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The trends as a function of free-electron density, n = [(4/3)mr, '. a '] ', in the soft-x-ray absorption
spectra &2(co} of amorphous Mg„Sb, , alloys and metallic Li, Na, Mg, and Al are analyzed in terms of
the many-electron theory of x-ray threshold anomalies: &2{co) = A,'[+co—E,-)/ (] "'. The threshold

exponents a, are calculated as functions of r,. using the Nozieres-deDominicis theory and a (Hulthen)
screened-potential approximation to the electron-hole interaction. These calculated exponents are in

marked disagreement with the empirical rule ao —0.068r, for Na, Mg, and Al. The cutoff energy ( is

extracted from Mg„Sb, „. alloy data and, within experimental error, is independent of x. Thus $
cannot be identified with a Fermi energy. The value ( = 0.24+ 0. 1 eV is too small to be identified as

a conduction-band width, but could be identified with the exciton rydberg R = 13.6(m/m, -, e„') eV,
where m is the conduction-band mass and e, is the static dielectric constant of Mg, Sb, . The analyses

indicate the qualitative importance of final-state interactions in shaping the absorption thresholds, but

improved, quantitatively accurate, theoretical understanding of the threshold exponents a, and the

characteristic energy g is needed. Future experiments on x-ray edges of alloys such as Mg, . Sb)
should be coupled with independent experimental determination of the variation of r, with composition

x, in order to facilitate comparison of the many-electron theory with data.

l. INTRODUCTION

In one of the hallmark papers of contemporary
many-electron theory, ' G. D. Mahan proposed that
electron-hole interactions force the soft-x-ray ab-
sorption and emission spectra of simple metals to
exhibit shapes which either diverge or vanish at
threshold. The identification in soft-x-ray spectra
of peaks and shoulders, which appeared inexplica-
ble in terms of calculated one-electron densities
of states, stimulated experimental interest in
Mahan's theory at the same time that theorists rec-
ognized analogies between the x-ray theory and the
Kondo effect. '

The over-all importance of Mahan's work to the
modern many-body theory of solids, combined with
its relevance to the understanding of x-ray spectra,
provides ample motivation for subjecting it to the
ultimate test of a physical theory: Can it quantita-
tively describe the data'?

In this paper, we deduce some experimentally
verifiable consequences of the present form of that
theory and compare the theory with soft-x-ray ab-
sorption data for Na, Mg, Al, Li, and amorphous
alloys of Mg„Sb& „. '

-'r ~(r,n)' n'= (3)
Section II of this paper is devoted to a prelimi-

nary discussion of the Mahan theory, its relation-
ship to the data of interest, and its relationship to
the present paper. Section III contains a discus-
sion of the parameters of the Mahan theory, pr in-
cipally the exponents n, and the characteristic en-

The units of energy and length used in this paper
are the exciton' rydberg R and Bohr radius fv, re-
spectively:

rt = »ie'(2eoh ' = l3. 6()n/»ioeo) eV, (1)

» =rt, eo/»le = 0, 53(EO»lo/»l ) A, (2)

Here nt and ulo are the conduction-band effective
mass and the free-electron mass, respectively;
e = —j eI is the electron charge, and qo is the static
dielectric constant of all bound electrons except the
conduction-band electrons (e.g. , in doped fnsb,
would be the static dielectric constant of the pure
material; in Na, eo would be the computed dielec-
tric constant of the 1s 2s 2p' cores).

The density n of the conduction-band electron gas
is charac ter ized by the reduced intere lee tr on radi-
us 'Vs'.
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ergy (. This section presents screened-potential
model calculations of the Mahan exponents similar
in spirit to work by Mahan, Ausman and Glick,
and Longe; the principal difference is that the
calculations presented for metallic densities are
self-consistent and are meant to be compared with
trends in the data from material to material
(Mahan, Ausman, and Glick were primarily inter-
ested in computing o., for lithium). Section lv is
devoted to a comparison of the theory with the data.
The principal conclusions of this paper are pre-
sented in Sec. V. Considerable relevant but
peripheral material is included in the Appendixes:
Theoretical results for r, ~ 5 and & 5 are presented
in Appendixes A and B, respectively. The spectra
analyzed here and the procedures for fitting them
are given in Appendixes C (for Li, Na, Mg, and Al)
and D (for Mg„Sb~ „).

II. PRELIMINARY DISCUSSION

One-electron theory, which neglects the final-
state interactions of the electrons with the core
hole, predicts an optical absorption e2(~) propor-
tional to (i) a transition-matrix element squared,
(ii) the density of final states, and (iii) a Fermi
factor that forbids transitions to occupied states
below the Fermi surface (see Fig. l). For the ex-
periments of interest, the one-electron matrix
elements and densities of states are generally non-
zero at threshold and contribute only an uninterest-
ing constant factor, A, to the threshold law. Fur-
thermore, in metals" Fermi energies generally
exceed thermal energies by orders of magnitude,
guaranteeing the adequacy of a zero-temperature

Egap

FIG. l. Illustrating the x-ray transition discussed in
this paper on an energy-band diagram E vs k. The photon
creates a hole in a core level and an electron above the
filled Fermi sea.

Here ez(~) is proportional to the photoabsorption
coefficient ' for a photon of energy 5w, E~ is the
threshold energy, $ is a parameter with the dimen-
sions of energy, and A, is proportional to the den-
sity of states multiplied by the squared-dipole tran-
sition matrix element from a core state to a. con-
duction-electron state with angular momentum
quantum number l. 8(x) is the unit step function
and 2vh is Planck's constant. Note that e2(u&) di-
verges or vanishes at threshold depending on
whether the dominant exponent ~, is positive or
negative.

The many-electron result reduces to the one-
electron approximation formula [Eq. (4)] in the
limit of zero electron-hole interaction:

and

u, (one-electron) -=0

Er (one-electron) = E„,+ Ez. ('7)

Here E„,is the energy of the bottom of the conduc-
tion band relative to the center of the core band,
and E+ is the Fermi energy relative to the bottom
of the conduction band.

Mahan's threshold law, Eq. (5), with the many
free parameters A„E~, $, and u„ is sufficiently
flexible to fit almost any spectrum. In order to
subject the theory to valid and rigid experimental
tests, it is necessary to know the dependence of
those parameters, especially the energy $ and the
exponents n„on experimental variables such as
r„&„and nf. Of these, the most easily manipu-
lated variable is r„since nature provides metals
of different electron density (mostly, 2 &r, & 5) and
controlled-composition alloys can be made with low
densities, r, &5.

In Mahan's model, the electron density deter-
mines both the Fermi energy Ez =h hr/2m and the
electron-hole interaction V,„, which, for example,
in the Thomas-Fermi approximation involves a
screening wave vector proportional to r, ' . Once
the variations of k~ and V,„with r, are known, the
density dependence of the partial-wave phase shifts
can be calculated and inserted into the Nozieres-
Deoominicis expression for the Mahan exponents':

theory and allowing the Fermi factor to be approxi-
mated by a step function. Thus, the one-electron
theory yields a, step-like threshold law:

e, (~) =A 6(5 &a —Er) for h&u=Er.

Mahan proposed that electron-hole final-state in-
teractions modify the one-electron result, produc-
ing the singular threshold behaviors. ia

(5)
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Here the "orthogonality catastrophe" is responsible
for the term

n = 2 5 (2j+ 1)[6,(k )/v] (gb}

and 5, (kz} is the phase shift experienced by a
Fermi-energy electron scattered by V,„; the cen-
tral potential of the hole presumed fixed at the ori-
gin of coordinates. Such calculations are presented
in Sec. III.

Recall that the primary (qualitative) successes of
the Mahan theory have been based on the Nozieres-
DeDominicis formula: the apparent ~ 7 explana-
tion or prediction of (i} anomalous threshold
"spikes" whenever the dominant a, is positive, and
(ii) rounded thresholds whenever the dominant u,
is negative. For a simple free-electron metal, the
attractive electron-hole interaction generally
causes the s-wave phase shift to be large and posi-
tive, giving a positive s-wave Mahan exponent:
no& 0; the p-wave phase shift is usually much
smaller than 5o, and the "orthogonality catastro-
phe" '~ contribution to the exponent —0 is thought
to force the p-wave exponent to be negative: a, & 0.
(Similar considerations yield o., & 0 for l 2. )

Thus, for allowed transitions to s-like conduction-
band states, go is nonzero, &o is positive, and a
divergent spike-like threshold anomaly is expected.
For those metals in which transitions to s-states
are forbidden (e. g. , Ao-=O, that is, s-like and
d-like holes}, transitions to p states are allowed
(A, x 1) and the p exponent (being larger than the
exponents for larger l) dominates the threshold
shape, causing it to be rounded whenever n~ is
negative.

In this paper, we consider x-ray absorption by
metals and both x-ray and optical absorption by de-
generate semiconductors. We are concerned with
how such absorption depends on electron density.

The ideal system for testing the many-electron
theory would be a semiconductor, such as InSb, but
with valence-band mass m„sufficiently heavy to
satisfy Mahan's recoilless-hole criterion n~ «n~„.
By varying the concentration of n-type dopants, the
degeneracy of the conduction-band Fermi sea could
be controlled over the range 0. 1 ~ r, & ~. The op-
tical transitions in such doped semiconductors
would correspond to the Mahan theory, which
assumes only the effective-mass approximation, a
localized hole, and a free degenerate gas of elec-
trons. With increasing Fermi energy a Burstein
edge effect'9 should be observed, with the Mahan
anomaly shaping the absorption threshold. To date,
many-electron threshold anomalies have been de-
tected only in soft-x-ray spectra; none have been
observed in the optical spectra of degenerate semi-
conductors.

The principal observations of anomalies thought

to be caused by the Mahan effect have occurred in
light metals: Na, Mg, Al, and Li. In applying the
many-electron theory to these materials, we follow
other authors ' and assume the metals to be theo-
retically identical to heavily doped semiconductors,
but with background dielectric constants &o nearly
unity, as computed from the polarizability of the
closed-shell cores. Within the context of the
many-electron theory, the primary difference be-
bveen a metal and a semiconductor is the difference
in background dielectric constants: c~ = = 15 for a
semiconductor and &o= 1 for metal. The larger di-
electric constants and normally smaller conduc-
tion-band masses generally cause the semiconduc-
tors to exhibit large exciton radii, n =h eo/»ie,
putting them into the Wannier- Mott-Elliott effec-
tive- mass weak-binding limit. Although the exciton
radii of metals, computed from the expression n

=h e,/»~e, more nearly approximate the Frenkel
limit (a= lattice constant), we follow previous au-
thors and treat the final-state interactions in metals
within the effective-mass model. '

In this paper, we also treat the x-ray threshold
anomalies of Mg„Sb& „amorphous alloys. Since
most of the relevant data for these materials cor-
respond to values of x near the intermetallic com-
pound composition (x=0. 6), we assume the "host"
to be Mg, Sb2, with "impurities" of Mg and Sb sup-
plying the population of the presumed-free-elec-
tron-like conduction band. Thus the dielectric con-
stant g~ and effective mass nf used in calculating
the exciton radius and binding energy are the val-
ues for crystalline Mg38bl. Since the core hole is
massive, »~ is the electron's band effective mass,
n& =3. 1n~o. Unfortunately &o is not known; but
realizing that crystalline Mg3Sb2 is a semiconduc-
tor (its band gap is O. S2 eV), it would be reasonable
to guess Eo = 13. Therefore we obtain R = 0.25 ep.""

The data cited as evidence for Mahan's threshold
effect are enhanced La, absorption edges (o, & 0)
of Mg„Sbj „and Mg„Bi& „alloys, ' I-z 3 edges of Na,
Mg, and Al, and E edges (o't & 0) of Li, Al,
and (recently) Mg. 6

Recent experimental and theoretical develop-
ments, however, cause us to reexamine the many-
electron interpretation of the soft-x-ray threshold
anomalies.

On the expevi»iental side: (i) soft-x-ray absorp-
tion measurements of amorphous alloys have yield-
ed spectra whose dependences on electron density
can be tested against the theory; (ii) soft-x-ray
absorption measurements by Wolff qI. gl. 28 on Na
vnpor have revealed a sharp line at precisely the
energy of the anomalous spike in the solid's spec-
trum, making one wonder if the solid's spike is a
many-electron or few-electron phenomenon. Of
course, the absorption lines for both the atom and
the solid have common parentage and should reside
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at approximately the same energy; but the possi-
bility that the solid's spike is, in fact, a simple
localized quasiatomic absorption should not be
overlooked —a possibility that might be more at
odds with the formulation of the Mahan theory in
momentum space than with the theory itself; and
(iii) an attempt to convert the rounded Li absorp-
tion edge into a spike by destroying inversion sym-
metry has failed, although the many-electron
theory had predicted that it should not have. '

On the theoretical side: (i) The many-electron
interpretation of the Li anomaly has been criti-
cized, and alternate explanations have been pro-
posed —attributing the anomaly to either a gigantic
electron-amplified simulated phonon broadening of
the core-state or an Auger effect. ' Both phonon
and Auger effects give an absorption edge shape in
quantitative agreement with the data —whereas
the many-electron theory fails to achieve even
good qualitative agreement, ' producing nonover-
lapping absorption and emission spectra with in-
correct slopes at threshold. (ii) Arguments
based only on the Friedel sum rule and the rel-
ative impenetrability of the hole's angular mo-
mentum barrier to d-wave electrons reveal that
the rounded hard-x-ray E spectra and the spiked
soft-x-ray Lz 3 edges of aluminum and magnesium
have shapes that cannot both be consistent with the
Nozieres-DeDominicis expression for the expo-
nents a, [Etl. (8)] and the interpretation ao&0, and

~~ &0.""Thus the belief that aluminum and mag-
nesium support the many-electron theory by ex-
hibiting both enhanced L2, edges and orthogonality-
catastrophe suppressed tf edges is no longer tena-
ble. (iii) Compatibility relationships between K
and L edges, based on the Nozieres-DeDominicis
expression [Eg. (8)] indicate that E edges can be
suppressed (o, & 0) only if the s-wave phase shift
at the Fermi surface is near resonance [8~(hr)=-', v],
a fact that suggests the existence of a bound exciton
state' [80(0)= v] and implies an s-wave (Ls,-edge)
exponent a0= —,'. The emission spectra of simple
metals offer no evidence of such bound exciton
states, and L& 3-edge exponents are generally con-
siderably smaller than one-half. Thus the princi-
pal experimentally relevant conclusion of the many-
electron theory, that L2, edges are generally en-
hanced whereas E edges are suppressed, lacks a
rigorous theoretical foundation, ' '"

Clearly, quantitative comparisons of the Mahan
theory with the data are needed in order to deter-
mine which spectra exhibit genuine many-electron
anomalies. With the dual interpretation of E-edge
rounding and L enhancement under attack, it is
desirable to concentrate on the soft-x-ray L2 3

edges and to determine the extent to which they dis-
tort with changes of free-electron density. It is
the purpose of this paper to attempt such quantita-

tive comparison as is presently possible and to
discuss the dependences on r, of the soft-x-ray
anomalies of metallic Na, Mg, Al, and Li, and of
Mg„Sb& „alloys.

III. PARAMETERS OF MAHAN THEORY

Of the parameters A.„E~, (, and n, of the
Mahan theory [see Eq. (8}]A, and Er are finite in
the limit e /eo-0 and are sufficiently insensitive to
the final-state interactions to render impractical
the detection of differences between their one-elec-
tron and many-electron values —especially in view
of the present primitive state of one-electron theo-
ry. Therefore only the critical exponents a, and
the characteristic energy ( are amenable to close
scrutiny and we shall concentrate on determining
their dependences on effective mass, dielectric
constant, and Fermi energy.

A. Exponents nl

The critical exponent of the hIahan theory is
given by

28, (h„) g( .
)

5, (hr))
7r /~0 'll'

The 8, (hr) are the partial-wave phase shifts at the
Fermi surface (Ee =h hr/2m) obtained from the
scattering solutions of the single-electron Schro-
dinger equation

[(-h '/2m)V'+ V,„]yf,(r ) = E„"ttf, (r) . (10)

Here E~ and k~ are the Fermi energy and wave
vector, respectively:

@ Skag 9 2/3

h~=(9v)&~3r &=1 glgr ~ (14)

To gain the analytic simplicity of an exactly-

Here V,„is the effective electron-hole interaction
and should include Friedel oscillations, the nonlo-
cal and dynamical effects of pair excitations, and a
short-ranged repulsive pseudopotential which main-
tains the orthogonality of the conduction-band states
to the core. In the interest of simplicity, Mahan
and others" took V,„ to be a Yukawa-like statical-
ly screened local potential:

V,h(r) = —(Ze /ear) e

Here Z= 1 is the charge of the hole and k, is the
screening wave vector,'if we mere to determine k,
using Fermi- Thomas self- consistent- field theory
(which we shall not do), it would have the value"

6mna, ge 12 g

= 1.563—
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FIG. 2, Solid line:
rV(r) vs kp for the Hulthen

potential V=V~& of Eq, (15)
with Z =1 dashed line
rV(r} vs k~r for V the dif-
fe renee between Hulthen
and Fermi- Thomas poten-
tials [Eqs. {15)and (ll)]
with Z = 1. Units: rydberg
R and Bohr radius a [Eqs.
(1) and (2)].

soluble s-wave problem, we replace the Yukawa
form of the screened potential used by Mahan and
others with a potential of the Hulthbn form':

( )
—Ze k, m /6eo —3zk, av A

( )
expQk, v'r} —1 exp(~k, w'r)- 1

'

Note that the Hulthbn potential is virtually indis-
tinguishable from the Yukawa potential (Fig. 2)
when, as in Eq. (15), the integral of r V,„(r) over
all space is the same for both potentials. Further,
at all distances, even down into the deep Coulomb
well near a point charge, the random-phase-
approximation potential just oscillates weakly
about the Thomas-Fermi as a local average, and
the Hulthkn shape is as adequate to our present
purposes as the full linear response shape. To be
sure, at sufficiently large r„ it may be that none
of these shapes can self-consistently accommodate
the multiple scattering off the bare potential, but
an adequate study of this possibility requires use
of rather elaborate nonlinear response theory and
has not yet been made.

The primary advantage of the Hulthen potential
is that its s-wave phase shift can be evaluated
exactly:

justified both by Mahan's computations a,nd by ours
for electron gases considerably more degenerate
than those which support bound p states (r, & 20).

In adopting this screened-potential model, we
are aware of its limitations. We rely upon the
model only to accurately predict general frends in

the x-ray edge data, but do not expect it to produce
a precise value of any particular quantity, such as
the exponents a, for a specific metal.

In discussing the screened-potential model, we
shall consider two distinct regimes of conduction-
band Fermi-gas density: (i) the low-density re-
gime3 (r, ~ 5}; and (ii) the ultradense to metallic-
density regime (0& r, & 5). The low-density
screened-potential calculations will be performed
in a linear-response approximation similar to the
usual ' Fermi- Thomas approximation and, as
such, will not be fully self-consistent, since at
these densities it is possible for a screened poten-
tial to bind an electron, locally depleting the con-
duction-band charge. The high-density computa-
tions mill be fully self-consistent for the case of
weak scattering of p and higher-angular momentum
waves; the computed phase shifts will satisfy
Friedel's sum rule. Details of our computations
are presented in Appendixes A {for r, ~ 5) and 8
(for r, & 5).

1. Screening wave vector A;, for r,, &5:
Linear-response approximation

For large r, (low-density electron gas), the
screening wave vector k, mill be determined by the
Friedel sum rule, with the phase shifts all evalu-
ated in Born approximation

r (&+1)F(~+ 1)
50 k)=arg I'(u+ v+ 1)

Here we have

u= [-ika+(—,'Zk~av —k a )'~ ]/8 k, av

and

(16)
5', -"(k) = —„, V(r) q,'(kr) Her,

where j,(x) is the spherical Bessel function and V

is the Hulthbn potential [Eq. (22)]. We shall refer
to such sere'ening as linear-response screening.
Thus we have' the linear-response screening wave
vector

n=[-ika-( zk3, a vk a )'~ ]/6k, am . (18)

The branch of the argument function arg to be used
is best specified by Levinson's theorem ':

5,(0) =n'v,

where n is the number of bound s states = 1 473(Z/~, )'", .

(23a)

(23b)

n = tnt[(2/v)(3Z/k, a)'~ ] (20)

and int here indicates the greatest integer function.
We assume that the phase shifts for P and high-

er-angular momentum waves are accurately eval-
uated in the Born approximation, an assumption

where f(3) = 1.202 is the Biemann g function. Note
that k, is insignificantly different from the Fermi-
Thomas screening wave vector k, [Eq. (12)].

Linear-response screening is of limited validity;
and the actual phase shifts at the Fermi energy
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FIG. ;3. Calculated Fermi-energy s-wave phase shift
&p(kp) vs r~. Solid line: Hulthen value, Eq. (16); dashed
line: Born. approximation, Eq. (22); linear-response
screening. The values of r~ at which the 2s and 1s ex-
citon move into the continuum are marked 2 and 1, re-
spectively.

2. Screening wave vector k, for r, &5: Self-consistent
approximation

For metallic densities (2 & r, & 5) and ultradegen-
erate electron gases (~, —2) the screening wave
vector k in the Hulthdn potential [Eq. (15)]will be
determined seU-consistently using the Friedel
sum rule

(24)

with the s-wave phase-shifts evaluated exactly
[Eq. (16)] and higher angular momentum phase
shifts evaluated in the Born approximation:

may diff er signif icantly from the Born- approxima-
tion values. Hence the low-density (y, &5) theory
treated here is not fully self-consistent, but has a
range of validity similar to that of the Fermi-
Thomas theory. Note that the Fermi-energy s-
wave phase shifts evaluated using Eq. (16) (Fig. 3)
differ significantly from the Born-approximation
values and that the Freidel sum rule is therefore
unsatisf ied.

tion presumes conduction electrons sufficiently
mobile to fully screen the hole and phase shifts
satisfying Friedel's sum rule.

B. Characteristic energy $

The role of the characteristic energy in the
many-electron theory is both essential and curious;
for, although it enters the formal theory as a
mathematical cutoff, a theory with physical content
cannot depend on an unphysical energy. Thus if
the Mahan-Nozieres-DeDominicis (MND) theory is
to describe data, then ( must be identified with
some energy or combination of energies; these in-
clude the Fermi energy E~, the exciton rydberg R,
the conduction-band width W„and the inverse of
the density of states at the Fermi energy (which for
a parabolic conduction band is expressible in terms
of the Fermi energy).

Different theories assign various values to (.
For example, pseudopotential perturbation theoret-
ic studies by Brouers, Longe, and Bergersen4' in-
dicate that g is a somewhat complicated function of
EJ,-; and Friedel found ( =E~, using a somewhat
different perturbation expansion. However, per-
turbation theory necessarily diverges and is as-
ymptotically valid only in the 'high-density limit
(r, -0), whereas real metals correspond to 2 & v,
-5. Pardee and Mahan have recently identified
$ with the Fermi energy. However, the Pardee-
Mahan identification represents an unconventional
use of %'atson's final-state-interaction theorem
and seems to imply that the MND theory is valid
in the limit of infinitesimal Fermi energy, where-
as the Elliott exciton theory4' is known to be supe-
rior in that regime. The argument that $ is a con-
duction-band width' also runs into difficulties in

the exciton limit (y, -~). In that limit, the Elliott
theory of optical absorption produces an absorp-

z = [2/ l5, (u, ) —5", "(n,)1+z[u,'/I, ]'. {25)

Owing to the implicit dependence of the phase shifts
0p and 5p

' on k„ this is a transcendental equation
for k, which can be solved graphically or numeri-
cally. " Thus we fix r„compute k~ and k~, a,nd

solve Eq. (25) for k, . The resulting values of k,
are plotted in Fig. 4.

CU
I

~„1.0-

0.5

LINEAR
RESPONSE~ FERMI

~ THOMAS

SELF &
NSISTENT

3. Determination of Malayan exponents

Once the screening wave vector k, has been de-
termined, it is stra. ightforward to evaluate the
Mahan exponents using the Nozieres-DeDominicis
expression [Eq. (8)]. Note that we hypothesize
the applicability of Eq. (8) in the low-density re-
gime, although the Nozihres-DeDominicis evalua-

00

FIG. 4. Screening wave vector k„plotted as (k,a) 2

vs r~. Solid, dashed, and dotted lines are self-consistent
approximation, Fermi- Thomas approximation, and lin-
ear-response approximation, respectively.
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Metal

Na

Mg
Al
Ll

3.93
2. 65
2. 07
3.25

Gp

0. 26 +0. 04
0. 18 +0. 04
0. 15+0. 04
0. 48 + 0. 03

TABLE II. Exponents o p extracted from absorption-
edge data of simple metals. [For Li, Op was determined
by Eq. (34). ]

0,004—

0.000
t

0-0.5
(h~ EqopI /' R

0.5

FIG. 5. Unbroadened exciton-limit theoretical optical
absorption &&(~a) =ME I $„(0) I &(K& —E~ —E„) vs energy,
E= {Kw-E)/R, normalized such that M =1 in units with
R = 1 =a. Dashed line: Assumed density of states, Eq.
(13) with $ =5 eV; dotted line: exciton absorption {&

functions are normalized independent of the continuum to
which they join continuously); solid line: contact-exciton
approximation to exciton absorption: ~2(E) =Im(&" (E)/
[1 —~ (E)/~ (-1)]), where N~(E)=lm&p(E). Note the enor-
mous (factor of 1000) differences in the exciton and con-
tact-exciton. approximation line shapes for F-& 0.

TABLE I. Values for the critical exponent np at vari-
ous alloy compositions. The values are from Ref. 6 and
have uncertainty +0. 1. All samples were amorphous ex-
cept, for Mg, which was crystalline.

Composition

Mg3sSb62

Mg4gSbs7

Mg4sSbs
MgssSb42

Mg6pSb4p

Mg67Sb33

Mg

0. 30
0. 63
0. 55
0. 87
1 ~ 04
0. 81
0 ~ 22

tion-band shape from the exciton Hamiltonian which
differs by orders of magnitude from the shape pro-
duced from the MND Hamiltonians (see Fig. 5. )."
The Hamiltonians differ only in that the MND theory
approximates the Coulombic electron-hole interac-
tion —e /coy by a 5 function or separable potential.
This approximation r'equires the introduction of an
otherwise unnecessary energy cutoff, which is
often identified with the conduction-band width.
Thus, in the low-density limit (x, -~) with the ef-
fective-mass approximation, the band tctdth cutoff-
is mathematical, not physica/. Finally, we note
that in the low-density limit (r, -~, Er=0), even
in its role as a mathematical cutoff, f is related
to the strength of the electron-hole interaction.

Thus it would be natural to replace the character-
istic energy $ by the exciton rydberg. However,
in the high-density limit x, —D this is incompatible
with perturbation theory.

In summary, the present theoretical understand-
ing of the cutoff $ is incomplete; E is most likely a
complicated function of R, E&, and possibly W, .
Which dependence dominates the metallic and semi-
conducting regimes 2 r, will have to be determined
experimentally.

IV. COMPARISON WITH DATA

We have argued that the Hulthbn potential is an
adequate model interaction so that we have [Eq.
(15)]

I (u + 1)I'(v+ 1)
r(1 —12th/h, +) ' (26)

where u and tare funct, ions of h and h, [Eqs. (1 t)
and (18)], and the screening wave-vector is deter-
mined by the procedure of Sec. II. We insert this
result into the Mahan form of the absorption
threshold' [Eq. (5)]

ss(&o)=A ( ) e(ttto —Er), (2't )

with the Nozieres -DeDominicis exponent

2() r(hz) p . 5)(hz))' (28)

to analyze the soft-x-ray absorption data. For the
I,3,3 edges, n is np; for the K edges, e= nq. "

The data of interest are (i) the I.s s absorption
edges of Na, Mg, and Al, (ii) the K absorption edge
of Li, and (iii) the Ls s absorption edges of amor-
phous alloys of Mggbt „. These data, are repro-
duced in Appendix D. Except for Li, we fit the
data with the Mahan threshold shape (Gaussian
broadened), and thus determine' the values of the
exponents n, which are tabulated in Tables I and
II. The fitting procedures are discussed in Appen-
dixes C and D. The exponent Q. , used to calculate
cp for Li has been obtained by Yue and Doniach. '

Observe that the fact that the spectra can be ana-
lyzed in terms of the Mahan shape, by itself, does
not necessarily indicate that final-state interactions
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influence these spectra. The parameter A $
governs the line strength, whereas e is essentially
an inverse linewidth for asymmetric broadening.
Several physical processes distinct from the Mahan
mechanism could produce a line shape easily fit
with the Mahan form, suitably broadened. To de-
termine the extent to which the spectra are well-
described by the Mahan theory, the dependences of
n and $ on electron density or r, must be studied.

0.5t-
100

0.0~10-' 10-' 10 10 10 10
, (n cm)

106

A. Exponents nf

A highly sensitive test of the many-electron
theory is provided by the exponents e,. ' The
Nozieres-DeDominicis result, E4ls. (5) and (8),
which expresses the exponents as functions of the
phase shifts, can be verified or excluded once the
dependence of phase shifts of conduction electron
density or r, is known.

p= (net) '=4m(r, a}'/3ep(r, ) (28)

Unfortunately, the mobility function p(r, ) is p, res-
entl. y unknown, so that only a qualitative compari-
son of the Mggb, „exponents with the theory is
possible. Normally one expects p, to be a decreas-
ing function of r, and hence p to be a monotonically
increasing function of r, . ' Under ordinary cir-
cumstances, "the mobility may be expected to vary
most rapidly with r, if it is limited by charged de-
fect scattering. For a simple band and with
Thomas-Fermi screening, p(r, } decreases over
the range 2. 5 & r, & 5 by at most a factor of 4.
Band-structure complications modest enough that
the Nozieres-DeDominicis derivation need not be
modified could add only another factor of order
un. ty. "

The Mg„Sb& „exponent data are plotted as a func-
tion of resistivity in Fig. 6. Note that the data
separate into two distinct regions: (i) the low-den-
sity high-resistivity (p& 10 0 cm) large r, regime, -
where we have c4o = —0. 08+ 0. 075 lnp; and (ii) a
metallic-density low-resistivity (p & 10 0 cm) re-
gime. ' It is quite possible that, as a function of
r„ the distinct separation does not occur, but that
the mobility as a function of composition decreases
dramatically as electron motion ceases to be co-
herent, causing the resistivity to jump from 10

1. Low densities: r, &5

The L threshold exponents for Mg„Sb& „have been
obtained by Slowik and Brown for various amor-
phous alloy compositions x and are listed in Table
I. By taking published data' on resistivity as a
function of composition x, it is possible to obtain
the functional dependence of the exponent on resis-
tivity, n(p), for Mg~q „. To convert this depen-
dence of exponent on resistivity to a dependence on

r, (or density), it would be necessary to know the
variation of mobility p with r,:

FIG. 6. Mggb& „exponents no vs resistivity p in ohm
cm. The values of y = 100x are depicted on the graph.
For p &10 0 cm, the curve corresponds to the empirical
rule n(} = 0. 068r~, assuming constant mobility. The data
for p & 100 0 cm are approximately described by no
= 0. 075 lnp —0. 087. The resistivity increases abruptly
from 10 3 to 100 0 cm for x between 0. 67 and 0. 60, hence
the anomalously large error bars on the data for y = 60
and 67 (see Ref. 56). Furthermore the mobility might
exhibit an. edge between y = 60 and 67, in which case the
datum for y =67 might lie within the regime described
by the empirical rule, Eq. (33).

no 2[5o(kz)/o] 2~5o(kz)/o) —o. (30)

Now several of the Mg„Sb& „exponents exceed —,',
and therefore cannot be computed from the
Nozieres -DeDominicis formula.

Furthermore, even in the unlikely case that the
extracted exponents have been overestimated by a
factor of 2 and that the Nozieres-DeDominicis for-
mula is applicable to amorphous Mg~& „alloys,
the fact that no(p) is experimentally a monotonic
function of resistivity p indicates that 4to( p) as a
function of p does not yet pass through its maxi-
mum value of —,

' even for the highest resistivity ma-
terial (MgMSb4o). In terms of r, ( p), 4

~ -=r, (10o II
cm) is sufficiently small that ao(4;) is monotonical-
ly increasing for r, & r, . Noting that theoretically
5o(kr) is a monotonically increasing function of r,
(Fig. 3), we have [using E41. (30})

5o(k~; r, )&-,'w

or (see Fig. 3}
Iaax & 5

(31)

(32)

Thus, although the resistivity of the amorphous

to 10 0 cm. Hence it is not possible to state con-
clusively whether or not the Mg„Sbq „exponents no
are continuous functions of r, .

The noteworthy feature of Fig. 6 is that the ex-
ponent no appears to increase as the resistivity in-
creases, in qualitative accord with the theoretical
notion that final-state-interaction effects should
increase with r, . However, the theory indicates
that oo should not be monotonic, but rather should
exhibit a maximum ' (less than o.o = —,') for 5o(k~)

pO
1
2 ~
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Mg~& „alloys varies over more than ten orders
of magnitude, to describe the data with the existing
theory, r, =2. 64 (for Mg) to r, &5. Such a varia-
tion corresponds approximately to only one order
of magnitude (a factor of 6. 8) variation in charge
density per ten orders variation of resistivity, an
unacceptably small change of density. The net
conclusion is that even in the unlikely case that the
absolute magnitudes of the extracted Mg~q „ex-
ponents might be in error by a factor of 2, the
variation of those exponents with resistivity would
be too small to conf orm to the Nozie res -De-
Dominicis theory of the Mahan exponent.

In anticipation of a result to be obtained from the
Na, Mg, and Al data, we note that the empirical
rule Q.0=0. 068r, can describe the Mg„Sbq „expo-
nents if (i) the mobility as a function of x decreases
abruptly by six orders of magnitude as the resis-
tivity increases from 2~10 to 2&10 Acm; and
(ii) the mobility decreases slowly by a fa.ctor of
=300 as the resistivity increases from 10 to 2&&10

0 cm.
%e summarize the conclusions to be drawn from

the exponents of amorphous Mg„Sb& „. (i) no
appears to be a single-valued function of resistiv-
ity —indicating the importance of conduction elec-
tron density and final-state interactions in shaping
the x-ray threshold; (ii) the Nozieres-DeDominicis
expression for the exponents does not describe the
data; and (iii) qua, ntitative comparison of the
Mg~& „data will be possible only after r, (x), or
the electron density or mobility as a function of
amorphous -alloy composition is known.

Finally we note that at metallic compositions the
electron density as a function of composition, and
hence r, (x), can be determined from the Hall co-
efficient. At more insulating compositions, e. g. ,
Sb-rich Mggb~ „ it may prove possible to deter-
mine r, (x) from direct measurement of drift mobil-
ity using the transient technique. ' Thus a(r, )
could be directly determined for comparison with
theory.

2. Hig~ densities: rv& 5

In contrast to the case of amorphous alloys, such
as Mg„Sbq „, the free-electron densities of simple
metals are well known and it is possible to plot the
extra. cted exponents no as a, function of r, (Fig. 7).
Observe the empirical rule, ' which fits the Na,

Mg, and Al data in Table II well (solid line),

a, (r,)= 0. 068r,

The theory (dashed line) has an incorrect shape,
incorrect slope near r, =0 and is generally too
large, but reproduces the trend that np increases
as a function of r, .

The exponent op=0. 48 plotted for Li has not been
extracted directly from the data. Rather, the com-
patibility relationship '

Qo Qg 3 + Q (I —6 n&)
1 2 1j2 (84)

has been used to determine np from the Doniach-
Yue exponent nq ———0. 3.50

The fact that the exponents np for Na Mg and
Al are smooth functions of r, suggests that conduc-
tion electron density and final-state interactions
influence the shape of the x-ray threshold. How-
ever, this conclusion is tenable only if the s-ex-
Ponent for Li, o.o=0. 48, can be discarded; that is,
i f the compatibility reIationships are inapplicable to Li.

Observe that the empirical rule up=0. 068~, is
poorly described by the theory (Fig. 7); no obvious
modifications of the form of the electron-hole in-
te raction pr oduce satisfactory agreement between
the theory and the data. For example, in Born
approximation, the empirical rule seems to imply
an electron-hole interaction with a range propor-
tional to r, . Of course, these conclusions are59

based on highly-simplified models of screening and
must be regarded as tentative until calculations
are available which account for Friedel oscilla-
tions, nonlinear response, band-structure, ex-
change, and correlation.

B. Characteristic energy (

The characteristic energy can be extracted from
the spectra of Mggbq „alloys, The exponents, in-
dependently determined, ' are listed in Table I
for various values of x. The spectra were fitted
with the threshold law, Eq. (5). Defining

we have

0
Ines(Q) = no ln I + 21nA.1eV (36)

FIG. 7. Exponents n p vs J'&. Dashed line: theory,
self-consistent approximation; solid line: empirical
rule np= 0. 068~s, determined by the data for Al, Mg,
and Na (circles).

In Fig. 8, we show a semilogarithmic plot of e2(Q)
vs np for various alloy concentrations x. Within
experimental error, the data appear to lie along a
straight line, indicating that E is independent of
composition x. The value of $ estimated from the
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FIG. 10. Exponent a
&

vs r, : linear-response screen-
ing.

FIG. H. Semilogarithmic plot of the fit to absorption
per Mg atom, &2(0)/3Ig, (in arbitrary units) for SQ =Ez
-r 1 eV vs o o for the 5Ig„Sb& „exponents of Table I (see
ref. 60). The straight line through the data corresponds
to the optimum fit, ( =- 0. 24 + 0. 1 eV. Note that any
smooth curve through the data would have negative slope
everywhere, corresponding to ( &1 eV. The values y
= 100x label each datum.

slope is

(=0.24+0. 1 eV. (37)

Furthermore, we find that A corresponds to an
absorption coefficient of 6. 5~10 cm +50%, a
quite reasonable value. %e emphasize that the
slope of any smooth continuous curve through the
data would be negative; that is, $ & 1 eV. 61

An extracted value of $ less than 1 eV implies
that the physical replacement of the mathematical
cutoff is not a band width. Moreover, the apparent
near constancy of the energy $ deduced from the
data also excludes ( from being the Fermi energy,
which should vary considerably with composition x.
Thus the only natural energy which can be identified
with $ is the exciton Ryberg, which should be
smaller than 1 eV because of the large dielectric
constant &0 of the intermetallic compound MgsSb2. 62

The flexibility of the Mahan threshold law, with
free parameters A, g, a, and broadening I', pre-
cludes us from definitely stating that Fig. 6 demon-
strates the applicability of Mahan's theory,
although that figure certainly implies that the
Mg„Sb1 „x-ray data are not inconsistent with
Mahan's threshold law and a constant cutoff,

The principal conclusion to be drawn from Fig. 8
is that either the energy $ is smaller than 1 eV for

Mgpb, „orthe Mahan threshold laau is inapplicable
to the Mgpb& „L2, absorb tion edges. If the Mahan
theory does indeed describe the Mgpb1 „data, then
this conclusion supports a tentative identification
(=R.

'II'. CONCLUSIONS

The principal conclusions to be drawn from this
work are the following: (i) The final-state interac-
tions asymmetrically broaden the x-ray thresholds,
as evidenced by the single-valued nature of the ex-
ponents o.o as a function of r, (for Na, Mg, and Al)
and as a function of resistivity for amorphous
Mg„Sbq „alloys. (ii) The Mahan form of the thresh-
old anomaly Eq. (5) is supported by the analyses
here; but, since there are so many adjustable pa-
rameters involved in fitting the spectra, it cannot
be unequivocally stated that these analyses con-
firm and demonstrate the experimental validity of
Mahan's threshold law. (iii) In Mahan's law, the
most reasonable choice of the cutoff $ is the exciton
rydberg R, since $ =0. 24 eV is independent of x for
Mggb, „data, but a more complicated dependence
for $ is quite possible. (iv) The expression [Eq.
(8)) for the Mahan exponents a, in terms of Fermi-
energy phase shifts is inapplicable to the data ana-
lyzed here. The Li exponent no derived using
compatibility relationships from the K-edge expo-
nent a1 is inconsistent with the empirical rule ao
= 0. 068r„and the dependence of metallic L, -edge
exponents on r, differs from that predicted using a
screened electron-hole intera. ction. (v) So that the

0.05 I

BORN

81(I F)

20 40 60 80 100

I

FIG. 9. Calculated exponent oo vs r, : linear-response
screening.

FIG. 11. Fermi-energy Born-approximation P-wave
phase shift 6&(k+) plotted as ~~/~ vs r„as computed using
linear-response screening.
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150= r,
OA

11896

0,0

FIG. 14. Fermi-energy phase shifts &&(kz} vs r:
self-consistent screening. Solid line: l = 0 exact phase
shift; dashed lines: Born approximation.

APPENDIX A: THEORETICAL RESULTS,
r,&5; LINEAR-RESPONSE SCREENING

0.5 1.5

We present here some results of our computa. -
tions which may prove useful in future work. The
calculations are based on Hulthdn's potential and
linear-response theory, as discussed in Sec.
III A 1. The screening wave vector is

FIG. 12. Linear-response-screening approximation
s-wave phase shift 60(q} plotted as &0/7r vs momentum
transfer q in units of Fermi momentum kz. The various
curves are labeled by the appropriate value of r, . Note
that the slope of 40 at q=kF is negative in the majority of
cases, which corresponds to a negative time-delay.

exponents ao(r, ) for alloys such as Mggb&, can be
compared directly with the theory, it would be use-
ful to combine determinations of the mobility (i. e. ,
r, ) as a function of composition x with analyses of
the x-ray spectra.
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k, a= 1.473r, (A. l)

The s-wave exponent o.o [see Eq. (8)], calculated
using the exact Hulthdn s-wave phase shift and
Born-approximation values of the other phase
shifts, is plotted in Fig. 9 as a function of x, . A
similar graph of nz is given in Fig. 10. Both ex-
ponents have been evaluated assuming that Eq. (8)
is valid for all values of phase shifts ' and is not
m periodic. It is quite possible that at least part
of the exponent is m periodic.

The Fermi-energy Born-approximation p-wave
phase shift is plotted in Fig. 11. Unlike the exact
phase shift, the Born value does not reflect bound

p states for ~, ~30, in which regime the correct
value for the screened potential can be estimated

0.2

BORN

o(q}
7T 0]

L
0.5

FIG. 13. Exponents eo, n&, 6 (Eq. (8}}vs x,: self-
consistent screening. The dashed line is the value of o. o

computed in the Born approximation.

FIG„15. Born-approximation s-wave phase shift vs
momentum transfer q in units of Fermi momentum kz.
self-consistent screening. The values of r, label the
curves.
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TABLE III. Spin-orbit, energies ~.

Metal W (eV)

0. 16
0. 27
0. 43

c 4—

since E&-0 for x,from Levinson's theorem (
'

5i(kz) = 5i(0) = n~w. (A. 2)

Here n is the num er oHer ' b f bound P states in the
for a articular value of r, .screened potential p

s-wave phase shift as a function o mom
r F' 12 for variousr is lotted in xg.

s of r . Observe that for q- e p
th mber of bo nd sn is the num

xce tions occur when a boun s a e
hase shift equals anzero binding energy and the phase s

1integral multiple of —,~.
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APPENDIX B:: THEORETICAL RESULTS, r, & 5;
SELF-CONSISTENT SCREEN ING

For r, & 5, the screening wave vecvector was com-
ntl according to the prescrip-puted self-consisten y

Fi . 4). Againtions set forth in Sec. IHA2 (see Fig.
the potential is

'th ' the value of noFi . 13, along wz ato

t td' Boobtained when the s-wave is rea
0

r hase shifts are given in Fig.
o - ' ' aluesofsan p a14. Born-approx&matron v

shifts are given zn Figs.s. 15 and 16.
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tion spectra were obtained from the original spec-
tra by subtracting e 3 cn the L component assuming that
it has an identical shape S,+, f th L om-, to that of the L3 com-
ponent but shifted by the spin-orbit energies S'
listed in Table GI:

e 2 ((o) = S((gp) + CS(&u —W) + B.
Ab r tion due to outer electron s was accountedsorp 1

Starting with thef b constant background B. a ing
ttin betweenex erimentally determined energy sphtting

L ed es for W and the theoretical value
C=0. 5, both the spin-orbit energy an
varied slig y.' htl C and S'were determined by the

smooth
' ement that the subtracted spectra be srno

and free of structure periodic with e spi

&2(~) =

where B(x) is a Gaussian of width The constant
n that the theoret-A $ was determined by requiring a

ica anl d experimental spectra coioincide at some en-
ov le i.e.ergy as ar a ovf bove threshold as reasonab ('.
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energy W. In fac, et the I, and Q edges manifested
somewhat different shapes, especially near thres-

srnall oscillations inhold; such differences led to srna osci
the subtracted spectra which subsequently were
smoothed (see Fig. 21).

mere thenThe smoothed subtracted spectra ez(&u) were t en
fit with the formula

B(K(u —x)A ( (x —Er) dx, (C. 2
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= W above threshold) and Er was estimated. ' The
parameters n and T' were adjusted to provide an
optimum fit.

We were astounded to find both that the shape of
the low-energy edge was compatible with only a
small range of values for 1" and that the height and

shape of the peak determined the exponent n with

considerable precision. Illustrations of the fitting
procedure have been published elsewhere.

APPENDIX D: SPECTRA OF Mox Sb

The subtracted spectra for amorphous alloys
Mggb~ „are given in Fig. 22. The method by

which exponents o. were extracted is discussed by
Slowik and differs from the methods applied to Na,

Mg, and Al in only one essential way: The sub-
tracted spectra were not compared directly with the
broadened Mahan law [Eq. (5)]. Instead the spectra
were graphed logarithmically, lnez vs ln(hw —Er),
and an exponent n estimated from the slope of the
plotted curve. This procedure is discussed in Ref.
6 and is only slightly less satisfactory than fitting
the broadened Mahan law [Eq. (5)] directly. Ex-
ponents extracted using this procedure tend to be
too large by the negligible amount ~ 0. 04 or
= 0. 04.
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