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The bond-bending force constant k~ of the Keating-Martin (KM) model for the elastic constants of
tetrahedral semiconductors is related to the optical spectrum according to ker' = 4(1 —f, )bE
where r is the bond length, f, is the Phillips fraction of ionic character, and b.E is the reduction in

single-particle energy per valence electron resulting from the over-all band gap. As the energy to bend

a directed orbital is unrelated to the energy of competing phases, there is no d-core dehybridization or
bottom of the band correction. The above formula is accurate to the limit of the KM model when

f, & 0.5. For more ionic compounds, it seems that k~r' = 2b, U„where b, U, is the change in

internal energy per atom pair upon transformation to the NaC1 structure. The observed variation of k „
with pressure is indeed equal to the value found by diA'erentiation of the above formula. An

approximate relation for Keating's third-order elastic parameter is derived: e = —3k+2r.

I. INTRODUCTION

It may be said that the s-P'-hybridized covalent-
ly bonded solids, which occur in the diamond,
zinc-blende, wurtzite, and chalcopyrite struc-
tures, are characterized by two properties. Qne
would be the noncentral or bond-bending inter-
atomic forces which are required to stabilize
these loosely packed structures against shear. "
The other would be the band gap around the Jones
zone (the first four Brillouin zones, which exactly
contain all the valence electrons) that accounts for
the semiconducting properties and the interband
optical spectra. ' The purpose of this paper is to
examine quantitatively the relation between these
two properties.

In a valence-force-field model developed by
Keating for the diamond structure' and extended
by Martin to the zinc-blende structure, ' the total
distortion energy of each unit cell is

I
ke = & (ke+ke) (2)

for a number of diamond and zinc-blende struc-
ture semiconductors, ' but the author is not aware
of any determination of the difference ke-ke.
Martin found it convenient to tabulate his data in
terms of two simplified parameters, a bond-
stretching force constant n and a bond-bending
force constant P. The relation between P and k~
is

bonds i and j about atom s. Qnly the bonds about
one atom are included in the first term of Eq. (1)
in order to avoid double counting in the sum over
unit cells.

In this paper only the bond-bending force con-
stants ke of Eq. (1) will be considered. Moreover,
when elastic constants are analyzed or when only
long-wavelength acoustic or optic modes are con-
sidered, os can obtain only the sum of the force
constants for the two atoms. Thus, Martin has
determined the average bond-bending force con-
stant

+ Q k,'e(&rg)(rn8;, ')

ke=3 p.

II. THEORY

+ g k'„,(&rg)(&r'j) . (1)

In Eq. (1}we recognize that the bond-bending
force constants ke may be different for the tmo

atoms in the unit cell if these are not the same
element. The two atoms are denoted by s =1, 2,
and the bonds about each atom are denoted by
i,j = 1, . . . , 4; r is the equilibrium bond length,
&ri is the scalar change in length of bond i about
atom s, and &8&f is the change in angle formed by

Note that ker is an energy; its value in Si is
3.16 eV according to Martin's evaluation. How-

ever, the Keating-Martin (KM} model is only ap-
proximate and an internal consistency check [see
Table II and Eq. (16) of Ref. 2] indicates an un-
certainty in such values of from 10 to 2Y/0, de-
pending upon the compound.

Qne may seek to relate the energy ker' to the
covalent or directional part of the cohesive en-
ergy of the crystal. Let us denote this covalent
energy per unit cell E„„,and assume thai the
portion of the distortion energy due solely to bond
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bending
4

U(48;, , 4r =0) =E „P g [1 —cos(48~&)] .
s=]. j j&k

(4)

Keeping only the first term in the expansion of
l —cos(68) and comparing Eg. (4) with Eqs. (l)
and (2), we find

1ky" = pE„„,
the covalent energy per atom.

Now it is important to determine what is the ref-
erence from which E „ is measured. Readers
with a chemical background will probably note
that ker'=3. 16 eV in Si is of the general magni-
tude of the heat of atomization per atom, ' &H,
=4.68 eV. However, this discrepancy is greater
than could be ascribed to the uncertainties in the
KM model. Moreover, as is illustrated in Table
I, the chemical trends in E, , say in the series
C, Si, Ge, and Sn, do not follow &H, . It is also
evident that the trends in E, do not follow the
difference in total energy between the covalent
phase of these materials and the competing me-
tallic solid or metallic liquid phases. This author
has previously denoted this difference in net en-
ergy per bond as E, . E „ in Ge is almost as
great as in Si whereas E,(Ge) =0.60E,(Si), and

E„, in o.-Sn is still fairly large whereas E( -oS)n
=0 above room temperature, where the metallic
P-Sn phase is stable.

One must conclude that k p'2 and E„„in the
covalent solid are unrelated to the actual differ-
ence in energy of the competing metallic phases,
or of the vapor phase. Indeed, these phases are
separated by first-order transformations. But
ker ' and E „are proportional to the work done
in bending the bonds in the covalent phase by a
small angle. They must be related to that por-
tion of the band gap around the Jones zone which
results from the covalent or homopolar compo-
nents of the crystal potential" because both char-
acterize the s-P' covalent bond.

To resolve this paradox, we recall that the
decrease in the single-particle energy of the co-
valent solid relative to a free-electron gas due
solely to the opening of the band gap, ' &E, is
much larger than the net difference in total en-
ergy between the covalent solid and the actual
competing metallic phase. '" At least two fac-
tors are important in this regard. There is a
difference in the "bottom of the band" energy
which implies'

Ea=8 &E~

if the second factor, d-core dehybridization, ""
is not operative. The d-core dehybridization ef-
fect results from the fact that atomic s and P or-
bitals must be hybridized, and thus made degen-
erate, by the crystal potential in order to form
the s-p' hybridized covalent bonds, but the oc-
cupation of d-core states in the ion cores of ele-

TABLE I. Empirical values of k er compared with theory [Eq. (10)] and with two alternate
hypotheses, the heat of atomization 6H, and the internal energy of the covalent phase relative
to the high-pressure metallic phase, E&. The empirical value for Q. -Sn is from Ref. 13; all
other values are taken from Ref. 2. The Phillips fraction of ionic characters f, is given in
the final column.

C rystal
kyar

=—2E~„2 —1

(eV}
4(l -f;)DE

(eV)
DH, /atom

(eV)
16(l f,.)E

(eV)

C
Si
Ge
n-Sn

A1Sb
GaP
GaAs
Ga Sb
InP
InAs
InSb

ZnS
ZnSe
ZnTe
CdTe
CuCl

8.45
3.16
2.84
2.16

1.98
2.42
2.23
2.11
1.68
1.56
1.56

1.09
1.06
1.29
0.80
0.23

9.47
2.97
2.68
1.81

1.84
2.71
2.46
2.00
2.12
2.03
1.68

2.44
2.l.4
1.78
1.39
2.24

7.37
4.68
3.87
3.15

3.48
3.58
3.36
3.00
3.35
3.13
2.78

3.18
2.70
2.46
2.08
3.08

9.47
2.97
1.79
0.0

1.63
2.34
1.86
1 32
1.66
1.13
0.80

2.12
1.85
1,53
1.12
2.11

0.45
0.33
0.31
0.26
0.42
0.36
0.32

0.62
0.63
0.61
0.72
0,75
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ments occurring after Ca in the Periodic Table
effects an increase in the energy difference be-
tween atomic s and P orbitals. "" Thus, because
the s-like wave functions penetrate the rather ex-
tended d-core states more effectively than do p-
like wave functions, the s orbitals are reduced in
energy relative to the p orbitals by the introduc-
tion of a d core. This decreases the net energy
difference to the metallic phase by a factor D
such that

@b 8 +~ntD y

where D has been expressed in terms of the criti-
cal point structure of the optical spectra in pre-
vious publications. '" D =0 for a-Sn under the
condition that it is in equilibrium with metallic
P-Sn.

Now the energy involved in distorting the s-P'
covalent bond once it is formed ought not to de-
pend upon the energy expended in hybridizing the
atomic orbitals or in changing the "bottom of the
band" energy between competing phases because
these factors are not altered by small variations
in bond angle. (Recall that no change in bond
length is involved in the kgr' term. ) Therefore,
48r ' ought to be simply related to ~E„without
the factors in Eqs. (6) and (f), which are required
to determine the net energy difference between
phases. Thus, &E 0 for a-Sn under the condi-
tions that it is in equilibrium with metallic P-Sn

and kr' is fairly large. "
In the case of diamond, Si, Ge, and a-Sn, for

which the crystal potential is totally homopolar
(covalent) so that the Phillips fraction of ionic
character'" f, =0, we should expect

where &E is the single-particle energy per elec-
tron, because there are eight valence electrons
Per unit cell in the diamond structure. The rela-
tion between 4E and the average band gap E~
across the Jones zone, ' " which is determined
from the optical dielectric constant of the solid, '
has been shown to be'

4E = -Ez(3B [1+in(kB)]—4B },
where B=E~ /4Er and E~ is the Fermi energy per
electron of eight valence electrons per unit cell.
This theoretical estimate, which is derived solely
from knowledge of the optical dielectric constant,
is compared with the elastic constant data in Table
I. The agreement is within the limits of the KM
model.

In the case of partially ionic crystals, such as
those occurring in the zinc-blende structure, a
fraction f & of the total average band gap across
the Jones zone results from the heteropolar (ionic)

components of the crystal potential. ' ' " Both F.,
and &F. have larger values than would obtain if
only the homopolar (covalent) components of the
crystal potential were operative. But the ionic
interaction will not contribute to k~r

' because
it is electrostatic in nature and thus produces
only central forces. Therefore it seems reason-
able to extend Eq. (8) as

kE „=ksr'=4(l -f,}&E (10)

for zinc-blende crystals with a Phillips fraction
of ionic character f;. [Recall that Martin found
the ratio P/n to be proportional to (1 -f,).] This
estimate is compared with experiment in Table I,
where we find that the agreement is again within
the limits of the KM model for the III-V com-
pounds. The III-V compunods are primarily co-
valent and have values of f &

less than 0.5. In the
case of the more ionic II-VI compounds and CuC1,
Eq. (10) seriously overestimates the bond-bend-
ing force constants.

III. HYPOTHESIS FOR MOST IONIC CASES

%'hen considering the soft bond-bending force
constants among the more ionic compounds, one
will note that there is a critical ionicity E] =0.785
which divides the compounds that occur in one of
the tetrahedral structures at zero pressure from
those which occur in the rocksalt structure. '""
Three compounds, MgS, MgSe, and HgS, have an
ionicity f; = I'& within the limit of experimental
error and occur in both a tetrahedral structure
and the rocksalt structure or, in the case of HgS,
a slight distortion of it." Moreover, some cova-
lent properties, including the violation of the
Cauchy relation for the elastic constants of a
solid having only central interatomic forces as
well as the decrease in the optical dielectric con-
stant with pressure, extend to the less ionic com-
pounts, 0.79 &f, & 0.92, in the rocksalt structure. '
(Recall that the rocksalt structure does not maxi-
mize either the Madelung constant or the packing
efficiency and that the most ionic compounds occur
in the CsC1 structure. ) Therefore, one should con-
clude that octahedral covalent forces" are still
appreciable in the 1.ess ionic compounds of the
rocksalt structure. If so, then they must be ap-
preciabIe in the rocksalt phase of these II-VI and
I-VI compounds, which is attained at high pres-
sure. " The competition between tetrahedral and
octahedral covalent bonding should influence this
phase boundary.

%hereas we concluded that the energy difference
between the s-P' covalent phase and the metallic
or vapor phases was irrelevant to k&r', it seems
that competition between s-P' and octahedral co-
valent bonding should be relevant because this
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TABLE II. Hypothesis that the competition between
tetrahedral and octahedral covalent bonding determine
the soft bond-bending force constants in the most ionic
s-ps crystals [Eq. (11)] tested against experimental data.

C rystal
kex
(eV)

2PQV, = 2~&
(eV)

ZnS
ZnSe
ZnTe
CdTe
CuCl

1.09
1.06
1.29
0.80
0.23

1.14
1.12
1.10
0.34
0.34

competition is obviously affected by distortion
of the bond angles. Therefore, let us see if for
the II-VI compounds and CuCl, ker ' is propor-
tional to the difference in internal energy between
the tetrahedral phase of these compounds and the
rocksalt phase attained under pressure. Phillips
has shown how to estimate this energy difference
quite successfully. " In Table II we compare
against experiment the formula

1
2 E„„=-ker = 2&UI,

where ~Ui =P,&V, is the observed energy differ-
ence between the zinc-blende and rocksalt phases
per atom pair at the critical pressure Pt of the
transformation. (It is assumed that this value
approximately equals the internal energy differ-
ence between these phases at zero pressure. )

Obviously the form of Eq. (11) causes our esti-
mate of ke to tend to zero as f; goes to F; rather
than as f; goes to 1.0 as impled l, y Eq. (10) and
as assumed by Martin. This allows us to account
for the very soft bond-bending force constants in
the Cu halides and in AgI. The significance of the
constant of proportionality required to fit ZnS,
ZnSe, and ZnTe is not yet clear, and CdTe seems

sp, sk,
e =a —=-a' ~u ' ' &ur

(12)

where a, = +a=r/v3 is the dimension of the unit
cell (a is the usual lattice constant) and

2 2ur = x)~ —3a() . (13)

As we consider only hydrostatic strain, we may
equate x;, with r and simplify Eq. (12) to

a~ aP 3ao eke
2r ~r 4r 8x (14)

We may take the derivative of Eq. (9) by noting
that the variation of the optical dielectric constant
in these crystals with pressure fits a scaling law
derived in Ref. 6 such that

B(r) =B(r =r,)(rJr)' ',
and, of course, E~™~' so that

d~E 2 1

dz
"=-(-2Er(3B'[I + In(~ B)]—4B'I.

—2 Er(7B' —12B'))/r . {16}

to disagree with the corresponding estimate.

IV. PRESSURE DEPENDENCE OF k

THIRD-ORDER FORCE CONSTANT e

The elastic constants of crystals are known to
vary when subjected to static strain. Therefore,
all the interatomic force constants of the KM mod-
el, Eq. (1), are functions of the interatomic spac-
ing x;, =8& -R, between atoms i and j. The de-
rivatives of the elastic constants with respect to
interatomic spacing are expressed as third-or-
der elastic and force constants, respectively.
The relations appropriate to the KM model are
given by Keating. "

Here we shall only consider the derivative of
ke or P,. with hydrostatic strain, which Keating
expressed as e,

TABLE III. Keating's third-order elastic parameter ~, a measure of the derivative of ke
with compression, compared against the theory of Eq. (10) and against a convenient approxi-
mation to that theory [Eq. (18)].

Crystal

Si
Ge
GaAs
InSb
GaSb

C
AlSb
GaP
InP
InAs

Reference

19
19
20
21
22

& expt

(10 2 dyn/cm )

-0.47
-0.48
-0.41
-0.15
-0.26

&~lc
/cm

-0.561
—0.449
-0.411
—0.187
-0.264

-6.255
-0.240
—0.506
-0.317
-0.279

&~ic ~ Eq (18)
(10' dyn/cm~)

-0.553
-0.442
-0.407
-0.185
-0.261

-6.198
-0.238
-0.501
-0.314
-0.276
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The second term in the heavy parentheses of Eq.
(16) is opposite in sign and less than the first
term by a factor which is approximately 4 for
Si (ltef. 8) and does not vary greatly from one
crystal to another. Therefore, a convenient ap-
proximation with an accuracy of about + 20% is

TABLE IV. Predicted values of the Keating-Martin
elastic parameters for cases where experimental data
are lacking.

kyar

P
C rys tal {eV) {N/m} {10'2 dyn/cm'")

ddt = —1.5&E /r .dr

It fo1.loms that

r &k8 r ~P= ——= —35
k& ~r P

with an accuracy of 10% so that

= —1. 0P1/r = —1. 52k /er

(18)

(19)

SiC
BN
BP
BAs
AlN

AlP
AlAs
GaN
InN

5.28
8.57
4.87
4.24
4.75
2.72
2.54
4.26
3.17

35.7
84.1
20.4
15.9
21.3
7.82
6, 77
18.1
10.9

-1„92
-5.37
-1.04
—0.77
-1.13
-0.33
-0.28
-0.93
-0.51

0.18
0.26
0.01
0.00
0.45
0.31
0.27
0.50
0.57

with an accuracy of 10%.
The values of ~ calculated with the present

theory for k~ and with and without the approxima-
tion of Eq. (1 t) are compared with experiment" "
in Table III, Again the agreement is within the
limits of the KM model for IV-IV and III-V crys-
tals. Because Etl. (10) was not accurate in pre-
dicting k8 for II-VI and I-VII compounds, it seems
unlikely that Etl. (19) should be accurate in pre-
dicting e for those cases and they are not included
in Table III.

The observed negative sign of e implies that the
bond-bending force constants become stronger as
the crystal is compressed. According to the the-
ory of Sec. II, this corresponds to the fact that
the optical dielectric constant decreases and the
average band gap inerea, ses with pressure.
If the hypothesis for the softness of k~ in II-VI
and I-VII crystals given in Sec. III is correct,
then one mould expect

er/P=O, f;&0.6
for those compounds because the relative internal
energy of the competing octahedral covalent bonds,
and therefore the value of &U„does not change
significantly with compression. It appears that
measurements of the third-order elastic con-
stants" in the wurtzite crystal CdS support this
conclusion. 2"6

V. COMPARISON MfITH MARTIN'S ANALYSIS

Martin discovered' the remarkable linear vari-
tion with Phillips ionicity of the ratio of bond-
bending to bond-stretching force constants P/o. .
This linear relation extended from the totally co-
valent elements Si and Ge through the II-VI com-
pounds almost to the critical ionicity I'& beyond
which a tetrahedral structure cannot be attained
at any pressure. Here we have found a straight-
forward explanation for the absolute magnitude of

P and of kgr
' in all four diamond-type elements

and a reasonable extrapolation of this theory
which is successful in the III-V compounds.
Therefore, mhatever the effect which causes this
extrapolation [Eq. (10)] to fail in the more ionic
II-VI and I-VII compounds must also affect the
bond-stretching force constant u.

The elastic constants of diamond do not fit
Martin's empirical relation', the P/o. ratio is
radically larger for C than for Si or Ge. Here
me mere successful in accounting for the magni-
tude of P in C as mell as in Si and Ge. Note that
all the crystals studied in Table I except C have
approximately the same atomic volume, mhile
that for C is radically less. One may conclude
that the variation with nearest-neighbor distance
is different for P than for n.

VI. CONCLUSION

A simple quantitative relation between the non-
central or covalent interatomic forces and the
average band gap around the Jones zone of dia-
mond-type crystals has been hypothesized and
demonstrated. The relation is as accurate as an
analysis in terms of first- and second-neighbor
interactions can test. The extrapolation of this
relation to partially ionic s-p' crystals succeeds
for III-V compounds but becomes inaccurate for
II-VI and I-VII compounds. A competition between
tetrahedral and octahedral covalent bonding is
a suggested cause for the failure of this extra-
polation to most ionic ca,ses.

In the cases of SiC and the III-V compounds for
which empirical values are not known to the au-
thor, predicted values of the Keating-Martin elas-
tic parameters are presented in Table IV.

Note added in proof Because Etl. (4) .contains no
odd powers of 68',-» the present theory predicts"
a simple relation between e and another third-or-
der force constant 5 defined by Keating" as
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where

2
lk =- Xq g

' Xg p + Qo .

This relation follows from simple geometry and is

S =--,'W3e.

This relation is well satisfied by available data. "
Note added in proof S.ome time after this paper

was submitted, a letter on the subject of the sec-
ond-order bond-bending force constants in these
same materials appeared [W. A. Harrison and J.
Christopher Phillips, Phys. Rev. Lett. 33, 410
{19741].The role played here by the spectroscopic
factor ~ is there served by the introduction of
two empirically adjusted parameters denoted A.
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