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The propagation of an electromagnetic wave in a direction perpendicular to both the applied static
magnetic field B, and the static electric field Eo in extrinsic indium antimonide (InSb), and wave

instability are studied theoretically. The dispersion equation D{co, k) relating the wave angular

frequency co and the wave number k is derived from Maxwell's equations, the equation of momentum

transfer, and the continuity equation, using the magnetohydrodynamic approach and a one-dimensional

linearized theory. With the aid of the dispersion relationship, the propagation characteristics of the slow

electromagnetic wave in a collision-dominated semiconductor plasma is examined in detail, for both

n-type and p-type materials. The range of parameters considered are 1 & f & 9 GHz, 1 & Bo & 10
kG, and 0 & Eo & 30 V/cm, and the variation of the phase velocity of the wave, v, and the
amplitude constant of the wave, a = Irn{k), with the parameters B„E„andthe wave frequency f,
are investigated. It is shown that under proper conditions wave amplification, defined by Pa & 0, where

k = P + ia, and the wave instability, defined by cores, & 0, where = &or + ice, , is possible. For
example, under the conditions (mz/m) & 1 + p Bo and Q'nPn/ & Ik~, the threshold condition for the
wave amplification, the threshold condition for wave instability, the spatial growth rate (a & 0), the
phase velocity v, and the threshold oscillation angular frequency coo = &or (for which w, = 0) as
functions of Eo, Bo, f, and no are derived, where coff and no denote the dielectric-relaxation angular

frequency and the carrier density of the material, respectively. p, , denotes the carrier drift mobility
which takes a negative value for the electron. The effect of the carrier density gradient on v, a, and

E,„(the threshold electric field for instability) is also briefly discussed.

INTRODUCTION

In recent years, a great deal of attention has
been given to the study of microwave-emission
phenomena from Insb subject to crossed static
electric and magnetic fields, by various authors. ' '
It is generally believed' " that some sort of in-
stabilities in the semiconductor plasma might be
responsible for these emissions. However, it ap-
pears that little attention has been given to the
question of how an electromagnetic wave in the
microwave-frequency range may travel once it is
excited within the materials subject to the crossed-
static-f ields conf iguration.

The purpose of this paper is to report a study of
the propagation characteristics and the possibility
of instability of a microwave traveling in a direc-
tion perpendicular to both a static applied electric
field E, and magnetic field B„where E,J. P, . It
should be noted that this particular choice of static-
field configuration is of interest because it permits
the coupling of electromagnetic-wave energy into
and out of the semiconductor plasma. Using the
one-dimensional small- signal linearized theory,
the dispersion equation for the electromagnetic
wave under consideration is derived in Sec. II from
the Maxwell equations, the equation of momentum
transfer, and the continuity equation in the mag-
netohydrodynamic approach. %ith the aid of the

BASIC EQUATIONS AND DISPERSION

EQUATIONS

The electromagnetic fields in the semiconductor
are governed by Maxwell's equations:

BQ+xp = ——,et' (1a}

BDgxH=J+— (lb)

go D —p (1c)

v ~ B=o, (1d}

where the current density J and the carrier charge
density p are given by

~s pl Vs (2a)

p= Pq, n„

dispersion relationship, the propagation character-
istics of the electromagnetic wave is studied in de-
tail for the collision-dominated case in extrinsic
InSb. The possibility of instability of the slow elec-
tromagnetic wave is investigated and the threshold
condition for the wave instability is also derived.
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in which n„v,and q, denotes the carrier concen-
tration, carrier velocity, and carrier charge, re-
spectively. The subscripts s take either e for the
electron or h for the hole, and q, = -e and q„=+e,
where e &0.

The motion of carrier type s is governed by the
equation of momentum transfer, and written in the
following form:

[i(lo -% v„)+v,]v„+v„xv„
(E, +v„xB,) +i ' o %, (ll}

S Os

where ~„—= -q,BJm, in which m, denotes the car-
rier effective mass, and

2dvs ~g
(

««) Drs Vns

where v~, denotes the carriers thermal velocity.
The carrier concentration and carrier velocity

are related by the continuity equation

&n,
v ~ (n,v, )+—i'=0.

(w-k E) 01s

From Eqs. (8) and (12),

n~ (k v„)+iy, v„
where

(12)

(12a)

gxE, =O,

%&Ho= J~,

~'Do=&0

B,=O,

Jo = Q qsnosvo 1

(5a)

(5b)

(5c)

(5d)

(8)

v (n„v„)=0. (8)

On the other hand, under the linearized theory,
the time-varying system of equations is given as
follows:

k& El = (dg, oH~,

~ X HI SJI 406 tEOE1 &

sp„
k B, =O,

(Qa)

(Qb}

(9c)

(9d)

Each of the variables„electric field intensity E,
magnetic flux density 8, velocity v, and the carriers
concentration n, is assumed to be the sum of an
equilibrium or the time-invariant part (subscript
0) and a small time-varying part (subscript 1),
e.g.,

n =n +n e'~ ' ~'~
o a

Here ~ and % denote, respectively, the wave angu-
lar frequency and the propagation vector. The
static system of equations is given by

y,
-=Vn„/n„.

The combination of Eqs. (Qa) and (Qb) gives

Qx $x E,)+k',E, =ioop,J, .
By combining Eqs. (10a) and (12a),

(12b)

where

(d —%' Vlls,

kll R /of el o=(d /c

and c =the speed of light in the material.
Upon the elimination of J, and v„from Eqs.

(13)-(15), a vector equation governing E, can be
obtained, which is expressible in the form 6 E,
=0, where G =(G;,) is a square matrix and E, is
a column matrix. Consequently, the desired dis-
persion relation is given by setting the determinant
of G equal to zero, i.e., ((G, & ((

= 0.
The element of the determinant C,&

depends upon
the static velocity of carrier which is determined
by the static electric and magnetic field configura-
tion. From Eq. (7),

vo, +vo, xg, = p, Eo-D y, ,

$+iy, ) v„
4P +Sy~ '

Vo~S

and the combination of Eqs. (9a), (11), and (12b)
yields

(i ~' + v, )v„+v„x~„-i~ mrs (k+iys) Vls
(d +ty~ Vo~

%(Vlo, ' El) (15)

Z, = g q, (n„v„+v„n„),

Pl Q 'qs ls Ii

(10a)
where

g, =q, /m, Vs,l

&s=' cs/ s~

D, =v'r, /2v, KT, /m, v„
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in which q, =+e for hole and q, = -e for electron.

g, and D, denote the carrier drift mobility and

carrier diffusion coefficient, respectively. The
components of the static-carrier velocity, v„, can
be given by solving Eq. (16), in a Cartesian coor-
dinate system:

Y2 + Ov Qv

k~2&
'

. kvQ,
ys ~ x

1
v~ =1,[u, (1 +q2) +u, (q,q„-q, ) +u, (q„+q,q, )],+$0

1
,[u, (g, +qp, )+u, (1 +q2)+u, (g,g, -q„)],(17a)

'Y Ox psx g y ~l

kv
G 0 )Y ov

sy g x

2
Gt 1 2 [ g(gg7}g O ) +u (g +ri 7} ) +u (1 +7) )]

~0

where

where

n= P(PQ ——Y, —Y ),
p = (d /&0 -jZ, }t& = uJ&/c

u= p EO-D y (17b) Q
—Q Ts ~2 gs Q

&G
= lil' = n„'+n',+n', (17c)

Suppose that the spatial rate of change of the static
quantity is much smaller than that of the time-
varying quantity, i.e., )y, ~

«)%~. Then by taking
% = (0, 0, h ), and B,= (B~, B,„,0), for the case of an
extrinsic semiconductor, either p type or n type,
after some algebraic manipulation the elements of
the determinant, G, ~, are obtained as follows:

v' —= co-k

Y, = Y', cosy, Y, = Y, siny, YG =+„/&u,

B~=BGcosy, BG„=BGsiny, Z =v, /a

For the case of the crossed-static-electric and

magnetic fields configuration of interest, by taking
E, = (E„O,O), and B,=(0, BG, O), i.e., y =-,'v, the
expressions in Eqs. (17a) and (18) are simplified
considerably. In this case, Y =0, Y = Yo, g =0,
q, =q„g,=0, so that the static velocity is given by

1
VG =

~ 2 @ +uGQG),I +$0

G,„=~
) (

—
) F,F,

Y2 + cx Ox VOy =uy,

1
VGG

=
~ 2 (-u~'gG +uG),+ QQ

where

(19a)

Y Ov Y Ox Ox Ov p2

k2
G =& sY-xs

2 0
u =p. E -Dy =p. E -DxsOsxsOs+

0

&n,
u =-D y =-Ds

pg gy0

1 ~80
u =-D y =-D 'n 820

(19b)

Y„Y,
Assuming that Sngey =0, then u„=0so that vG„=O.
For this case, the desired dispersion relationship
is given by

kVO„kVOx kVQ„kVQ

(18)

0 Gx.
0 G„O =0,

G.. I

where

(20)



4300 H. C. HSIE8 10

G„=(k', —k') which implies that

(22b)

or

G„„G,.—C„,a,.=0. (22c)
C 0 Ox ~ iy'

k»G„=(k', k')--~ — (PQ Y'-),

P "
kvp„

', -"- I'+ir,
(d

This suggests that the mode linearly polarized in

they direction, i.e., in the B, direction is uncou-
pled to the mode polarized in the x or z direction.
Using the fact that a =P(PQ —Y') for the case un-
der consideration, Eq. (22b) gives the dispersion
equation for the mode linearly polarized in the di-
rection of B„as

Expansion of Eq. (20) gives

G„(G„„G~—G,gG„)= 0, (22a)
i

c'k' ~~2(&u -kv~)»-1- 2
(o ((o -kv„-iv,) '

on the other haad, under the assumption

((u'/~( «)v/(u(, and vr, =0.

(23)

(24)

Equation (22c) gives the dispersion equation of the mixed mode (hybrid mode) as follows:

k»Z — +i » -k» + y» —+k»g

x t Zk~i+k( Z' Y+') — +k,' Y' — Z' '*-= 0. (25)

PROPAGATION CHARACTERISTICS OF AN

ELECTROMAGNETIC WAVE IN A COLLISION-
DOMINATED PLASMA

For the collision-dominated plasma, we can take

~&u -kv„~«v„
so that Eq. (23) becomes a quadratic equation in
in k or in co. It is not difficult to show that there
is no spatial growth or instability of wave possi-
ble for this mode. Consequently, no further con-
sideration is given to this mode. Qn the other
hand, for the hybrid mode described by Eq. (25),
it can be shown that under a proper condition an
instability of wave can exist, which is to be shown
in Sec. IV. However, it is of interest to examine
the propagation characteristic of the hybrid mode
here. For convenience of discussion, Eq. (25) is
written in the following dimensionless form:

A~) +A3$ +A»$ +A, $+Ap=0,
where

A, =5', (Z'+ Y'),

A, = -5,[2(Z'+ Y') - iZX(1 -5', —5',)],
A2 = [(Z'+ Y')(1 —5,) +5,'X ] —izX(1 —5„'-352),

A, = —25,[[X —(Z + Y')]+i2ZX),

Ao =[X —(Z + Y )]+i2ZX,

e, =17.5, m, =0.013m„m„=0.40mp T 770K,

p, = —5 & 10' cm'V ' sec ',
n, =2.8~10' cm '.

The calculation was made for the range of param-
eters Eo &30 Vcm ', 1 &Bo &10 kG, and 1 &f &9
6Hz, in the absence of carrier density gradient.
The result of the calculation reveals that three

where

5 —= vo„/C, X = 43~/(d

, -=.,/,
$ =-ck/~.

Equation (27), being a quartic equation in t' or k,
has four roots, which are written in the form,

k~ =~i+i &i

where /=1, 2, 3, and 4.
Qnce the values of the static-field strengths E„

B„andthe wave frequency f are specified, and if

Vnp is also known, then the coefficients A are de-
termined so that Eq. (27) can be solved numerical-
ly.

The physical parameters for n-type indium anti-
monide used in the present sample calculation are
taken as follows:
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roots have the attenuation constant n so large that
wave propagation is not possible. Consequently,
they are of no interest. However, there is one root
which has a large phase constant P, but a small
~n~ & 4 cm ', which will permit the propagation of
the wave in the material. For this root, I3& 0, and
the amplitude constant, o may be positive or neg-
ative, but its magnitude is small compared with
the other three roots. Positive n represents the
spatial growth of the wave while negative o repre-
sents the attenuation of the wave. For the range of
parameter considered, P is approximately propor-
tional to f so that the phase velocity of the wave
v =&a/P, is constant with respect to f. The varia-
tion of v withE, and 8, are illustrated in Fig. 1,
for f=5 GHz. Figure 1 shows that v~ decreases
monotonically with B, and increases with Eo.

It should be noted that c = 7.17x10' cm/sec for
e, =17.5, and the refractive index of the wave
cp/~ =c/vv is in the range of Sx10' ~c/v„c7x10'
which implies ~$~'»1. Thus, the slow electromag-
netic wave is permitted to propagate in the materi-
al. It should be noted that if

pv /(u=2gs{-2[(p' +q'}' '+p])' ',

avo, /&u=-,'h+Q[(p'+q')' '-pF ',
where

p =-,' (g'-h') -r,

q = (s --,' gh) .

(31a}

(Slc)

(3ld)

Taking vo, to be positive, since h & 0, for e& 0 only
the lower sign in Eqs. (31a) and (31b) need be con-
sidered.

The threshold condition for wave amplification is
given by a=0, or

2s/gh = 1 s (1 —4r/g')'~'

which can be expressed as

(32)

the complex propagation constant k =P +in. Ampli-
fication of the wave arises when P a& 0, and the
threshold condition is given by a. =0 and P w0.

Substituting g =Pv~/(a+i (nv~/~) in Eq. (30)
yields a set of two real algebraic equations relat-
ing P and e, from which we obtain the following:

X1—
p2 +Z2 (28) 25 y1 0

1 -52 1+go
(33)

then the first three terms of the left-hand side of
Eq. (27) are of importance, and the propagation
constant of the slow waves can be given approxi-
mately by solving the following quadratic equation:

provided that

y', &1+g', .
Under the condition (28), ~q'/p'~ « I, so that Eqs.

A.,$'+a, )+X,=0, (29)

which can be rearranged into the following form: n ln5b

where

—(g +ih)g + (r

+is�)

= 0, (30)

g=2, h =- (1 -5'),
1+@~

s = — ', (1 —5' —25,'),
1+g20

with

VI
10

~o

&us -=c, /e denotes the dielectric relaxation frequen-
cy and o, = p,,q, n, is the conductivity of the intrin-
sic material under consideration.

1%ave amplification

0.
1

B (kG)

l

6 7 8

In order to determine whether or not the wave
can be amplified, we set the wave angular fre-
quency & to be real and investigate the behavior of

FIG. 1. Variation of phase velocity ~ ~ with the magnet-
ic field strength Bo for different values of applied static
electric Geld Eo at f= 5 gHz, in n-type Insb at T = 77'K.
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(Sla) and (Slb) become, respectively,

pv~
1 -5'

field and density gradient, instability of the wave
is not possible.

Equation (36) can be solved analytically for y
which has the form

1+g 25
(34b)

y = ~/ ~ +i((u,/~„),
where

(37a)

If 5' is much smaller than unity, the phase veloc-
ity of the wave vv = &u/P, and the amplitude constant
a, are given by Eqs. (34a) and (34b), respectively,
as follows:

(35a)

~g/~z =oh +o9[(Po+Qo) Po]1

in which

Po = '{go -h-o} -ro

(37b)

(37c)

(d $+ }0 (25 )3
Xo

(35b} and

which suggests that when the phase velocity of wave

is approximately synchronous with the static car-
rier velocity in the direction of wave propagation,
the amplification of the wave can take place, and

the rate of spatial growth e& 0, is proportional to

E~ and increases with F,

INSTABILITY OF SLOW ELECTROMAGNETIC

WAVES

In order to determine the instability of the wave,
we set the propagation constant A; to be real and

investigate the behavior of the complex angular
frequency 8 =~„+i~,. Instability of the wave

arises when the imaginary part of the wave angular
frequency cu, becomes negative, and the threshold
for the onset of instability will occur when &,
vanishes.

Threshold conditions

The dispersion relationship of slow electromag-
netic waves under consideration, Eq. (29), can be
rearranged into the following form:

1
QO

= ~O ~go~0 (37e)

(40)

Since &g + 0 and g0+ 0, we take the upper sign in

Eqs. (37b} and (37c} so that u, & 0. In order to have
negative v„it is required that the second term
must be greater than the first term on the right-
hand side of Eq. (37c), since h, &0. Consequently,
the threshold condition for the wave instability is
given by ~, =0. Using the same approach as that
used for deriving the threshold condition for wave
amplification, with the aid of Eqs. (32) and (36),
the desired threshold condition can be obtained in
the following form:

5'(I ~5'), I -5',
1 —5 —258 ' K (I+'5 )

(38)

For 5'«I, Eq. (38) becomes

5, = I/K(1 +q2)'i'

On the oth=r hand, the threshold oscillation fre-
quency ~0 defined as the value of a„atwhich ~, =0
in Eq. (37a), can be given as follows:

(go+iho)rp + (r, +is, ) =0,

where

go = (2K5,/a)(l +go),

h, = (1/a)(1 -5' —25,'),

r, = (5,'/a)[{I+q,')K'+1],

s, = (K5,/a)(1 —5', ),
a = (1+rioo)(1 —5',),

(36) If 6' is much smaller than unity, then with the
aid of Eq. (39), Eq. (40) is reduced to

u)J~„=I/{I +r}'o)'i'. (4

in which K = ck/&u„and y = 8/us.
It should be noted that when 5,-0 and 5,-0, then

go-0, ho-1/(1+q'o}, r, -0, and s, -0, so that

y - i/(1 +r}oo) Consequentl. y, Im(q&) = oo, /x„&0.
This suggests that in the absence of static electric

DISCUSSION OF RESULTS

In the absence of the carrier density gradient
(Vno =0}, 5, and 5, are given by

0 g
~0~0

x I +q2y g $ 2% (42)

where 5, = —g, Egc and qo = —p, Bo. It should be
noted that since the carrier drift mobility p,, takes
a negative value for the electron and a positive val-
ue for the hole, 5,&0 and 5,&0 for electron while

5, & 0 and 5„&0 for hole.
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c
1+g2p

l2n, 5,l'
cy, (1 +n', )' ' (44b)

On the other hand, the threshold condition for
wave instability given by Eq. (39) becomes

(45a)

and -the threshold oscillation frequency is still
given by Eq. (41), which is expressed as

R1 co

n)l (45b)

Equation (43) suggests that the threshold electric
field required for wave amplification F., increases
with the applied static magnetic field B„andwith
the wave frequency f = ~/2v, whereas it decreases
with the carrier concentration n p. On the other
hand, Eq. (44a) suggests that the phase velocity
v~ is proportional to E, and it increases with Bp
when 1& q„while it decreases with B, when 1& gp.
For the case where 1«n'„U is given as EJB„
which is the drift velocity of carrier in the direc-
tion of Ep& Bp and also in the direction of wave
propagation. This is consistent with Fig. 1. Since
yo = us/u, Eq. (44b) suggests that the rate of wave
amplification a is proportional to f'F', so that it
increases with f and B,. It is also easily seen that
~ increases with B, when 1 & ln, l

while it decreases
with B, when 1 & lnol, and o. takes its maximum val-
ue of v5', /cy', at n, =l.

It is of interest to estimate the range of the
threshoM static electric field strength for wave in-
stability E~, given by Eq. (45a), and the range of
the threshold oscillation frequency f„given by
Eq. (45b). For example, for an-type InSb at T =77
K, with e, =17.5 and p., = —5X10' cm'V 'sec ', if

n, is in the range of 0.5 ~ n, ~ 50, then l5, l
is in

the range of 2.24x10 'o- l5 l

~ 10 ' for K =10'.
This suggests that E & is in the range of 32 ~ E t~
~ 14.3 V cm ' for B, in the range of 0.1 ~ B, ~10
kG. Thus, Z th can be in the range where Ohm's
law still holds. On the other hand, if the carrier
concentration np is in the range of 10"«np «10"

For a moderate electric field strength B„5p«1
so that with the aid of Eq. (42), the threshold con-
dition for wave amplfication, given by Eq. (33), be-
comes

1 +q2 2 1. /2

2ln. l

1
1 n.'

and the phase velocity of wave, given by Eq. (35a),
and the growth rate, given by Eq. (35b), respec-
tively, become

cm ', then the dielectric relaxation angular fre-
quency ~R would be in the range of 5.15X10"~ ~R
~5.15~10"rad. sec '. Now, if 8, =10 kG or gp =50
so that u, = ~s/n„ the threshold oscillation fre-
quency f, would consequently be in the range of
1.64 &f, &16.4 GHz, which is in the microwave-
frequency range.

The plot of 1501» lnol given by Eq. (45a), is
shown in Fig. 2 for different values of K = c0/~s.
It should be noted, from Fig. 2, that for the n-type
InSb under consideration, Bp =3 kG or qp =15, E,~

lies in the range of 14.3 & F. &h = 47 V cm ', for the
va, lue of K in the range 1000 =K ~ 300. Although
there are some experimental results on microwave
emission from n-type InSb have been reported, ' "
a direct quantitative comparison with the above
theoretical results is not appropriate since the
present theory neglects the consideration of the
boundary effect. However, it is of interest to note
that the plot showing the variation of the observed
minimum electric field required for microwave
emission, ' E,h vs gp ha. s similar shape as that giv-
en by Fig. 2 of the present paper.

On the other hand, the variation of the threshol. d
oscillation frequency, f„with n, (or Bo) given by
Eq. (45b), is to be compared with the experimental
result reported by Kobyzev and Tager' on the study
of coherent microwave radiation of n-type InSb.
The curve "No. 2" on Fig. 3 of Kobyzev and Tager'
shows that the radiation frequency decreases mono-
tonically with the transverse magnetic field 8,
from f=4.8 GHz at B,=2 kG to f=4.4 GHz at B, =3
kG which has similar behavior as that given by Eq.
(45b) of this paper.

Although the above qualitative comparisons are
not rigorous, the fact that the range of parameters
Zo, Bo, and f, under consideration in this paper is
quite consistent with those values often encountered
in the studies of microwave emission from InSb

%10; 5

x 10

2
x 10

x10
2

7 v10
I

K ~ 10 y 10J. ' i. a~. . .l J l.J
0.1 0.2 0.30.4.5 0-71 0 2 4 6 8 10 20 30 40 50

0

FIG. 2. Plots of 60 vs go for different values of K.
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tends to suggest that the wave instability in the

crossed -fields configuration might be responsible
for a certain class of microwave emissions ob-
served experimentally. "'

CONCLUDING REMARKS

In the present paper, the propagation character-
istics and the possibility of instability for the elec-
tromagnetic wave in extrinsic InSb have been stud-
ied. The applied static electric field E„the static
magnetic field B„andthe wave vector k, are tak-
en to be directed along the x, y, and z directions
in the Cartesian coordinate system. The disper-
sion relationship for the wave was derived under
the assumption that the carrier density gradient is
not too large so that

~
(&n, )/n, ~

«k is still valid.
Under the condition Eqs. (38) and (33) (y', &1+q,'),
the detail analysis of the dispersion relationship
was made, the threshold condition for wave ampli-
fication, Eq. (39), the threshold condition for wave
instability, the phase velocity v~, Eq. (35a), and

the spatial growth rate o., Eq. (35b), as the func-
tion of 6, = v~jc are obtained. These equations are
applicable both to n-type and p-type materials.

The numerical illustrations given in the preced-
ing sections did not take into account any effect
due to the static carrier density gradient which
might be present with the material. The quantita-
tive analysis of this carrier density gradient effect
requires the knowledge of the spatial distributions
of carrier density distribution, n, (x, y, z), which
can only be obtained by solving proper boundary
values problems.

For a qualitative analysis, however, the effect
of the density gradient on the v~ can be examined
with the aid of Eqs. (19a) and (19b). For exa, mple
in an-type material since jj,, &0, v„will be in-
creased by the presence of density gradient if
Bngsx& 0 or sng&z &0. Suppose that the density
gradient exists only in the x direction, such that
no(x) =Roe~*, then Eqs. (19a) and (19b) yield

from Eqs. (35a) and (35b), v and o. are increased
and a can be increased considerably since it is
proportional to v„.Qn the other hand, from Eq.
(39) the required static electric field for wave in-
stability E t~ will be reduced in the presence of pos-
itive density gradient in the x direction. Thus, the
carrier density gradient can have significant effects
upon the threshold conditions, phase velocity, and

spatial growth rate.
The present study shows that the wave instability

is possible under a proper condition. The wave in-
stability is closely related to the phenomena of
the excitation of electromagnetic waves and noise
emission within the semiconductor material. For
example, a random fluctuation of the carrier
charge density at any point in the semiconductor
may produce a random fluctuation of the carrier
current density, which in turn produces random
fluctuation of dynamic electromagnetic fields.
This random fluctuation of electromagnetic fields
may manifest itself as a electromagnetic wave
(radiation or noise). Owing to the wave instability,
the wave may grow exponentially in time. When
the applied static electric fields are well above the
required threshold values for the instability, given
for example by Eq. (39), the temporal growth rate
may be sufficiently large so that the amplitude of
dynamic electromagnetic fields would be large
enough to propagate out of the material.

The present investigation tends to suggest that
once ~he electromagnetic wave in the microwave-
frequency range is excited somewhere within the
material, it can propagate and experience the
spatial growth if the conditions are proper; i.e. ,
if the condition (33) is satisfied and the growth
rate given by Eq. (35b) is sufficiently large. This
wave may be coupled in and out of the material,
provided that the direction of wave vector is prop-
erly oriented with regards to the static electric
and magnetic fields.
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