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The complex dielectric function of a semiconductor or insulator in a uniform electric field is expressed

asymptotically as the sum of a zero-field, a third-derivative, and an oscillatory (or exponential) term by
appropriately deforming a contour of integration in the complex plane. The latter term describes

separately the field-induced change in the dielectric function arising from Franz-Keldysh oscillations (or
exponential edges). The present expansion extends the region of validity of the previously developed
low-field approximation to a wide range of energies and applied fields. The stationary-phase formalism

by which this term is evaluated allows the asymptotic behavior of the Franz-Keldysh oscillations to be
calculated by a series of algebraic steps, a simple procedure that permits the influence of various

perturbations on the Franz-Keldysh oscillations to be studied generally. %e find by application of the

theory that the period of the oscillations is relatively unaffected by band nonparabolicities, broadening,
or field-distribuion effects, showing that the value of the interband mass at the critical point
determined from them is highly accurate. By contrast, the envelope of the oscillations is shown to
depend strongly upon these interactions. Since Franz-Keldysh oscillations appear to be relatively

unaffected by exciton effects and can be measured for several different critical points of the same

crystal, measurement of their field dependence can provide a stringent means for evaluating current
theories of internal-field distributions and represent an attractive alternative to exponential-absorption-edge
studies for systematic investigations of these effects.

I. INTRODUCTION

The representation of the complex dielectric
function e of a semiconductor or insulator in a uni-
form electric field as a low-field perturbation ex-
pansion" has proved to be particularly useful in
solid-state spectroscopy. The low-field expres-
sion for Ae, the field-induced change in z, is re-
lated to the third derivative of the unperturbed di-
electric function and is sufficiently simple to allow
certain critical-point characteristics to be obtained
directly from low-field electroreflectance line
shapes. ' 4 At high fields, he evolves from a third-
derivative response into a more complicated form
characterized by exponential or oscillatory behav-
ior at energies well below or well above, respec-
tively, the critical-point energy. "

It is well known that the period of the high-field
or Franz-Keldysh oscillations can be analyzed to
obtain the interband reduced masses of the associ-
ated critical points. ' ' Using as relevant examples
the theoretical investigations" "of the role of
electric field effects in determining the exponen-
tially dependent absorption edge commonly ob-
served in semiconducting or insulating materials, "
it can be anticipated that studies of the systematics
of the energy and field dependence of the envelope
of these oscillations should also be fruitful in de-
termining how internal-field distributions influence
dielectric properties, and in determining in detail
the nature of these internal-field distributions.

Since recent experimental results have indicated
that Franz-Keldysh oscillations can be measured
conveniently for a number of critical points, ""
this opens up the possibility of being able to per-
form these investigations for a range of conditions
within the same crystal, instead of being restricted
to analyzing data obtained only below the fundamen-
tal absorption edge.

An investigation of the effects of various influ-
ences on Franz-Keldysh oscillations appears not
to have been performed previously, a situation
due in part to the complicated closed-form mathe-
matical representations' of simple parabolic line
shapes, a limiting case of the general one-electron
theory. " The objectives of this paper are to obtain
a simple mathematical expression for these oscil-
lations, and to investigate the effects on their en-
velope and phase of various interactions treated as
perturbations to the basic one-electron electric
field theory of a simple parabolic band. The as-
ymptotic expression for the Franz-Keldysh oscil-
lations is derived in Sec. II. This expression and
the previously obtained third-derivative term"
together provide a complete asymptotic represen-
tation of the exact one-electron expression for Ac,
which is valid for a wide range of energy for both
low and high fields. The high-field term is evalu-
ated for simple parabolic bands of one, two, and
three dimensions, and the results summarized in
Table I. In Sec. III, the effects on the envelope and
phase of deviations from the uniform-field, simple
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parabolic model, in the form of band nonparabolic-
ities, lifetime broadening, and various approaches
to the theory of the effects of internal-field distri-
butions, are treated as perturbations in order to
investigate systematics. The results of Sec. III
are summarized in Table II, which shows how the
interactions modify functionally the energy depen-
dence of the envelope and phase. Applications and
limitations are discussed in Sec. lV, with particu-
lar emphasis on the evaluation of current theories
of internal-field distributions, and the relationship
of the closed-form asymptot'ic representations of
the one-electron theory given here to numerically
calculated line shapes incorporating Coulomb in-
teraction effects. "'"

II. THEORY

A. General expression

The complete expression for the dielectric func-
tion of a semiconductor or insulator in a uniform
electric field in the one-electron, one-band ap-
proximation is given by"

s(E„g)=1+ Q [ s,„{E„g)+e,„(-E„g)],(1)
C ~ tP

where for a single conduction-valence band pair
Cy V

in Sec. III). Then

E,„(k-sos)-=E,„(%)-ebs VE,„(R)+4s'(an)',

L„(E„g,R) =i dsexpfis[E, —E,„(k)J
0

—i -', s'(gn }'}
is the function giving the line shape of the contri-
bution to c of a single valence-conduction transi-
tion at wave vector k. From Eg. ("I),

~2
L,„(E,0, ft) =

(k)

is the usual Lorentzian line shape describing an
optical absorption process.

(8)

where IQ is the characteristic energy that mea-
sures the average energy gained from the uniform
field by the optically excited carriers, ' and is giv-
en by

(hn)' = e'g'h '/Bp „,
where p. ]~

is the interband reduced mass in the field
direction. With these simplifications, E(l. (2}be-
comes

e2+2$' 2

e,„(E„Z)=, ;—, t d '0 L,„(E„Z,k), (6)
n' mE+ g)

where

where

x [n p,„{%+cps/2)]

f S/2

xexp i ~ ds' F., -F,„-es'
-a/2

(2)

8. Complete asymptotic representation
of the line-shape function

The line-shape function can be expressed in
closed form as'

L,„(E„S,R}=(v/In)[Gi(-u, )+i sgn(n) Ai(-M, )],
=g +iI",

E,„(k)=E,(k) -E.(k),

(3a)

(Sb) where

(Qa)

and E is the energy, fc is the wave vector inte-
grated over the Brillouin zone, s is an integration
variable with dimensions of inverse energy, 0 is
the unit polarization vector, p„(fc)is the momen-
tum matrix element between valence (v)- and con-
duction (c)-band states of energy E„(k)and E,$),
respectively, and I' is the phenomenological
broadening parameter. To reduce E(l. (2) to a
simpler starting expression without sacrificing
any of the essential details, we shall assume (in
accordance with experiment} that the dominant ob-
servable contributions to the field-induced change
in c come from regions near critical points, for
which the momentum matrix element is locally R

independent and the energy bands are locaQy para-
bolic (the latter restriction will be lifted partially

u, =[E, -E,„(k)]/hn (9b)

and Ai(z} and Gi(z) are Airy functions, "but this
form is not practical since Airy functions of com-
plex argument must be computed numerically. At
low fields, greater insight has been obtained by
asymptotically expanding E(I. (7) in this limit by
substituting the approximation

exp[ i ', s'(tin)']-=-1 —i ,' s'(Rn)'. - (10)

This procedure yields separately the zero-field
(Lorentzian) and low-field (third-derivative) com-
ponents of the line shape, ' but it is not adequate
at high fields since it does not contain a description
of the Franz-Keldysh oscillations.

%e now show that an additional term describing
the Franz-Keldysh oscil&tion component of the
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line shape can be obtained by suitably deforming
the contour of integration in E(I. (7) in the complex
s plane. By the method of stationary phase, "the
dominant contributions to E(I. (7), other than pos-
sible contribut;ions from end points of the path of
integration, arise from points in the complex plane
where the exponential term is invariant with re-
spect to the integration variable, i.e., for those
points s, about which a power-series expansion of
the exponent has no term linear in s —s, . Once
these points have been located, the integral can be
evaluated asymptotically by deforming the integra-
tion path so as to pass through the accessible
points s, of s, in a contour that provides maximum
convergence, i.e., along paths for which the non-
vanishing (Iuadratic term, c(s —s;)' of the expan-
sion about s;, is real and negative.

The integrand in E(I. (7) has two stationary-phase
points,

1 E, -E,„(k)"'
@Q I20

s =-s l~

(11a)

(11b)

where the branch is chosen so that lim„„(x+iy)"'
=+x"'. Suppose first that (E -E,)/OQ»0, which'

is the condition for Franz-Keldysh oscillations to
occur, and hQ &0, which is the more important
case experimentally. The location of the station-
ary-phase points s, and s, in the complex s plane
for this situation is indicated schematically in Fig.
1. It is straightforward to calculate the contours
for which the integrand converges most rapidly
near s =0, s„and s,. If we assume l =0 for sim-
plicity, then these are given by paths whose azi-
muth angles are w/2, v/4+ w/2, and -v/4 + v/2,
respectively. The only accessible stationary-phase
point is s, because the contour must terminate at
s =+~ . The resulting contour is indicated sche-
maticaily in Fig. 1, and we find

(z zeal--g d.s..exp„(-sf@,-s.„(k)}--',s'(l(()) }
0

+ exp 23M+ + 2—1 2 3/2 7T

kn

substituting

exp(-y'e '"4)—= 1 (13)

in the second integral.
In the case hQ &0, the same considerations ap-

ply, except the convergence and nonconvergence
sectors in Fig. 1 reverse roles and the new con-
tour is obtained by reflection about the real axis.
For either sign of O'Q but for [E-E,„(k)]/tQ» 0,
we find

L„„(E„g,k) r.,„(-E„O,k)+al. ,

where L,„(E„O,k) is given by E(I. (8) and

2(eQ)'

(14)

)) v I2n 1/4

IQ E -E,„(%)+fr

2 E-E,„(k)+ii'
xexp +i- ai— (15)

where the upper (lower) sign in the exponent refers
to kQ&0 (KQ&0). In E(I. (15), the field-induced
change in the line shape is expressed directly as a
sum of third-derivative and oscillatory terms.

dy exp(-y'u', "-y'e ""), (12)

where y =shQ and where u, is defined in E(I. (9b).
The first and second integrals represent the con-
tributions from paths (2) and (3), respectively, of
Fig. 1. No contribution is obtained from path (4)
since the integrand vanishes in the limit of large
~
s

~
in this sector. The zero-field and third-deriv-

Btive terms can be obtained from the first integral
in the usual manner by means of Eg. (10). The
term describing the Franz-Keldysh oscillations
can be obtained in a closed-form approximation by

FIG. 1. Integration contour for calculating separate
contributions to the dielectric function of a solid in an
electric field for the Franz-Keldysh oscillation condition
5'-E, „(k)]/K»0and for kQ &0. The points of station-
ary phase are s& and s2. The original contour is denoted
by (1), and the deformed contour consists of the paths
(2), (3), and (4). The shaded areas denote the sectors in
which the integrand —~ as R —~. The zero-field and
third-derivative contributions are obtained from either
(1) or (2) as an asymptotic expansion about s = 0. The
oscillatory contribution is obtained from (3) as an
asymptotic expansion about s = s&.
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2 E,„(k)—E —fI'
p -3 '"

A-0 (16)

We mention that these results can be obtained
from the asymptotic expansions of Ai(z) and Gi(z)
for large z, '4 if the real component of the oscilla-
tory term in Eq. (15) is calculated by means of a
Kramers-Kronig transformation. However, the
present treatment illustrates graphically the re-
gions of contribution to the field-dependent com-
plex dielectric function, showing that the asymp-
totic expansion should be expected to be a very
good approximation if the two contributing regions
centered at 0 and s, (or s,) are reasonably well
separated. To put this on a quantitative basis, we
note that the integrands in Eq. (12}drop to about
1% of their values at [y,u, (=—4 and ]ymu," [=-4,
where y, and y, are the effective radii in units of
(hn ] of the respective contributing regions in Fig.
1. If we require y, +y, & (u, I, so the regions do
not overlap, then it is straightforward to show that

if [ E- E,„(R)]/Kn«0, the high-field limit is
characterized by exponential behavior instead of
Franz-Keldysh oscillations. The stationary-phase
points s, and s, now are located as shown in Fig. 2,
where the contour is given for SQ &0. Following
the same procedure as before, we find, for
[z -z,„(h)]pn «0,

2(an }' gg I/4

[z -z,„(R}+fr]' an z,„(%)-z —fr

zero-field and third-derivative contributions to the
line shape. Calculation of e, alone by the standard
Franz-Keldysh approach yields the oscillatory
term'" but cannot yield the third-derivative con-
tribution, which arises entirely because the con-
tour is terminated at s =0. Next, the oscillatory
and exponentially decaying terms in Eqs. (15}and
(16), respectively, are different functions; they
do not evolve into each other as F. passes through
the value E,. This is an example of the Stokes
phenomenon which occurs in asymptotic expan-
sions. " Thus, for computational purposes, the
proper forms must be chosen prior to a line-shape
calculation. Finally, some modifications of the
form of the oscillatory and exponential contribu-
tions to Eqs. (15) and (16) should be expected to
occur if Coulomb interaction effects are taken into
account. The derivation of a closed-form asymp-
totic solution for the line shape with both Coulomb
and electric field is an unsolved problem, but nu-
merical calculations have shown that the
(E -E) "2 dependence of the logarithm of the
field-induced absorption in the energy range below
the fundamental absorption edge is modified to a
linear (E~ E) form-" if the Coulomb interaction is
included, although the period of the Franz-Keldysh

Im(s)

(z -z,„(k)+fr)~2.5 [an [, (17)

which we take to be the working definition of the
range of validity of the asymptotic expansions (15}
and (16). This is essentially equivalent to the in-
equality r& 2 tan

~
which was obtained previously"

for the range of validity of the low-field limit.
However, with both terms present in Eqs. (15) and
(16), Eq. (17) gives the validity condition for the
field-induced change in the line-shape function for
arbitra. ry field strengths.

Several points concerning the above derivation
are worth mentioning. It is evident that the ap-
pearance of subsidiary oscillations for I'& 2 (an

~

is due to the oscillatory term in Eq. (15), and not
due to higher-order terms in the nonlinear suscep-
tibility, as was stated in Ref. 2. Higher-order
nonlinear susceptibility terms are analytic and
come from perturbation theory, i.e., from higher-
order terms in the expansion of the integral cen-
tered at s =0. These can be seen by inspection to
be relatively unimportant for large energy. The
oscillatory term cannot be obtained from any finite
perturbation expansion. The results indicate fur-
ther that it is essential to calculate both the real
and the imaginary parts of & in order to obtain the

FIG. 2. Integration contour for calculating separate
contributions to the dielectric function of a solid in an
electric field for the exponential-edge condition
LE-E,„{k)]/hQ«0 and for 5'0 &0. The original contour
is denoted by (1), and the deformed contour consists of
the paths (2), (3), and (4). The zero-field and third-
derivative contributions are obtained from either (1) or
(2) as an asymptotic expansion about s = 0. The expon-
ential contribution is obtained from (3) as an asymptotic
expansion about s = s2.
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d'k hL.wmE + loc

(18)

Finally, the field-induced relative reflectance
change LR/8, measured in an electroreflectance
experiment, is given by' "

oscillations in the range of validity of Eq. (16) ap-
pears to be relatively unaffected. "'" Since Cou-
lomb effects are probably less significant for high-
er-energy states, we conclude that line-shape
analysis of Franz-Keldysh oscillations will be
qualitatively similar for both cases. This is dis-
cussed more fully in Sec. IV.

To summarize the results of this section, we

have separated the line-shape contribution of a
single transition to the complex dielectric function,
given in closed form by Eq. (9a), into zero-field,
third-derivative, and oscillatory (exponential)
parts by means of an asymptotic expansion valid
for ~[E-E,„(Q+iI']/}fQ(& 3.5. For the oscillatory
case, where [E-E,„$)]/h Q&0, the field-induced
change in the line shape is given by Eq. (15). For
the exponential case, where [E-E,„(]c)]jr&0,
the field-induced change in the line shape is given
by Eq. (16}. The complex dielectric function can
be calculated from these results by means of Eqs.
(1), (6), (8}, and (14). The field-induced change,
~c, in the complex dielectric function is given by
Eqs. (15) or (16) and

dominant contribution is seen to come from the
region about Ti =0; hence to lowest order in k'

2 2 2eC k m, / . m

v, exp i —+i v,r mF+

d'k exp

By defining appropriate cutoff values K, and K,
for one- and two-dimensional cases, Eq. (22} can

be integrated in closed form for all three dimen-
sions. The results are summarized in Table I, to-
gether with the third-derivative contribution cal-
culated previously.

Each oscillatory term in Table I includes the ap-
proximation introduced in the integration over k,
as well as the original approximation introduced by
using the asymptotic representation for the line
shape in Eq. (20). Thus, a comparison of the com-
plete asymptotic representation of he for a given
dimension, obtained by summing the appropriate
two terms from Table I, and that calculated exactly
from Eqs. (6) and (7), will provide a stringent test
of the accuracy of the asymptotic approach. %e
shall make this comparison in terms of the previ-
ously defined electro-optic functions' E, G, which

give the exact one-electron line shape for b e for
an isotropic three-dimensional M, critical point.
These functions are defined by'

AR Rn~ rh e (19) (E 7) = (2e'C'8'/m'E') D'(ge)"'

where n', = e, and n' =& are the complex refractive
index and dielectric function of the ambient and

substrate, respectively.

&[G(z) + iF (z)], (22)

where D = (2p/K'}"' is the density-of-states pre-
factor, C', =

~
e p,„~' is the square of the momen-

tum matrix element,

C. Wave-vector integration ee = 2"'an, (24)

The results of Sec. IIB must be integrated over
k to obtain line shapes for direct comparison with

experiment. Since our principal interest here lies
in the effect of various perturbations on the oscil-
latory part of the line shape, we shall consider
only this term in Eq. (15) and for simplicity, as-
sume isotropic M, critical points described by a
positive scalar reduced mass p. By Eq. (18),

z =(Z -E, +ir)/Ie (25)

(Ie is the natural energy unit for the three-dimen-
sional case). The line-shape function G+iF has
the closed-form representation"'

G(z)+iF(z) =2 i[ve'"~Ai'( ) ziA'(w)

d'k V, -
where

se =ze"'/'.

+ w Ai(z)Ai(w)] —iz'", (26)

(27)

v, =(E -Ez+ii')/KQ (21)

is the asymptotic expansion parameter. Applying
the method of stationary phase to Eq. (20), the

x exp l +$3 v
2p,

where % is the radial wave vector in a local coor-
dinate system with origin at the critical point, and

-5 2G(z) +iF(z) - —z i ——exp(i z~~z) .
32 4z (28)

This can be shown to be identical to that calculated

By scaling the results of Table I to the energy unit
Re, we find that G(z) +iF(z} should have the asymp-
totic form
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TABLE I. Complete asymptotic representation of the field-induced change in the dielectric
function in the one-electron approximation for isotropic Mo critical points of one, two, and
three dimensions, for E&E~. Here, D =(2p/+ ) is the density-of-states factor, X„andXg
are cutoff lengths in remaining Brillouin-zone directions, Co ——(0 ~ p „(is the square of the
momentum matrix element, and e+ ——(E -E~ + i I )/NQ is the asymptotic-expansion parameter.

2C2 g2
0

2 2E2
d3k AL, where AL =DL3+DL„,, and

Dimension d34 DL3 ——

-i-, ~m „X,(SQ) -'/2v,-'/2

-3rD Xg v+2 2 "3

i I ~2D3 (gQ )1/2~ -5/2

Lose =

~DE E(SQ) ' v, ' 2 exp(i — 3
)

/2D2g ~ -3/4 exp( i~//4) exp(&2&& 3/2)

-i7rD3(SQ) /2e 'exp(i~v /
)

from the standard asymptotic expansions for the
functions Ai(z) and Bi(z)."

The line shapes obtained from Eqs. (26) and (28)
are compared in Fig. 3 for two values of the
broadening parameter, I" =0 and I" =he/2. It is
evident that Eq. (28) provides a. good representation
of the exact line shape for (E -E,) ~ 218 =3hA, in
accordance with Eq. (17). This corresponds rough-
ly to the second subsidiary or Franz-Keldysh half-
oscillation. %e conclude that the results given in
Table I can be used to describe mathematically the
Franz-Keldysh oscillations for all presently prac-
tical purposes.

Inspection of the oscillatory term in Table I
shows that the dominant line-shape determining
factor is the exponential exp(i;'v', ") For t. he three-
dimensional case, the phase and amplitude of this
quantity may be obtained to within a phase factor I9

from experimental electroreflectance data, AA/8,
by suppressing the baseline offset arising from the
third-derivative term and forming the product
E'(E —E,)(b.R/8). By Table I and Eq. (19), we find

III. APPLICATION

In this section, we apply the theory developed in
Sec. II to investigate the dependence of the ampli-
tude and phase of the Franz-Keldysh oscillations on

0.2

0. (

-O. i

-0.2

THIRD
OERIV

This represents a powerful method by which the ef-
fects of various perturbations on the Franz-Keldysh
oscillations can be studied systematically.

-0.02

- He I +i exp(f6+i ,vs")"-I'
3/2

F. -F.~
—= ReI exp(i 8+ i-', v3")]

if I"«8 -8,. The critical-point information is
contained in the term v„given by Eg. (21).

We note that the dominant asymptotic behavior of
the Franz-Keldysh oscillations, given by Eg. (29),
has been reduced in Secs. IIA and IIB to a form
which can be obtained entirely Ay algebraic steps.
First, the point of stationary phase, s„is calcu-
lated from Eq (2) by find. ing that point in the ac-
cessible contour about which a power-series ex-
pansion of the exponent has no term linear in s —s, .
Second, the dominant line-shape behavior is given

by evaluating the exponent at s = s, and setting k =0.

-0 02
C

LLI -0.044

( E —E g ) /'fig

FIG. 3. Comparison of the exact (solid line) and as-
ymptotic (broken line) line-shape functions, given by
Eqs. (26) and (28), respectively, for a three-dimensional
isotropic Mo critical point. Energy units SO = 2 SQ
appropriate to three dimensions have been used. The
third-derivative contribution (dashed line), given by the
first term in Eq. (28), is shown explicitly.
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various interactions. These will be treated as
small perturbations on the basic theory of the iso-
tropic simple parabolic three-dimensional critical
point in order to examine general systematics.
The results are summarized in Table II.

A. Broadening-parameter effects

From Eq. (29) we have in this case

E'(E —E,)(n.R/R) - exp

x cos 8+-

E,„(fc)=E, +(fi'/2p)k' —C(P)', (32)

where C is a coefficient describing the strength of
the nonparabolicity. If C &0, the energy bands
flatten and the ihterband mass increases with in-
creasing k, which is the usual situation. The ex-
ponent in Eq. (2) therefore becomes

B. Energy-band nonparabolicity effects

For nonparabolic energy bands, the expansion
given in Eq. (4) does not terminate at the quadratic
term. Assuming an isotropic but weakly nonpara-
bolic interband energy variation, we write in local
coordinates with origin at the critical point

If there exists v observable tangent points between
the oscillation spectrum and its envelope, at ener-
gies E„andwith amplitudes

~
n,R/R („,then by Eq.

(30)

F(s) =is(E —E~-g k'/2p +CO +if') l-,'-s'-

x[(hn)'--,'Cu'~'g'-Cc'(g. R) ]

+i—,
' s'(Ce'(I('/16) . (33)

vv = 8 +;[(E,—E )jkQ]'~' . (31)

Therefore, a plot of (E„-E,)"' vs v should yield a
straight line with slope (2/3v)(hQ) '", and a plot
of ln[E'„(E,-E,) ~nR/R ~„]vs (E„-E,)'" should

yield a straight line with slope -I'(hA) "' in this
simple case." If g is known, then the mass p, can
be determined from Sg.' ' If g is not known but
data are available for a number of critical points,
then accurate relative values of p. for different
critical points may be obtained. "

The above analysis method is known to work well
for effective-mass determination, but it has been
shown in at least one case" to fail badly for broad-
ening-parameter determination. The extreme sen-
sitivity of the amplitude of oscillatory functions to
destructive interference suggests here that other
factors are significant.

The presence of a fifth-order term in s substan-
tially modifies the contours in Figs. 1 and 2 for
large s, but if C is small, it is expected that the
dominant contribution to the oscillatory term still
arises from the stationary-phase point s, of Eq.
(11a), which is shifted slightly from the parabolic-
band value due to the presence of the nonparabol-
icity terms in Eq. (33). Therefore, the algebraic
procedure described in Sec. II for determining the
stationary-phase point may be used directly, and
we find, to first order in C,

1/2 C84g4
s,$=0)= (' ),

' ( ~
(~ ), (E;E,(),

(34)

whence

TABLE II. Dependence of envelope amplitude and oscillation phase of Franz-Keldysh oscillations for various inter-
actions and models in the one-electron approximation. The equations listed provide the analytic expressions of the

oscillatory contribution to the line shape of Ae.

Interaction
Line-shape
expression

Characteristic
parameters ln(envelope) Phase

Simple parabolic

Lifetime broadening

Nonparabolic band

Field averaging:
Gaus sian internal
C onfiguration avg.

Nonunifor m applied
Momentum correlation

Table I

Eq. (30)

Eq. (35)

Eqs. (45}, (48)
Eq. (56}
Eq. (51)
Eqs. (52), (55)

SQ, I'

IQ, I, C

-0(poorer-law decrease)

--Cps I {E-E ) / /g

--(E -E )31 (aS)2/8'-- (E &, )('W &/~'-
--(E-E, )3021 /~2
--(E -E~)cr p/8

-(E —E }3 'p' 2/8

}3/2~ j/2 /g

(E E }3/2~1/2 /g

(correction only)-r(E —E, )2p, (ZS}2/8'
-I (E —E ) PrP2/g

P (E E )2pP2 /g2- I'(re/g 2
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E'(E -E,)(i(&R/R) -exp i8+i- ' ' 1+

(E -E,)'"I' 4Ci(,'r E E-, "' 2 E E-, '" 6Ci),'(E-E,)

(35)

Thus, for C & 0 the oscillation period slowly in-
creases with F. as compared to the simple para-
bolic case, which is expected because the inter-
band. reduced mass is increasing with energy. Al-
so, a higher-order damping term appears which is
proportional to i(,"', (E-E,)"', r'I and h '.

It is instructive to compare Eq. (35) with the
corresponding expression obtained by simply sub-
stituting the local effective mass at energy F.-F~
into an, given by Eq. (5). We have by Eq. (32)

(40)

We suppose that the external field can be made
much larger than the width, Lg, of the probability
distribution in order to determine to lowest order
the effect of internal fields on the Franz-Keldysh
oscillations. Then

&I&= J ~l (g'7& J ~.e,(.(z-z.„rik&

1 1 a' 1 24 i), (E —E,)C
a' sk' '"

g a' (37)
+ ir] —i ', s'(a-n ')')

to first order in C. Substituting Eq. (37) into Eq.
(5}and expanding to first order in C, Eq. (29) be-
comes

(E Eg)E (hR-/R)

. 2 E, E~ '~ -12C i).'(E, E~)-' "3 an ' a j.
(38)

The correction term in the above (incorrect) ex-
pression is 10 times larger than that of the cor-
rect expression given by Eq. (35). Thus, the
strongly oscillatory behavior of the integrand in
Eq. (20) acts to suppress nonparabolicity effects
to a high degree. This remarkable result explains
why the energy dependence of the period of the
Franz-Keldysh osciQations has been observed" to
follow so well the simple parabolic form, even at
energies well above F., where the variation of
E,„(k)is nonparabolic.

g =2 Qg'g ' + gg'(p

b=y d '6' 8' (42b)

describe the effect of field averaging for any rela-
tively narrow distribution d'(g). To obtain Eq. (41},
we have retained only the lowest-order terms in
a8, using the fact that Jdg'(P($')h'"-(b, S)". Eval-
uating s, to the same order leads to

3/2
E*(E-E )(i),R/R)-exp i — ' ' (I --'a)2

b(E E )) (43a)

=i dsexp[isE, —i s'(an)'][1- i-', as'(an)'
0

—b s'(an }'], (41)

where the q,uantities

C. Field-distribution effects

l. Internal- field averaging (Redfield model)

In the simplest model" of internal-field effects,
the uniform-field dielectric function is averaged
over a distribution of internal (locally uniform)
fields according to a probability distribution func-
tion d'((g):

(a..(z, r, T&)) = Jdl'('(7'+X)a. .(z, r, (l'),

))/2 E E 3

(an)"' an

35r(E —E,)'-
(an)' (43b)

2
& cos 8 + — (1 —2g)3 hn'

where g is the externaQy applied field and

(39)
where I'/(E -E ) is also assumed to be small.
Therefore, field averaging introduces a new damp-
ing term proportional to (E —E,)', as well as mod-
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(44 )

ifying the energy dependence of the phase.
If the internal-field distribution is Gaussian with

width ag, then"

6'(g) =(hg) 'v "'exp[-g'/(Ag)'],

where

g(s, b, g) =1+i';s'(hn~~)',

(Snag)' =e'(n. g)'g'/8p .

(46a)

(46b)
and the integration over the field distribution can
be given in closed form. The resulting expression
1s

For h$ «5, the asymptotic oscillation behavior
can be obtained either by taking the appropriate
limits of E(l. (45) or by using the results

(I,) =i dSg(S, () g) '"
0

x exp/is[E —E,„(k)+iI'] —i';s'(hn)sg(s, ag) '],
(45)

s= k(&g/g)',

& = —,'(«/g)'

(47a)

(47b)

in Eqs. (43). We find in either case

2( )( / )
(E-Ed)'~ 1' 1 E-Ed ' 6g '

(e 2 E-Ed 3 ag

r E-E, ' ~g'[
3 an (an) (48)

Since (gn)'-g', the additional envelope term con-
verges exponentially as -const(E-E, )'i((hg)'/g', ,
which strongly suppresses the Franz-Keldysh os-
cillations at high energy [ ~(E —E,)'] and/or low
applied fields (~g '). However, the effect is small
when the external-field strength appreciably ex-
ceeds the width of the internal distribution, and
the damping is less severe for critical points of
small interband mass.

If the internal-field distribution is a result of a
nonuniform applied field over the reflecting sur-
face, which may be caused, for example, by resis-
tive voltage drops in contacts, then the distribution

6'(g') =
(Pg)-' i g g i

~ Pg/2

0 elsewhere,
(49)

where g' is parallel to g, and p«1 is the width
factor. From Eqs. (42) and (43)

a = p'/12,

b = p'/54,

(50a)

(50i )

width is expected to be proportional to the applied
field. We consider explicitly a small linear vari-
ation described by the distribution function

so

(E-E }'"1 P' E-E ' 2 E-E '&' P2'( P21(E-E )&-

(En)"' 54 hn 3 hn 24 ) 18(gn)'

(51)

The additional envelope term remains exponential-
ly dependent as -(E -E,)'g, but now depends only
as -g on the applied field. This is consistent
with the case of a distribution of internal fields,
since the same power dependence is obtained if it
is assumed that Ag -g.

2. Momentum correlation (Lukes-Somaratna) model

The Feynman path-integral approach" has been
used by t.ukes and Somaratna" to obtain a line-
shape function for a heavily doped semiconductor

in a model where the internal-field distribution is
assumed to appear as a momentum correlation
term, o'(0). Their result, expressed as E(l. (3.11)
of Ref. 13, can be put in the form

I(Z, I', d)=if d e p(i (d —d„(k)~ II')

—i-', s'(hn )']

x exp[ -2s'o '(0)],
where
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and V(H) is the spherically symmetric potential of
a single impurity of a randomly distributed set of
density p. If a'(0) is small, so that the momentum
correlation term can be treated to first order, the
stationary-phase point is given approximately by

s, = E',"/(RQ)'" + ic '/(RA)',

whence

(54)

(E-E,)"'I (E -E,) '(o)
Z'(Z - E)(ER/(() -

BXP ( (((~) I ()(())

2 E -E, "' I'&r'(O)

3 nn (an)'

3. Con figurational averaging (Boneh -Bruevich-Esser) model

A third method of treating internal-field distri-
butions differs in the method of performing the av-
erage" over internal fields, "'"although the local-
ly uniform approach of the Bedfield model" is used
to formulate the problem. Upon performing the in-
tegration over g explicitly in Eq. (16) of Hef. 15 one
obtains

(L) =i dsg(s, y~)
"' exp[is[ E- E,„(k)+il"]

0

- i ', s'(KQ)—'g(s, 4),) '},
(56)

where

g(s, C),) =1 i ,'+s'(hg~-, )',

(hA~, )' = e'y, h '/8iI, ,

(57a)

(57b)

y, =;p dr VV r (57c)

where V(r} is the impurity potential associated
with a single impurity of a set of density p. The
form of Eq. (57}is identical to that of Eq. (45),"
consequently in this model the Franz-Keldysh os-
cillations have the form given in Eq. (48).

IV. MSCUSSION

In this paper we have obtained a complete
asymptotic expansion describing field-induced
changes in the dielectric function, and have used
the oscillatory term to calculate the functional de-
pendence of the envelope amplitude and oscillation
phase of Franz-Keldysh oscillations for a number

(55)

The additional envelope term depends linearly on
energy [~(E -E~)] and depends on the applied field
(~g ') through the characteristic energy (RQ)', ex-
actly as in the case of field-proportional inhomoge-
neity.

of interactions and for several model calculations
of the effects of internal-field distributions. The
results of this investigation are summarized in
Table II.

Previous investigations of the applicability of
the various models" "have concentrated entirely
on the field-induced exponential absorption edge
measured in electroabsorption. While similar to
the oscillatory part of the waveform in mathemati-
cal formulation (as shown explicitly in Sec. II), thc
inability to compare the results to spectra obtained
for a number of critical points of different p, and I'
within the same crystal represents a severe limi-
tation. Moreover, the exponential absorption edge
is influenced by exciton effects. " It is evident that
the oscillatory parts of the waveform offer much
richer possibilities in testing models and, ulti-
mately, in using these models to determine actual
internal-field distributions.

One of the results of the present paper shows
that the period of the Franz-Keldysh oscillations
is remarkably insensitive to various perturbation
effects, including band nonparabolicities, broad-
ening parameters, and internal-field distributions.
This suggests that the interband masses obtained
from Franz-Keldysh oscillations should be highly
accurate and also explains why the oscillations are
observed to follow accurately the simple parabolic
form, even over large energy ranges" where the
bands are nonparabolic.

Although Franz-Keldysh oscillation data are
limited at present to a very few systems, inspec-
tion of systematics enables some qualitative con-
clusions to be obtained concerning the applicability
of various models, particularly if internal fields
are involved. We have noted already the inadequa-
cy of the lifetime-broadening mechanism to de-
scribe the decay of the envelope of the oscillations
for GaAs. " Similar statements also can be made
for higher interband transitions in Ge,"and quite
possibly also for the fundamental direct edge in
Ge." The most stringent test for the various
field-distribution models, by Table II, is found in
the dependence of the envelope amplitude on ener-
gy and field. Published data on Ge (Hef. 18}show
the existence of well-defined oscillations with rel-
atively slow decay rates at relatively low field
strength (39 kV cm ') for the E, transition, and
relatively fast decay rates at higher field strength
(115 kV cm ') for the higher-energy Eo+n, ,'+a,
transition. Since the principal difference between
the two examples above concerns the broadening
parameter (with a small contribution from the
mass), and since the assumption of the same dis-
tribution of internal fields appears to be a reason-
able one, this result argues for a relatively weak
dependence of envelope decay on both E -E~ and
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g. Thus from Table II the momentum correlation
(Lukes-Somaratna) model" would appear to be
favored over the remaining averaging models, if
internal-field effects are indeed responsible for
this result.

The theory outlined here is a one-electron ap-
proximation which does not take into account elec-
tron-hole scattering by means of the Coulomb in-
teraction. This effect is known from numerical
calculations to modify the asymptotic (E, -E)"'
dependence of the logarithm of the absorption co-
efficient into a linear (E, -F) response, "and by
analogy, it may be expected that the envelope and
phase behavior of the oscillations should also be
modified if such interactions are included. We
have chosen here to restrict our calculations to
the one-electron approximation for four reasons:
First, at values of E -E,» E,„,where E,

„

is the
exciton binding energy, the Coulomb interaction
should cause only low-angle scattering, which can
be represented by a convolution formalism of the

type used in Sec. D." Second, at the values of I'
& E,

„

typically encountered in higher-interband
spectra, Coulomb effects tend to be buried in the
zero-field background. Third, no closed-form ex-
pression equivalent to Eq. (2) exists, although se-
ries exPansions are available" and Coulomb inter-
actions have been considered in random-potential
situations. "" Finally, final-state interaction ef-
fects do not seem to exert a significant effect on
the phase of the oscillations, as can be seen by in-
spection of the numerical calculations of the ener-
gy dependence of the period of these oscillations,
shown in Fig. 12 of Ref. 22. The next step is
clearly to check the applicability of the one-elec-
tron approximation and validity of these assump-
tions in the region of the Franz-Keldysh oscilla-
tions. It appears that a simple asymptotic solution
for high fields, including Coulomb interactions,
may be obtainable by combining the results of Sec.
II with WEB waveforms for combined Coulomb-
uniform-field potentials. "
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