a'Q" '(Q". The values of Q"
are not well determined by the perturbed harmonic
values, since different terms in 0' are important
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FIG. 3. Relative intensities of the contributions of the
four symmetry coordinates under the assumption of a
central potentiaI. The abscissa is the ratio x =2a2@"'/

, where Q" and Q
' are second and third derivatives

of the potential responsible for the defect-induced scat-
tering.

change of polarizability of the defect due to the mo-
tions of the first neighbors (L= L' =0}. This last
term is expected to be the most important as the
polarizability of the negative ions is larger.

We now assume that the part of 0' that gives rise
to Raman scattering can be written as a central
potential P, Q(~ r«~ ), a function of

r„=R, +(u, +w, ) —(u, +w, ),
where 0 refers to the defect and L to the first
neighbors. Such a term represents a shell-shell
coupling between the defect and its neighbors,
which might be expected to give the largest contri-
bution because of the importance of such couplings
in the harmonic problem. The various derivatives
4 „„required in Eq. (11}can then be written in
terms of only two constants Q" and Q" ', the sec-
ond and third derivatives of Q with respect to r',
evaluated at the equilibrium separation Ro= a[111].
Then, to within a common constant which depends
on the harmonic polarizabilities and the shell
charges as in Eq. (11), the set of Eq. (7} becomes,

for the lattice dynamics and for the Raman scat-
tering.

We comment that the form of this result is rather
more general than might appear from the above
discussion; the important assumptions are only
that the polarizability can be written as a second
derivative (with respect to some electronic degrees
of freedom) of some potential, and that this poten-
tial, or rather the part of it that can give rise to
Raman scattering, can be written as a central po-
tential as a function of differences of the first-
neighbor coordinates and the defect coordinates.
It is not essential that 4 „.be diagonal, nor that

P represent only shell-shell coupling; Q may be
a, sum of central potentials, that is, functions of
(R, +u, —(u, +w, )(, of (R,+(u, +w,)-u, (, or
of

~ w, ~ may be added. This generalization would
change the definitions of the two constants that
appear in Eq. (12); they would then involve sum-
mations over several terms, including coefficients
as in Eq. (11). However, the final form of Eq. (12)
would be the same.

IV. RESULTS AND DISCUSSION

The frequencies and eigenvectors for the perfect
crystal have been calculated for 2771 q-values in
~4, th of the Brillouin zone, using for CsI the eleven-
parameter model of Buhrer and HKlg" and for
CsBr the model of Daubert eI, a/. " Both models
are for 300'K. The imaginary parts of the Green's
functions were calculated by forming a histogram
with 100 bins; the real parts were found by a
Kramers-Kronig transformation. The force con-
stant changes 4A and &B were varied to obtain
the best fit to experiment.

A good fit to experiment was obtained for CsI:Br
with &A = —2A, &B=0, and for CsBr:I with ~A
= 4A, r B=0. Because the E, spectra (which de-
pend most sensitively on ~B) were rather weak and
the experimental errors therefore high, ~B was
chosen to be zero for simplicity. The unperturbed
E, spectra agree reasonably well with experiment.

In the case of CsI, ~A was chosen to give the
correct frequency for the strong A„peak at 49
cm ', which does not appear in the unperturbed
calculation. For CsBr, the unperturbed Ayg spec-
trum agrees in shape rather well with experiment,
but the frequency of the strongest peak is lower
than that measured. Since the lattice-dynamical
model for this system was fitted to an unusually
large number of measured frequencies, including
off-symmetry q values, it seems unlikely that the
model is predicting frequencies wrongly; there-
fore, 4A was chosen to give the best frequency
agreement with experiment.

Since no infrared measurements exist for the
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systems considered here, it is not possible to com-
pare these values of &A with those obtained in oth-
er calculations, however, their sizes seem reason-
able by comparison with those obtained for related
systems. "

One fortunate result of the calculation of the T,~
spectra is that the two T„coordinates lead to
peaks in different frequency regimes, T~(1) peak-
ing approximately where the experimental spectra
do, and T„(2)peaking at lower frequencies for both
systems and for all choices of I investigated.
Thus, we can say that C'[T„(2)] must be much less
than C'[T„(1)], allowing for uncertainties in the
shape of f(T„)due to err'ors in subtraction. Thus,
we have, in effect, four pieces of information on
the intensities from the three experimental spectra.
If we make the central potential assumption, we
must fit four intensities with two parameters. In-
spection of Fig. 2 shows that the A,~ and T,~(1) in-
tensities cross over in the region of zero intensity
for T„(2) and that they are both stronger than
C'(E,) in this region. A value of x= —0.98 for
CsI:Br and of x=- 1.09 for CsBr:I gives the ex-
perimentally observed intensities for 1(A„), I (E,),
and E(T„) correctly with the contribution of the
TM(2) coordinate negligibly small, as required.
Figures 4 and 5 show the calculated curves for the

force constant changes and x values above, com-
pared with experiment; in addition, the small con-
tribution of T„(2) multiplied by 50 is shown to dis-
play its frequency dependence.

The agreement in shape and intensity is seen to
be excellent. The poorer agreement for 1(E,) for
CsBr:I is not felt to be significant since the ex-
perimental uncertainty is particularly large. The
experimental peaks are broader and weaker than
those calculated using a harmonic model for low

impurity concentration. Anharmonic interaction of
room temperature phonons could easily account
for a broadening of about 5 cm ', and the high im-
purity concentration present in the samples can
give a non-negligible inhomogeneous contribution
to the experimental linewidths since the impurities
may have different environments. There may, in
addition, be some background due to changes in the
second-order spectra in the doped crystals (see,
for example, the 140-cm ' peak in the A„spectrum
in Fig. 1), and from interference between first-
and second-order spectra, which could become im-
portant at such concentrations.

V. CONCLUSIONS

The first-order impurity-induced Raman scatter-
ing has been measured and calculated for the sys-
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FIG. 4. Experimental {solid lines) and calculated
{dashed lines) room-temperabxre Raman spectra for
CsBr:I . The two T& symmetry coordinates have been
indicated. The measured and calculated contribution to
the Roman intensities from one of these symmetry co-
ordinates, T&~{2), is very small.

FIG. 5. Experimental {solid lines) and calculated
{dashed lines) room-temperature Haman spectra for
CsI:Br . The two T2~ symmetry coordinates have been
indicated. The measured and calculated contribution to
the Raman intensities from one of these symmetry co-
ordinates, T2 {2), is very small.
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tems CsBr:I and CsI:Br, with excellent agree-
ment. The shape of the three independent Raman
spectra for both systems can be fit with a single
parameter, the change of the longitudinal first-
neighbor force constant. As expected from the
ionic radii, the system of I as an impurity in
CsBr requires an increase of this force constant
and Br in CsI requires a decrease. This force-
constant change leads to a marked perturbation
of the A„spectrum for CsI:Br, but rather small
changes in the other spectra. Ne may conclude
that the perfect crystal-phonon models determined
using only neutron-measured eigenfrequencies
yield realistic eigenvectors as a result of the good
fit to the Raman measurements.

The intensities of the measured Raman spectra

show several unusual properties. The T„spec-
trum predominates in CsBr:I, the A„spectrum
in CsI:Br . In addition, for both systems, only one

T~ first-neighbor symmetry coordinate appears
to contribute appreciably to the Raman scattering.
The relative intensities of the spectra, including
these unusual properties, can be determined with
only one parameter if a central potential is as-
sumed to describe the lowest-order nonlinear
terms arising from the introduction of the defect.
In addition, this parameter has nearly the same
value for the two systems considered.
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