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The phonon dispersion relations of the 5, A, and X directions of germanium at 80 K are analyzed in

terms of current harmonic-lattice-dynamical models. On the basis of this experience, a new model is

proposed which gives a unified account of the strong points of the previous models. The principal
elements of the presented theory are quasiparticle bond charges combined with a valence force field.

I. INTRODUCTION

Extensive experimental data on phonon disper-
sion relations in germanium at 80 K have been
published elsewhere. ' At this temperature the
influence of anharmonicity may be completely ne-
glected. In Sec. II of the present paper, predic-
tions by current harmonic-lattice-dynamical mod-
els are compared to the data of the 4, P, and Z
directions and, when possible, also to the experi-
mental values of the dielectric and the elastic con-
stants. The models considered have been fitted to
a maximum of about 140 phonon frequencies by the
method of least squares. Our primary concern
has not been to obtain as good fits as possible but
to show how many parameters a model needs in
order to produce a reasonable fit and what physical
significance the parameters might be attributed.
It is found that quite different and, perhaps, also
seemingly mutually contradicting models may give
rise to equally good fits. One of the purposes of
the present work has therefore been to establish a
unified account. %e do also present such a model
in Sec. IG.

IL CURRENT MODELS

A. DeformationMipole model

The earliest model of lattice dynamics, the
Born-von Karman model (BKM), needs a very
large number of parameters in order to give a good
account of the phonon dispersion in germanium.
Herman showed that a good fit of BKM to the data
of Brockhouse and Iyengar requires as much as
15 parameters. Then interactions out to the fifth-
nearest-neighbor atoms are included. This long
range of the force field has been considered as an
evidence for the necessity to take the electronic
polarization into the account. Attempts in this
direction, e. g. , on sodium chloride, by assuming
induced dipole moments, which depend only on and
are proportiogal to the local electric field, led to
substantial improvements but also clearly showed
that this was not sufficient. In order to give a

more proper account and to allow for polarization
of atoms by distortions of their electron configura-
tions due to short-range interactions with adjacent
atoms must also be considered. Tolpygo took a
quantum-mechanical approach using a perturbation
expansion based on tight-binding electron wave
functions in the Hartree-Fock approximation. The
mean electronic Hamiltonian so established allows
for creation of dipoles by deformations of the va-
lence electron clouds. This is the deformation-
dipole model (DDM). In order to give a reasonable
account of the dispersion relations, it must include
short-range interactions out to second-nearest-
neighbor atoms. ' The model then contains eight
free parameters besides the polarizability A,
The solid lines in Fig. 1(a) represent the results
of a fit to our germanium data. The parameters
obtained are listed in Table I and the derived
macroscopic constants in Table II. The fit to the
branches of the 4 and ~ directions is very good,
while that to the Z branches is less satisfactory.
For instance, the highest optic branches, Z, (0)
and Za(0), are poorly described, and the charac-
teristic dip of Z~(0) is hardly accounted for. As
expected, if only 4 and A modes are included in
the fit the result will be excellent for these
branches while the Z branches increase their dis-
agreement with experiment [dashed lines in Fig.
1(a)j. Even the macroscopic constants, except
C44, improve their values remarkably. The ap-
proximations underlying DDM require the pertur-
bations of the atoms to be small. This imposes
the following conditions for some of the parame-
ters'.

As can be seen from Table I, these relations are
not strongly satisfied in either of the cases.

8. ShellMipole model

Many of the consequences of the numerous ap-
proximations in the derivation of DDM are difficult
to understand in detail. It is often instructive and
of considerable value to represent quantum-me-
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FIG. 1. Various model
fits to the measured dis-
persion relations for ger-
manium at 80 K {a) Nine-
parameter DDM fitted to
all the displayed data (solid
lines) and to only those of
the 6 and A directions
(dashed lines), (b) 11-
parameter SDM, (c) five-
parameter VFM, (d) four-
parameter BBM, (e) six-
parameter QPBC, and (f)
one-parameter Ansatz
(solid lines) and two-param-
eter QPBC (dashed lines).
For details the reader is
referred to the text.

n

chanical concepts by a phenomenological model,
particularly if this can be done prior to calcula-
tions from first principles. Dick and Overhauser"
gave a plausible quantum-mechanical basis for a
phenomenological model of an atom with a closed
electron configuration. The atom in this model
is made up of a point core, representing the nu-
cleus and the inner electrons, surrounded by a
massless spherical shell, representing the outer
electrons, both entities being electrically charged.
In a crystal, it is assumed that short-range forces
act between core-shell, core-core, and shell-
shell and that dipole moments are created by rela-
tive displacements between cores and shells. This
is the shell-dipole model (SDM) which, when ap-
plied to germanium, leads to equations of motion
formally identical with those of DDM. The nine-
parameter version of DDM, considered in Sec.
II A, utilized only central forces between second-
nearest neighbors. A fit of an 11-parameter
version' ' of SDM including noncentral second-
neighbor forces is presented in Fig. 1(b). Com-
pared to the results in Fig. 1(a), the fit is im-
proved but the basic difficulties in accounting for
the Z branches remain. Moreover, the excellent
fit to the 4 and A directions, obtained for DDM,

is no longer possible (results presented only in
Tables I and II). Finally, the parameter values
are in several cases obviously unreasonable, par-
ticularly for the second-neighbor forces (with
lower suffix 4).

C. Penn's dielectric model

Intuitively, it is somewhat surprising that mod-
els like DDM and SDM, which assume an isotropic
valence charge distribution, work at all on ger-
manium. Moreover, it has been demonstrated,
with the aid of dielectric screening theory, by
Penn and others that the valence electrons in ger-15

manium are nearly-free electron like. The tight-
binding picture, where the valence electron charges
are associated with individual atoms, is hardly
compatible with this fact. Great effort has in the
past been devoted to improvements of SDM by, for
instance, allowing for deformations and, in order
to account for the compressibility of the valence
electron gas, "breathing" of the shells. In the
case of germanium, however, improvements along
this and similar lines do not remove any of the ob-
jections raised above. As was remarked in Secs.
II A and IIB, the values of the parameters ob-
tained for DDM and SDM were not satisfactory,
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particularly not for the latter model. Several of
them are certainly to be considered rather as
mathematical interpolation parameters than as
physical constants. However, DDM and SDM must
be regarded as great improvements in comparison
with BKM.

D. Valence-force model

Q
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Although it predates quantum mechanics, the
idea of valence forces is based on first-principle
concepts. The electrons binding a group of atoms
(molecule) are represented by wave functions
possessing the group symmetry. The symmetry
elements are lengths of bonds and directions of
bonds or angles defined by any two bonds with a
terminus atom in common. During a perturbation
(vibration) of the group, forces act which tend to
restore the equilibrium configuration. It is then
natural to associate a restoring force with each
of the symmetry elements defining this configura-
tion. This is the valence-force model (VFM),
which has proven to be very effective for molec-
ular vibrational spectra. ' A convenient formal-
ism for its application to crystals with covalent
bonds has been worked out by McMurry et al. '

The basic parameters of VFM, in the case of
germanium, are the bond-stretching E„and the
angle-bending E, force constants. These are,
however, not sufficient. When a disturbed bond or
an angle rehybridizes its associated wave func-
tions, interactions with neighboring symmetry
elements must occur. This leads to the presence
of off-diagonal elements in the force-field matrix.
These parameters have to be chosen intuitively,
but we may be guided by the experience from anal-
ysis of molecular spectra, as has been demon-
strated by the VFM ca,lculations on diamond' and
silicon. ' ' The results of a five-constant fit to
the germanium data is presented in Fig. 1(c) and in
Tables I and II. The force f interacts between
adjacent bonds, f«bet ewebnonds and angles where
bond is leg of angle, and f„between angles con-
secutive in a Z plane and with one leg in common
[Fig. 2(a)].

The overall fit in Fig. 1(c) is really good, and
VFM must in this respect be considered as superior
to DDM and SDM, particularly with regard to the
small number of parameters employed. A more
proper account of the nature of the covalent forces
seems to be of greater importance than an inclusion
of the electronic polarization. But to state that the
polarization is negligible would certainly be wrong,
the dielectric constant of germanium being as large
as 16, The force field of VFM, listed in Table I,
probably includes a partial simulation of the po-
larization effects. It is to be noted, for instance,
that the off-diagonal constants f„, and f„are
larger than E„-a situation not expected on an in-
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TABLE II. Elastic constants in units of 10' dyn cm and the dielectric constant as derived from the
parameter sets in Table I and as described in the text.

Expt DDM DDM* SDM SDM* Vt'M BBM QPBC Ansctz QPBCT

«4

1.32~

O. 49'
O. 68'

15.8+0. 2

1.26
0. 59
0. 58
8. 3

l. 32
0.48
0. 57

16. 5

1.32
0.47
0. 70

12.9

l. 25
0. 51
0. 71

14.7

1.41
0. 68
0. 58

1.26
0. 81
0. 50

1.48
0. 75
0. 61

13, 7 12.0

0. 89
0. 64
0.25
8, 2

~H. J. McSkimin, J. Appl. . Phys. 24, 988 (1953).
%. C. Dunlap, Jr. , and R. L. %'atters, Phys. Hev. 92, 1396 (1953); A. C. Baynham, A„F. Gibson,

and J. %'. Granville, Proc. Phys. Soc. Lond. 75, 306 (1960).

tuitive basis.
The success of VFM demonstrates the reason for

the failure of BKM. This is because the former
may be treated as a special case of the latter. '

The force constants of BKM are so general that,
when a particular crystal is considered, they allow
for nonpresent interactions in addition to those of
significance. Thus, in order to screen out insig-
nificant contributions to the force field, further
and irrelevant parameters have to be included.
(The short-range interactions of SDM are also
expressed by means of BKM matrices. ) For ex-
ample, Keating has shown that in an insulator,
i. e. , a crystal where the lattice potential is only
a function of the nuclear displacements, symmetry
requirements forbid the existence of noncentral
nearest-neighbor two-body forces. This type of
force constant is the second one in every BKM
calculation. The use of only symmetry-defining
elements in VFM as bond lengths and angles be-
tween bonds, leads to an automatic satisfaction of
all symmetry requirements.

Finally, it is morthy of notice that Herman in
his work on BKM noticed that the fit to the experi-
mental data of germanium was improved only
quantitatively when interactions with third- and
fourth-nearest-neighbors were included. A quali-
tative improvement was obtained first when fifth-
neighbor forces mere also considered. The force
field of VFM listed in Table I accounts for inter-
actions with first-, second-, and fifth-nearest
neighbors. Third- and fourth-neighbor interac-
tions are not present, This we consider as a sup-

port to our belief that the set of force constants
worked out is the best set possible for VFM.
Moreover, all members of this set represent
forces operative along a chain of bonds in a Z

plane, where the valence electron orbitals are ex-
pected to mend. The angle-angle parameter repre-
senting interactions betmeen angles with one leg
and the apex atom in common tended tomards zero
in a six-constant fitting procedure. The force-
constant sets obtained for diamond and silicon
reveal a similar situation there.

E. Broken-band model

Besides the BKM force type, frequent use has
been made of the de Launay force type which con-
sists of radial and tangential two-body force con-

(b)

I'IG. 2. Schematic illustrations of the idealized lattice
of (a) VI M, (b) BBM, and (c) QPBC. R denotes the dis-
tance from a core to one of its nearest-neighbor quasi-
particles. The charge numbers read as follows: Z& =2Z&
for i=1,2 and Z&=-Zz for i =3, . . . , 6.
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stants. However, these forces violate the require-
ment of rotational invariance. Moizhes pointed
out that these conditions will, on the other hand, be
satisfied if it is assumed that rotation of an atom
results in a force acting on the nearest-neighbor
atoms with a magnitude half that of the correspond-
ing tangential force. One may raise objections
against a method where symmetry violations are
compensated by introduction of "counteracting"
forces. As was pointed out in Sec. IID, noncen-
tral first-neighbor two-body interactions are for-
bidden in an insulator. Moreover, distinguishable
rotations of an atom are generally not in agree-
ment with quantum theory concepts. However, for
a covalently bonded solid like germanium, the di-
rected valence orbitals do in fact define a reference
system on every atom. This makes it, in prin-
ciple, possible to define an atomic orientation-de-
pendent contribution to the lattice potential, e. g. ,

by Moizhes's rotational compensation force.
A model by Vasil'ev et al. based on Moizhes's

concepts, is illustrated schematically in Fig. 2(b).
Each nucleus is represented by a point mass. The
directional wave functions (or valence electrons)
are represented by four stiff antennae of which the
tips are linked together with the antennae of the ad-
jacent atoms by springs. The interaction parame-
ters are the radial o, and the tangential P, first-
neighbor constants, the length of an antenna g,
expressed as a fraction of the nearest-neighbor
distance, the "symmetry-saving" rotational
(spring) constant —,'P, and the second-neighbor
radial constant y. This leaves four independent
parameters free for a least-squares fit. The
model assumes that the angles between the bonds
of a given atom do not cha, nge during vibration,
i. e. , only the overlap energy with the wave func-
tions of adjacent atoms changes; the energy of the
system being increased when the bonds are rotated
in either direction.

The results of a fit to the germanium data are
presented in Fig. 1(d) and in Tables I and II. The
fit is good and much better than might have been
expected. The success of this model, we believe,
is a consequence of somewhat different reasons,
however, than those discussed above. It is a fact
that the bonds are treated as if they were broken
[which is the reason for our name, the broken-
bond model (BBM)]. Furthermore, the successful
use of stiff antennae might be considered as an
evidence for the pressure of strong forces acting
between the bonds of an atom during rehybridiza-
tion. In Sec. III we find support for these points of
view.

F. Phillips's bond-charge model

According to Penn' (Sec. IIC), the valence elec-
trons in germanium are nearly free but not quite

free. In fact, by means of a dielectric screening
model, which assumed a free-electron dielectric
function including the Hubbard-Sham exchange cor-
rection and a modified Heine-Abarenkov model
potential, Martin has shown that the free-elec-
tron picture leads to a lattice not stable under
shear. These calculations were carried out for
silicon, but they should also apply to the nearly
homologous germanium. ~' In order to stabilize
the lattice, i. e. , to introduce off-diagonal elements
in the dielectric function, at least some effects of
the covalent bonding must be taken into the account.
Employing linear screening with the Penn dielectric
function, Phillips ' pointed out that the charac-
teristic dimensions of the bonding charge density
are much smaller than those of the atomic charge
density. (This result is primarily a consequence
of Bragg interference between electron waves
scattered off neighboring ions. ) Thus, the cova-
lent nature of the valence electron gas not only
gives rise to an excess of negative charge in the
bonds but also to a strong localization at the mid-
points of them. According to Martin, covalency
is therefore to be represented by point bond
charges attached to pairs of ions and responding
so as to remain midway between the ions even
when these are displaced. This arrangement gives
the off-diagonal elements required in order to
stabilize the lattice. The dispersion relations so
obtained are of a quality comparable to that ex-
hibited by the curves in Fig. 1(f).

Prior to Martin and in an attempt to improve the
second-nearest-neighbor BKM for diamond,
Warren made a similar bond-charge approach
which, however, utilized incorrectly defined Cou-
lomb matrices. Solbrig ' combined the bond-
charge matrices of Martin with VFM in an un-
successful application to silicon. This caused
Solbrig to initialize the development of a new ver-
sion of VFM. ' In this theory, the ionic cores are
electrically charged and polarizable by induction
from the local field, the bond charges are subject
to the same constraints as in the Warren-Martin
treatment with the dipole moments collected at the
ionic positions, the short-range forces act between
the ions, and linear charge exchange between the
atoms is also allowed for. Applied to germanium
this model would include three new parameters in
addition to the ordinary valence force field. Trials
to combine bond charges with the "breathing" SDM
are reported by Kress, who claims the results to
be satisfactory. However, the results and argu-
ments actually presented do not carry conviction.

No successful report of any bond-charge model
is known to us. The reasons for this, we believe,
is not that Phillips's theory is basically wrong.
It is a fact that none of the models cited in the
preceeding paragraph allows for electronic polar-
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ization caused by a direct coupling between the
distortions of the bond-charge configurations and
the short-range forces. The Warren-Martin con-
straints may well be invalidated by a refined
microscopic theory. The results of Sec. III will
give support to these statements.

G. Ansatz

Sinha ' has developed a microscopic theory of
lattice dynamics from which, in principle, all
phenomenological dipole models may be derived.
The model divides the perturbed valence electron
density into a part which moves rigidly with the
core and a deformation part. The latter, which
has to satisfy a self-consistency equation, is as-
sumed to define a dipole field. The dipoles are
not restricted to be situated at the cores and they
are assigned a finite spatial extension described
by a form factor. The second basic approximation
is a general Ansatz which allows for an explicit
inversion of the dielectric function in terms of a
generalized polarizability tensor, the dipole form
factors, and the electron-electron interaction po-
tential. This is very convenient in the case of an
insulator where off-diagonal elements have to be
considered (Sec. IIF). Loosely speaking, the
Ansatz may be regarded as a parametrized com-
bination of the free-electron and the tight-binding
pictures. The model has been applied to our ger-
manium data by Sinha et al. The dipole form
factor used represents a real space extension
characterized by being constant within a radius r~
and zero otherwise. Isotropic polarizability was
also assumed. x~ was the only free parameter in
the self-consistency fitting procedure; the results
of which are presented in Fig. 1(f) and in Tables I
and II. The dipoles were assumed to be positioned
at the cores. When they were attached to the bond
sites instead, however, poor agreement with ex-
perimental data was obtained, probably owing to the
oversimplified form factor and polarizability. On
the other hand, the results must be considered
promising, and future attempts to account for bond-
charge polarization will probably do much better.

III. NEW MODEL

Let the germanium lattice be described as fol-
lows. The nucleus of an atom and its surrounding
inner electrons, i. e. , the closed or localized
part of the electronic configuration, is considered
as a spherical ionic core. It may thus be repre-
sented by an electrically charged mass point. As-
sume that the electronic polarizability of the tight-
ly bound core can be neglected compared to that of
the nearly-free valence electron gas. The core
will then behave like a rigid ion. The valence elec-
tron gas is treated according to Phillips's bond-
charge theory, i. e. , point charges are to be at-

tached at the midpoints of the bonds. (This point
representation is also supported by nonlinear
screening theory. According to Heine and Jones, '
the bond charge is indeed well localized, although
it is not quite a point charge. ) The remaining
parts of the valence electron gas are then attrib-
uted a much lower charge density. These charge
clouds keep the bond charges and the ionic cores
apart with directed valence in an sp or, perhaps
better, an O„crystal hybridization. ' They
should be responsible for the short-range inter-
actions, which, moreover, ought to be described
in terms of a valence-force field. Quantum me-
chanically, electronic polarizability is represented
by a nonloca. l (integral) operator. Assume, how-
ever, that the bond-charge pileup is so strong that
the contributions to a bond-polarization center will
fall off rapidly enough with distance to justify a
neglecting of integration overlap effects. (The
actual magnitude of a bond charge will be discussed
below. ) The electronic polarization may in that
case be considered as a local property attributed
to the bond charges. If we, moreover, prescribe
it to be directly affected by the short-range forces,
a particle treatment of the bond charges will be
required that makes them free to move in the same
manner as the ionic cores without any explicit con-
straints. The short-range forces will thus act be-
tween the ions via the interjacent quasiparticles.
The number of particles per primitive cell is now
six [Fig. 2(c)]. The adiabatic approximation will
be satisfied by setting the eigenvalues of the quasi-
particles identical to zero in the equations of mo-
tion. It is hoped that a future refinement of the
first-principle bond-charge theory will give a
firmer justification of our quasiparticle-bond-
charge model (QPBC). The formal elements of the
present theory are given in the Appendix.

We first worked with the hypothesis that the
short-range forces are operative only within the
considered atom (origin atom), i. e. , not beyond
the four first-nearest-neighbor quasiparticles.
This conjecture was, however, not successful. A

good agreement with experimental data was ob-
tained first when it was assumed that the short-
range field not only links first-nearest-neighbor
atoms together but is also operative exclusively
in a Z plane. The final set of force constants was
found to be a direct analog to the five-constant set
obtained for VFM. The results of a fit with this
six-parameter version of QPBC are exhibited in
Fig. 1(e) and in Tables I and II. The fit is, quan-
titatively, found to be approximately the same as
for VFM but it differs in a qualitative sense, par-
ticularly for "transverse" acoustic modes. The
values of the force constants obtained are, how-

ever, now arranged in an order which may be ex-
pected on an intuitive basis, i. e. „F„&f»& F~
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&fag&fq9. The results of QPBC are also in agree-
ment with the formalism of BBM: The broken-
bond picture is compatible with the present model,
and four of the five short-range force constants
are operative within the origin atom, thus exhibit-
ing strong rehybridization forces and supporting
the stiff antennae approach. Concerning the derived
values of the macroscopic constants listed in Table
II, we notice that fair agreement with experiment
is obtained in all cases except for C». This dis-
crepancy is present also for the corresponding
values of VFM and BBM.

Phillips estimated the magnitude of the bond
charge to be

Za= 2/e, (2)

(4)

is almost independent of q for germanium; the
maximum deviation being not larger than 3'P(; for
the b, A, and Z modes. ~v According to Rosen-
stock, this implies for a nonmetallic crystal
that, if the long-range forces in germanium obey
the Laplace's equation, the short-range forces
should act, practically, only between first-nearest-
neighbor atoms. The QPBC force field obtained
satisfies this rule. This is, however, not the case
for either BKM, DDM, SDM, VFM, or BBM, which
models include short-range interactions out to the
fifth-, second-, second- fifth-, and second-near-
est-neighbor atoms, respectively.

We have treated the bond charges as being fixed

expressed in units of e. Equation (2), which gives
Z~-0. 1 for germanium, is obtained if contributions
to Z~ arise only from the incomplete screening of
the ionic cores. However, if the overlap of the
spherical part of the atomic form factors is also
taken into the account the magnitude of Z~ will in-
crease. Levine37 gave for a completely covalently
bonded crystal the formula

Za= 2/e+ 0,
where k is a constant. Levine estimated from Eq.
(2) with the help of the electrical susceptibility the
bond charge in germanium to -0. 6 e. Our value
of the effective bond charge is -0. 22 e, which,
when multiplied by the square root of the experi-
mental value of the dielectric constant, gives a
bare charge of -0.88 e. Although lacking a more
accurate check of our value, we may anyhow state
that it is of a reasonable order and that the value
derived for the dielectric constant (Table II) is
good. Moreover, the strong bond charge obtained
and expected from screening theory may be taken
as a support of the above treatment of the elec-
tronic polarizability as a local property.

It is known that the sum

in magnitude. However, charge redistributions
certainly occur between adjacent bonds during vi-
brations. The force constant fRR has been inter-
preted in terms of such effects by means of quan-
tum- mechanical resonance theory. ' The con-
tributions to the phonon spectrum by this constant
are less important than for anyone of the other
QPBC constants. In fact, if fRR is dropped and its
value subtracted from that of I'R the only notable
effect on the dispersion relations is a gradual de-
crease of "longitudinal" mode frequencies when
the zone boundaries are approached. The actual
figures are about —0. 3 THz on the average at the
points X and L. The exchange charges should,
intuitively, be smaller, if not even much smaller,
than both the ionic and the bond charges, and so
their contributions to the spectrum should also be.
One might thus expect an approach in this direc-
tion to be fruitful. However, the actual form of the
mathematical description of a phenomenological
charge exchange, we feel, does need some sepa-
rate investigation, which, preferably, also should
include efforts to substitute other off-diagonal force
constants as well by explicit phenomenological
representations of other first-principle concepts.

QPBC leads to a stable lattice provided the bond-
stretching (I'a) and the Coulombic (Za) fields are
incorporated. The dashed lines of QPBC in Fig.
1(f) show the results obtained if F„ is determined
by the Raman frequency, I'~5 (Z~ does not contrib-
ute) and if Za is chosen so that the fit to the fre-
quencies of X3 and L3 is optimized (I' R contributes
practically nothing). The similarities with the
Ansatz spectrum are obvious, but it is less clear
for the moment how this should be interpreted.
When the remaining short-range parameters are
included, it is found that the "longitudinal" acous-
tic modes are dominated by R-dependent forces
while contributions from other than ~- and Z~-de-
pendent forces are entirely negligible for the
"transverse" acoustic modes. This is in accord
with the results of a previous paper, ' where it was
found that the "longitudinal" acoustic branches
mainly reflect the bulk properties (compressibility)
of the electron gas while "transverse" acoustic
branches are sensitive to the details of the charge
distribution. This sensitivity, we believe, is the
main reason for the difficulties encountered in the
various approaches to account for the electronic
polarizability in germanium. The point-dipole
bond-charge approximation assumed here works
well while, for instance, the corresponding finite-
dipole approach used in the Ansatz failed. A
systematic investigation of various quasipartic le
bond-charge dipole form factors (and the polariza-
bility tensor as well) with the Ansate should be
fruitful and give further insight into the properties
of the valence-charge distribution.
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APPENDIX

Let g(l) = IIu&(l) II, where u, (l) represents the dis-
placement of the ith particle in the 1th cell, denote
the column vector obtained when i runs from 1-6.
The kinetic energy of the infinite crystal is then
given by

2T =P jt(l)M j(l), (Al)
l

where M is the diagonal mass tensor defined by
M« = M for i = 1, 2 and M« = 0 for i = 3, . . . , 6; M
being the germanium atomic mass. Let 5„„&(l)de-
note the Wilson 8 vector' for the action on the nth
valence coordinate of the lth cell, h„(l), by a dis-
placement of the ith particle in the mth cell. De-
fine the column vector of the valence coordinates
of the lth cell, H(l) =IIh„(l)II, by the relation' '

H(l) =QD, q(m),
A

where D, = IIS,(l)ll; the row index n = l, . . . , n ~
and the column index i = 1, . . . , 6. The potential
energy due to the short-range interactions are then
given in the harmonic approximation by

2V.=P H'(l) ~,.H(m),
lm

where I', = ll f,&,.~II and f«,~& is the interaction
force constant between the valence coordinates
h, (l) and h, (m}~ The quadratic term of the Cou-
lombic interaction energy may be written

periodic boundary conditions, write

q(l) =+Q(k) e (A4)

where k is a reciprocal-lattice vector. After sub-
stitution of Eq. (A4) into Eqs. (Al)-(AS) and ap-
plication of the usual procedures (Ref. 4, p. 297),
we obtain

2r =XPj'(k)MQ(k),

2V, =NQ Q (k) 8 (k) Q(k), (A5)

2V, =NQ Q (k)8 (k) Q(k),

where N is the number of cells in the crystal and

I (k) =B (k) P(%)S(k),

i)(R}=Qbo e-'"'

~(k) PP e Ik'1 (A6)

e(k) =(Zee) +Co, ,

8(k)=(Zae) /g, Z, Z, A,'', (k)

~o~= Col:e '"'-, igZ &tl."
yt

The &~grangian procedure, applied to Eq. (A5),
then yields the secular equation

IM E —[a(k)+0(k)]
I

= 0,
where E = II E„II is the eigenvalue column vector and
Ei=4m~v~for &=1, . 6 and Ei=0 for ~='7 1
(in order to satisfy the adiabatic approximation );

A P
v being the phonon frequency. The matrix C(k) in
Eq. (A6} is evaluated numerically after application
of the Ewald transformation:

2V, =(Zse) Q g(l)C, q(m), (AS)

where

6,&Z& Q Zs'A~ (0)

A A

QS 1
su)(l)su~2(m) l%,);„qI o

Z, is the charge number of particle i, %«, &
is the

instantaneous vector from (mj) to (li), x andy are
the cartesian indices, and (ix) are the row and

(jy) the column indices of C„. ~. The index 0 in-
dicates that the differentiation is to be carried out
at the equilibrium configuration& and the prime
after Z indicates that the case R„.,~ = 0 is ex-
cluded from the summation. In accord with the

A'~(k)=4vp 2
' exp[-i(Gr, &+G /4@0)]

", ' [Sy(S,)+ 2q$ erf'(0S. )]
g

-5 e(f)Ij
erfc()Q erf'(gL)

2 + 2

G= I(Gly G2 GS)I = Ig-kI
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I =
f
(I„i„~,) f

= /T+T
/

.

p, is the primitive cell volume, g is a reciprocal-
lattice vector, r,~ is the vector from the ith to the
jth particle in the origin cell, p is the Ewald pa-
rameter, and erf'= (d/dk)erf(x). In the case of
r,&

= 0 the summation over the ordinary lattice is
carried out for l 0 but with the addition

—,(v, rl /~v)5(, a„„.

The macroscopic constants of the long-wavelength
limit are obtained with the method of long waves,

which has to be slightly but trivially modified.
After series expansion of $(k) and C(k) for small
i% l and separation of the macroscopic field from

8(k), comparison is made between the condition of
solubility for the equations of the second-order
coefficients and the macroscopic equations of
elasticity and dielectric polarization. The proce-
dure is lengthy but fairly straightforward, and no
formulas will be given here. The macroscopic
constants and the matrices 8(k) together with their
derivatives were calculated by means of a com-
puter.
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