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The density-functional formalism of Hohenberg, Kohn, and Sham is used to investigate the effects of
nonlocal exchange and correlation on the Fermi surface of a simple-cubic metal. The "nonlocal" Fermi

surface is obtained by solving the Dyson equation for the quasiparticle states on the Fermi surface with

the nonlocal self-energy approximated according to the density-functional scheme in the presence of an

external model pseudopotential. This was done by using the corresponding local theory to define a

zeroth-order Hamiltonian which provides basis functions to solve the nonlocal eigenvalue problem. It
was found that the maximum Fermi-surface distortions obtained from the nonlocal theory were

substantially reduced from the local theory, as experiments suggest. The calculations were carried out in

the random-phase approximation.

I. INTRODUCTION

Most first-principles calculations of the Fermi-
surface (FS) distortions have been based on local
approximations for exchange and correlation effects
among the valence electrons. Comparison of such
calculations with the experimental FS distortions
result in large discrepancies. ' 3 The primary ob-
jective of this work is to show by direct calculation
with a realistic model that the FS given by a non-

local many-body theory is significantly different
from the corresponding local theory, both treated
within the framework of the Hohenberg-Kohn-
Sham ~ theory of an inhomogeneous electron gas.

The usual starting point for describing a number
of interesting properties of the many-body system
is to solve for the Green's function~ G(r, r; E). In
particular it determines the system's single-par-
ticle-like excitations, a quantity of central interest
i.n this work.

The Green. 's function is a solution of the Dyson
equation

+ V +E Gryr;8+ gr

where Z in Eq. (3) has been specialized to a. periodic
system. The solutions of this homogeneous equation
[i.e. , the homogeneous part of Eqs. (1) or (2)] have

the meaning of the quasiparticle states P and the
quasiparticle excitations F:„. The solution of Eq.
(3) for Zf will hence describe the corresponding FS.

In Sec. II we briefly discuss some main features
of the "local" Hohenberg-Kohn-Sham ' theory,
which is strictly applicable to the calculation of the
density n(r) and the corresponding ground-state en-

ergy, but has also been commonly used for the de-
termination of the FS (henceforth referred to as the
local FS). Approximate forms for the mass oper-
ator Z by use of the density-functional formalism
will be discussed in Sec. III, which will be used to
calculate the nonlocal FS.

In Sec. IV we formulate a simple, self-consistent
procedure, for calculating the local and nonlocal FS
and specialize the calculation to the random-phase
approximation (RPA). Sec. ())' consists of results
and discussion.

II. COMMENTS ON THE LOCAL
HOHENBERG-KOHN-SHAM THEORY

x E(r, r ";E)G(r", r; E)= —6(r r') . (—1)

Equivalently, in the usual matrix notation Eq. (1)
can be written

(2)

where Go(E) is the Green's function for the nonin-

teracting homogeneous electron gas, and Z is the
so called mass operator.

The same mass operator Z appears also in a
Schrodinger type equation

Suppose we impose on an interacting electron gas
an external potential V,„„(r)which induces a density
distribution n, (r) [Note n(r) = no+n, (r)] where no is
the uniform density. Hohenberg and Kohn have
shown that the ground-state energy of such a system
can be wri. tten as

Z[n] = dr V„,(r)n(r) +—,+ F[n],
e' "drdr'n(r)n(r')

(4)
where E[n] is a unique functional of n(r). Further-
more they show that E[n] assumes its minimum val-
ue for the correct n(r).

Kohn and Shams went a step further by noting that
in writing
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F[n] = T, [44]+E„[n], (6)

(
2

r*~ ((r) ~,.( )) 4;(r) = r-„4„-(r), (6)

(where T,[n] is the kinetic energy of a noninteract-
ing electron gas of density n(r), and E„[n] is the
exchange correlation functional) the density can be
determined exactly from one particle-like Schro-
dinger equation solved self-consistently as follows:

For a large but slowly varying n, (r) Hohenberg
and Kohn4 recommended approximating E„,(n) by a
gradient expansion, i.e. ,

z („) f=rr ( )r („( )) ~ —r(l()',v, r r .
(i3)

For a small but rapidly varying n, (r) Kohn and
Sham' suggested

E„,[n] = dr n(r)e„(n(r))- — dr dr'

(6)

and

( )
6Z„gn]

5n (10)

E„,[n] = n(r) 4„,[n(r)] dr,

where e„[n(r)] is the exchange and correlation en-
ergy per electron of a uniform electron gas with
density n(r).

From Eqs. (10) and (11),

d[no„(n)]
(i2)

In this work v„,(r) will be approximated by Eq. (12)
and the corresponding solution 4-„of Eq. (6) will de-
fine our local FS.

As previously mentioned, although formally the
s of Eq. (6) have no relevance to describing the

qua. siparticle excitations, the approximation of Eq.
(12) does represent a further approximation to the
nonlocal Z of Eq. (3) for electrons on the FS (we
will return to this point briefly at the end of Sec.
III). Equation (6) coupled with Eq. (12) has thus
been commonly used in the calculation of band
strgctures and the corresponding FS.

Finally, for completeness, we write two further
approximations to E„[n].

In Eq. (7) E+ = Ez(k) is the surface that encloses the
correct number of electrons. The surface corre-
sponding to K~(k) is determined from the solutions
c; of Eq. (6) and will be referred to as the local FS.

At this juncture two remarks are in order:
(a) The @f(r) and 4-„of Eq. (6) do not represent the

quasiparticle states or excitation energies. Thus it
would be extremely fortuitous for Eq. (6) to give the
correct FS [the solution of Eq. (3) will].

(b) The self-consistent soluticns of Eqs. (6) and
(7) would give the density n(r) exactly if E„[n]were
known.

A common approximation for E„,[n] is

&& K„(r—r', n(-,'(r+r')))[n(r) —n(r')]4 . (14)

Both the coefficients of Eq. (13) and ff'„, of Eq. (14)
can be related to the electron screening function
ii((L). 4'

The approximations of Eqs. (13) and (14) have
been tested in the calculation of cohesive energies
(see, e. g. , Ma and Brueckner, 4 Herman ef al. and
recently by Sham' ). Their use for calculating the
4;-„'s of Eq. (6) as an attempt to get improved band
structures (or FS) is however highly questionable
in that Eqs. (13) and (14) have not been shown to re-
sult from the localization of Eq. (3), in contrast to
Eq. (12), which ha.s (see Sec. III).

III. APPROXIMATIONS FOR THE SELF-ENERGY OPERATOR

In the previous section we briefly discussed the
local theory represented by Eqs. (6) and (I) [cou-
pled with the approximation of Eq. (12)] used in
most band-structure calculations. As stressed, the
procedure does give the correct density and cohe-
sive energy (if E„[n] is known), but does not give
the correct quasiparticle excitations. To get these
one has to solve for the Z-„'s of Eq. (3) with the non-
local mass operator which we will now discuss.

It is useful to exhibit the local and nonlocal corn-
ponents of Z explicitly, i. e. ,

Z (r, r; E) = V(r) 5 (r —r ') + M(r, r '; E),
where V(r) has been defined in Eq. (6) and M is the
self-energy operator whose structural form is given
by many-body theory. " For an inhomogenous sys-
tem it is extremely complicated (in fact even for a
homogenous system its full form is not known) and
some approximate form must be constructed. One
way of proceeding is to do the standard graphical
calculation7 of M, e. g. , some low-order diagrams
representing the expansion of M are shown in Fig.
1. The arrows represent the Green's function
G„(r, r'; E) satisfying the equation

2
V +E + V(r) G„(r, r'; E)= —5(r r'), (1-6)

2m

the wiggly line is the screened electron-electron
interaction W(r, r; E) whose solution'graphically
is given by Figs. 2(a) and 2(b).

In principle such a procedure is exact; however,
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+ A[n(rB)]; n(r())), (17)

r, E r'E r', E

+
r, E r, E

FIG. 1. First few low-order contributions to
M(r, r'; E). The arrows represent the ~„(r,r'; E) of
Eq. (16), and the wiggly lines are the screened electron-
electron interactions W'(r, r'; E) shown in. Fig. 2.

in practice, even evaluating M in. the approximation
of Fi.g. 1-I and iI approximated by Fig. 2(b)-I (i.e. ,
the inhomogenous RPA approximation) is a consid-
erable task which has not been done exactly. Kane"
has attempted such a procedure for the calculation
of the band structure of silicon. In this work (as
pointed out in the Introduction) both local and non-
local effects will be treated within the framework
of the Hohenberg-Kohn-Sham ' theory. Vfe hence
turn to a discussion of M in this context.

%e first note that according to the theory of
Hohenberg and Kohn4 Z is a functional of the den-
sity n(r). Sham and Kohn' (SK) have exploited this
property to suggest a number of approximations for

More recently Hedin and Lundqvist'3 have gen-
eralized the SK version of M by introducing a func-
tional of n, A[n], into the self energy operator M„
of a uniform interacting electron gas as follows:

Z(r, r'; E) =V(r)5(r-r')+M„(r- r'; E- V(r())

where n is the density at rB= ~8(r+ r ). This choice
of form for Z is made so that, with appropriate re-
strictions on b,[n], it satisfies the following condi-
tions:

(i} Equation (3) which is invariant under a con-
stant shift in V„,(r) is maintained by Eq. (17).

(ii) For a small and slowly varying V„,(r), Eq.
(17) is exact.

Condition (i) requires A[n, =0 and (ii} requires
b, (q}-0 as q-0 [see Eq. (24)]. The two forms sug-
gested by SK correspond to:

A, [n] -=0,

A, [n] -=p.„(n(r())}+V(r, ) —(1,

(18)

(19)

(henceforth referred to as "a"and "b", respective-
ly), where i1„ is the chemical potential for a uni-
form gas of density n and p, is the chemical poten-
tial. These forms clearly satisfy the above re-
quirements on b, [n].

Before discussing the merits of Eqs. (18) and (19)
for b, [n], we wish to comment on the introduction of
the r() variable in Eq. (17). Although the rB variable
evolves naturally in the SK analysis, it in fact has
advantages over other possible choices. To see
this we write Z to first order in the external poten-
tial (Fig. 3), i.e. ,

Z(r, r; E) =M„(r —r; E; n())+Z"'(r, r; E), (20)

where

Z(1)(r P. g q I dP 1(q& ei(r (r-r')er r())(A(p+ Pq . @)eiBa (r-r') + A( P . E) -(8i (r-r') ) (21)"' ' E = 2. (2v}B. (2.}B ii(q)
'

and A is the proper vertex function. To examine the small q behavior of the right-hand side of Eq. (21), we

note that for small q

A(p+ Pq, q; E) =A(p+Pq, 0; E) + O(q ) . (22)

This follows from the integral equation for A (see Nozieres, (8 P. 255) when BI(p, p; q}=BI(p, p; q), whi. ch,
from time-reversal symmetry, implies that 'I(p, p; q) = BI(p, p, —q) and thus A(p, q; E) = A(p, —q; E) For.
example, these conditions on I are satisfied for the self-consistent RPA (see Fig. 4). We also note that
this property of A implies that Z "'(r, r'; E) is symmetrical in r and r'.

Equation (21) suggests many symmetrical forms for Z constructed in the spirit of Eq. (17). For example
with P=-,' in Eq. (21) results in Z of Eq. (17) given by

Z(r, r'; E) =—', [V(r)+ V(r )]5(r —r')+8[MB(r —r'; E —V(r)+r)(r);n(r))+M (r —r';E —V(r')+A(r');n(r'))]. (23)

However, for P=O (the SK form), it is straightforward to show that Eq. (17) is exact, in linear order of the
external potential, to order qB. This can be seen by setting P = 0 in Eqs. (21) and (22), and expanding Eq.
(17) to linear order in the external potential. The difference, AZ(r, r; E), of Eqs. (17) and (21) is given by

P

AZ(r r'. E) p &(r (r-r') q (I r()n)1q/ 5A(~ . @)
(2n)B (2)()B 11(q)

&MB(p) E) no) di18 5H(-) SMB(P, E;n()) &(q) 0( 8) (24)
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0 g

FIG. 4. Irreducible scattering function I in the self-
consistent SPA.

+ 0 ~ ~

where

5A(p, q; E) -=A(p, q; E) —A(p, 0; E),
& 11(q) = fi(q) —11(0),

(28)

(28)

FIG. 2. {a) Integral equation of lV{r, r; E); {b) first
few low-order contributions to the screening function Il.

der q if A(q)-0 as q-0. Similar analysis for )3e0
give the resulting Z in Eq. (17) exact to first power
in q and linear in the external potential.

We now return to Eq. (17) to consider forms for
A[n(ro)]. We first consider the merits of Eqs. (18)
and (19) and then introduce a new form that satisfies
the conditions (i) and (ii) above and a density self-
consistency condition on the Green's function.

Hedin and Lundqyist'3 have suggested that the
form (19) is preferable. Their argument is based
on constructing an approximate vertex function by
expanding Eq. (17) for Z to first order in V, ()), and

n, and comparing with Eq. (21) (P = 0). In our nota-
tion, for the d, 's given in Eqs. (18) and (19), the
following approximate vertex functions result, re-
spectively:

M„(r —r '; E; no)
(2

3M)(p, E; n, )e""" '
2 7T)

(2'7)
and M„(p, E) is the usual self-energy operator in
momentum-energy space for a homogeneous elec-
tron gas with density no. In deriving Eq. (24) we
have used the Ward identity

A(- -. E) I SM)(p) E1 &0) SAf))(p1 E~ &o) (28)1m pq' = —
eF, 9

q 0

and the compressibility sum rule

A ( ~ E}—1- sM)'(p& E1 no)
a»&&

, , dye, &Mgp, E;no
no ~p

(30)

lim[II(q)] ' =
q o dno

(29)

Restricting Eqs. (30) and (31) to electrons on the FS
(i. e. , Ipl =KO and E= p„) gives:

From Eqs. (22), (25), and (26) the expression in
large square brackets in Eq. (24} is clearly of or-

Il,(K„q; g, )=1 —
( ) (1

—Z '
m* wo

(32)

(33)

P
T)+&q.E V-g.E ()+4((,E 7- kq. E

where Z ' is the renormalization factor [1—BM„(p,
E; no)/BE] on the FS; v/xo and m~/m are the ratios
of the compressibility and effective masses on the
FS, respectively, of the interacting and noninter-
acting electron gas which are related to the vertex
function through the Ward identity'

FIG. 3. Self-energy to first order in the external po-
tential VEt{r), ~, in terms of the proper vertex function
A and the screening function II for a homogeneous elec-
tron gas.

Hedin and Lundqvist note that the choice (b) for a
gives the correct large q limit of A(KO, q; p.„), i.e. ,
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unity [see Eq. (33)]. Furthermore, Watabe and
Yashuhara" evaluated the vertex function for elec-
trons on the FS and found A(Ks, q =2.28Ks;g„) =1.55
for 2;=4. Using Eqs. (32) and (33) with II(q
=2. 28K(() from Geldart and Taylor'4 and the values
Z '= l. 55, m/m" =0. S4, (((((/((=0. 292 (see Hedin and
Lundqvist" P. 103) we find A, = l. 95 and A, = 1.47,
in agreement with Hedin and Lundqvist. '3 Prom
these considerations choice (b) for &[n] appears to
be preferable. Thus in the calculations presented
in this work the approximate form for Z(r, r; E) is

Z, (r, r '; E) = V(r)6(r —r ') + M„(r —r '; E —(i

and applying Eq. (36) to the resultant gives

F( ) 1 Fs(q) F2(q)+Fs(q) F ( )
11(q) 11(0)

where

F,(q) = 2 tr G„(p + -,'q „E)G„(p- —,'q, E),

(39)

(41)

(42)

b, [n(r, )] = A,[n(r, )] + F(r, —s)n, (s) ds,

and the requirement b,(q)-0 as q- 0 implies F(q)
—0 in this limit. F(r(( —s) in Eq. (35) is in a way
analogous to K„ in Eq. (14) of the local theory and
corresponds to a partial infinite sum of gradient
terms for the nonlocal problem. The effect of in-
cluding the E,, term has recently been investigated
by Sham. ' The importance of these nonlocal gra-
dient terms will be reflected in the q dependence of
F(q), i.e. , an essentially zero F(q) would indicate
that the density dependence is adequately repre-
sented by Eq. (34). [Some numerical evidence for
the adequacy of Eq. (34) will be presented in Sec. V,
where FS distortions obtained by use of Eq. (34) are
compared with those obtained by omitting the den-
sity dependence in Z, i.e. , replacing n(rs) by n((. ]

The density self-consistency equation on the
Green's function may be written as

n, (q) =limtrsG(p+ q, p; E)e' ',
7'» 0

where

G(r r' E) = '
'

'
G(p E)e'"'e '"'

(2v)s I (2v)s 2(P1r

(37)

"dpdE
tr(, (. )= .

(2 )4( . ~ ) . (38)

Expanding the Green's function G of Eq. (2} to first
order in n~ with Z and b, given by Eqs. (17) and (35)

+ p,„(n(r(()};n(r(()) . (34)

%"e also note that this form has the advantage of not
having V(rs) as an argument of M„, as occurs with
choice (a) and for calculations on the FS E= p, so
that the E dependence is also removed.

There remains the question of the density depen-
dence of Z being adequately accounted for by use of
Eq. (34). This can be investigated by introducing a
more general form for (i([n(r(()] and requiring the
Green's function produced by the Z used in Eq. (2)
be self-consistent to linear order in n, (r). A natu-
ral extension of Eq. (19) is

and G„(p, E) is the exact Green's function in momen-
tum-energy space for a homogeneous electron gas
with density n s. With these expressi, ons in Eq. (3S)
F(q) —0 as q-0.

%e end this section by returning to the point
raised in See. 11 that v„,(r) of Eq. (12) is a local ap-
proximation to the nonlocal M of Eq. (34) with E= p.

(i.e. , electrons on the FS). This is achieved by
employing a %KB-type argument. Writ j.ng

q„(r) A(r)eii(r( r (43)

and then neglecting the r dependence of A(r) a.nd

Qr) when M„of Eq. (34) operates on l P &, we get

M„I q, & = M„(k(r); E —v + q„(n(r)); n(r)) I g-„(r)& .
(44)

To solve for k(r), Sham and Kohn' have proposed
the approximation

u = V(r)+ p„(n(r)), (45)

which is valid for a slowly varying density. Then
using Eqs. (3), (43)-(45), and restricting the elec-
trons to the FS (i e. , E =. (i) it follows that

Ms I yf &
= M(((k(r); p„(n(r)); n(r)} I (}(I(r)&, (46)

with k(r) = [3(( n(r)]' . This local M„ is easily seen
to be identical to v„(r) defined by Eq. (12).

It should be stressed that:
(i) The procedure for localizing M„given by Eqs.

(43)-(46) entails many assumptions. It is precisely
the purpose of this work to show that they are not
valid for describing FS distortions;

(ii) The approximation of Eq. (45) enters the de-
rivation of the local form [Eq. (46)] and is not used
in constructing M„of Eq. (34) [i.e. , Eq. (19) is not
equivalent to Eq. (45}];

(iii) The local form of M„[Eq. (46)] has been the
one used most often in local FS calculations. In
the following chapter it will thus serve as the basis
for comparison of local and nonlocal FS.

Finally, the fact that the corresponding local
form for M„[i.e. , Eq. (46)] is v„(r) of Eq. (12),
and so can be simultaneously used for calculating
the local FS and the appropriate density n(r), will
be utilized in Sec. IV.
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IV. COMPARISON OF LOCAL AND NONLOCAL
FS; FORMULATION

form given in Eq. (34) with E = p, i.e. ,

M(r, r'; Z[,) =M„(r —r'; p„(n(r,)};n(r, )), (52)
%e start by emphasizing that our interest is

strictly the effect of nonlocality of M on the FS.
Thus, we do not wish to investigate the effect of the
local Hartree field V„(r), nor become involved with

complicated self-consistent band-structure calcu-
lations. This is achieved as follows: Instead of

starting with an external potential V„,(r) in Eq. (6)
or (8) and constructing the corresponding self-con-
sistent density distribution, the process is re-
versed; i.e. , construct the external potential cor-
responding to a given self-consistent density dis-
tribution. ' In other words, solve the equation

r'+ r.(r)) l;(r) = r;0;(r), (4V)

where V„(r) is some (non-self-consistent) periodic
model pseudopotential appropriately chosen and

construct the density n(r) according to Eq. (V).
Equation (47) is easily solved since it is not a self-
consistent equation and more important from our
viewpoint gives the exact density n(r) to be used in

Eqs. (3) and (15). The effect on Z(r, r', E) of in-
troducing V (r) in Eq. (4V) can be obtained by com-
paring Eqs. (6) and (4V) clearly:

V(r) = V (r) —&„(r)

and hence

Z(r, r; E) = V (r ')5(r —r ) + M(r, r; E)

(48)

—v„(r)6(r- r') . (49)

[At first sight Eqs. (15) and (49) might appear con-
tradictory to the theorem that Z is a unique func-
tional of n. This is however immediately resolved
by recalling that V(r) of Eq. (15) is also a unique
functional of n ]Equation .(49) has been written in

a manner to emphasize the difference in the local
theory [i.e. , Eq. (4V)] and the corresponding non-

local theory given by substituting Eq. (49) in Eq.
(3), i.e. ,

80(1)1(r) + vt, (I)f(r) = Efp(r), (50)

where Ho is the Hamiltonian in Eq. (4V) and

r gr(r)-=Jrr'[M(r, ';)r;)-r„(r')r(r-r')](;(r'),
(51)

with the interpretation that V~ is the perturbation of
the local theory and quasiparticle excitations due to
the nonlocal character of M(r, r; E).

Equation (50), like Eq. (3), is exact, as of course
is the density resulting from Eq. (4V) and Eq. (7) to
be used in M and e„. However, because of their
complicated forms, M and v„are next approxi-
mated by their forms discussed in Secs. II and ID.

That is, in Eq. (51) we use for M its approximate

v. (r) =g v.(G)e"', (53)

where 0's are the reciprocal-lattice vectors, the
solution for the local problem (Part a) is obtained

by expanding the wave function in plane waves

(f „;(r)=QA6(] k)e""'o" (54)

and substituting in Eq. (4V). The energies e„„- and

the expansion coefficients A6(vk) are calculated in

the standard procedure. Note that a band index and

reduced zone scheme for k has been introduced. In
fact (see below), by a special choice of lattice and

V in the model calculation presented here, this
local band-structure calculation is made trivial.

The energies E-„ for the nonlocal problem are ob-
tained by expanding (l) in terms of (t)„„-(r):

and for v„ its form in Eq. (12) or equivalently Eq.
(46).

%'e are now in a position to define precisely what

we mean by FS derived from a local and a nonlocal
theory. (a) Solve Eqs. (6) and (7) self-consistently
for e]-, and n(r) with o„,(r) given by Eq. (12) or (46).
From the (. s of Eq. (7) determine the FS which
will be referred to as the local FS. (b) Use the
density n(r) in Eq. (52) to obtain M„, which would

then be used in Eq. (3) to determine Eg and the cor-
responding FS, which we will refer to as the non-
local FS.

Actually, in the calculation which we present here
the self-consistent calculation (a) has been replaced
by Eq. (4V) and the corresponding n(r) it produces.
The effect of nonlocality is contained in Eqs. (50)
a.nd (51), so that if the effect of nonlocality is small
then V~ of Eq. (51) will not perturb the local FS ob-
tained from Eq. (47).

We wish to repeat that using v„(r) of Eqs. (12) or
(46) for describing the local FS (i.e. , e-„'s) serves
in the above procedure only as a basis of compari-
son and does not involve any further approxima-
tions. However, extending it to the calculation of
the density n(r) does introduce further assumptions
in the calculation of the nonlocal FS. Strictly
speaking, a proper way to solve for the self-con-
sistent density n(r), corresponding to M„of Eq.
(34), is to use Eq. (36). However, such a procedure
is extremely difficult. Calculating n(r) via the
above procedure [Eqs. (6), (7), and (12)] has been
a common approach, and is assumed here to give
the appropriate density for M„.

Noting that the model pseudopotential may be
written as
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(55)

Det IH„.„(k)- s„,„E„-I=0,
H„,„(k)=s„,„e„„-+&y„,„-I v, Iy„-„&.

(56)

(57)

The whole nonlocal nature of the problem is now

contained in the last term of Eq. (57). To evaluate
this term within the approximation of Eqs. (12) and

(52), we first note that from Eq. (52)

M„(r —r ', p«(n(ro)); n(r, ))

r

,M„(p, p«(n(ro));n(ro))e"" "', (58)
J 2F'

and the corresponding Fermi vector is

ks(r, ) =[3v'n(ro)]'" . {58)

Then, noting that the rp dependence is periodic in
the lattice and thus may be expressed as a Fourier
series:

and substituting in Eq. (50). The energies are given
by the solution of

is approximated by Eqs. (62)-(64), is, according
to Eq. (46):

v„,(r) = M„(k;n(r ))+M „(k, tL; n(r )) . (65)

This completes the definition of all the quantities
entering the nonlocal problem of Eq. (50) through
Eq. (61) in the RPA.

To avoid getting into a complicated band-struc-
ture calculation, a simple cubic lattice was chosen
(cube edge "a'*) and all the Fourier coefficients in
Eq. (53) were set equal to zero except for the first
nearest neighbors. The resulting pseudopotential
ls

27Fg 2'Tt'Q 27TZ
V (r) =2V, cos +cos +cos

a a a
(66)

V. COMPARISON OF LOCAL AND NONLOCAL FS;
RESULTS AND DISCUSSION

(the three-dimensional Mathieu potential), which al-
lows Eq. (47) to be separated into three one-dimen-
sional equations, and the calculation of the band
structure and wave functions [i.e. , Ao(vk)] becomes
trivial for the local theory.

M„(p, p, «(n(ro}); n(ro)) =Q M«(p; G ")e' "'o,
Qs I

it is straightforward to show that

(so)

«I v«IP «)= 2 As~, (v k)As(vk)
5', ts

f6 +6 /M„k+; G —G —v„(G —G} .
(61)

Equation (61) is completely general; however,
M„(p, Z; n(ro)) is, in general, very complicated"
so that we must make a definite approximation for
M„(p, E; n(ro)) We ch. oose the RPA for Eq. (58) so
that

M«(p, j («n( r)o); n(ro)) =M.(p; n(r. ))

+Maps(p t«o(n(ro));n(ro))
(62)

where M„ is the Fock exchange:

ds F(r, s, f, t),
(67)

where

F(r; k) =
I x«(~)x», (y}x&.(s) I' .

X„k satisfies the equation

As stressed in Sec. IV, the whole nonlocal nature
of the problem is contai. ned in. the last term of Eq.
(57). We wish to next focus on the numerical aspect
of Eq. (61) a.s it enters Eqs. (56) and (57).

Since the density is the central quantity in the the-
ory we start by giving a brief description of the nu-
merical calculation of n(r) [see Eq. (7)] given by
Eq. (47) with V (r) of Eq. (66), from which the cor-
responding M„(p, G) given by Eqs. (62)-(64) is then
evaluated. Also, to appreciate dependence of the
nonlocal effects for a range of strengths of poten-
tial, three cases of V, will be considered.

The density of Eq. (7) can be written as

2 r 1 r&/2 r EF(t, tf«)
3

n(r) = --, '~ dt,3F ~p ~p ~Q

eA k-
M„(p;n(r ))= — 1+ ~ ln P . (63)

P p p f7
2

2 + 2 ~1 cosx yv (68)

M„v„j.s given by (see, for example, Hedin )

e2k~ " dqIMao'(p &oi "(ro})= o~ 0'~p 9' p

[1 —(p/k, —2q)']'+ 1 ey'
[1- (t/k, +2q)']'+ 1ey'

(64)

and t«o= I kos/2m, with ks defined in Eq. (59).
The consistent approximation for v„(~), when M«

&.«(r) = x.,«„(&}x.,«, b')x.,«, (s), (68)

(7o)~vk, ~v„k„+~v&k& + &v k r

and s= ko, t= cose (note units of 2v/a= ho/2m= 1
have been used). The coordinates of Eq. (67) were
chosen since the FS is almost spherical [i.e. ,
Ks(t, P) = constant] and the variation from the vol-
ume element is eliminated.

The solutions of Eq. (68) are the Mathieu func-
tions, and with these the density is easily evaluated
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P

kp

2

FIG 5 Self-energy Ma(p po( s)' n(rs}} of Eq. (62).
Solid lines, M„(p; n(r~) of Eq. (63); dashed lines, for in-
dicated values of r, . Note that k+=1/nr~ and go=a+.

numerically from Eq. (67) for an appropriate mesh
in ro.

The M„(p; G) corresponding to the above density
(Eq. 67) is determined in two steps. First we eval-
uate Eqs. (63) and (64) for a range of p and r, . The
Fock part [Eq. (63)] is of course trivial to evaluate
and simply requires substituting k~ = 1/nr, [of = (4/
9w)'~ ]. M»„(p; p, o(r, );n(r, )) [Eq. (64)] with

E(q, iy) =1+@(q,iqy),

and

(
.

)
nr, y'+1 —q' y'+ (1+q)'

4vq'
'

2q
'" y'+ (1 —q)'

2y tan ' +tan ~ 72

is done numerically in a straightforward manner,
taking advantage of the large y and q behavior of
Eqs. (64), (71), and (72) to improve convergence
and doing the q integration analytically for small q.
The M„(p, go(r, ); n(r, )) of Eq. (62) for ~, =2, 3, 4 as
compared to the Fock pa, rt, M„(p; n(r, )), as a func-
tion of p is plotted in Fig. 5. There are several
features of these curves that are worth noting. It
will become clear in the following that the nonlocal
effect on the FS distortion is strongly governed by
the range of the self-energy in p space (or equiva-
lently r space ). We wish to note that as expected
the full M„, including correlations, is significantly
smoother in p space than M„. Hence, calculations
which neglect correlations would totally misrepre-
sent the nonlocal effects.

Once the function M„(p, iLO(r, ); n(r, )) is tabulated
for an appropriate mesh of r„ then the left side of
Eq. (62) is found as a function of ro by finding the r,
corresponding to a specific ro through Eq. (59).

N
O

I

I

0

&I OO)
I

20'
I

40O &IIO&

FIG. 6. Hadial distortions for V& =3~&0. The solid
line is local result, the dash line ——is the nonlocal, and
the dotted line ~ ~ ~ is the uniform density approximation.

The function M„(p; G) is then determined by Fourier
transforming the above function in the variable ro.
This is done numerically using the Fillon' method,
and we note since the above is periodic in ro the
integration is only over a unit cell. The Fourier
transform of Eq. (65) [i.e. , v„,(G)] is again obtained
numerically in the same way.

With the function M„(p; G) and v„,(G) tabulated for
the different strengths of V, , we next evaluate Eq.
(61) for a, mesh of points k. The coefficients Ao(vk)
for the corresponding points of k are determined
from Eqs. (68) and (69) a.nd the sum over G and G
is performed. Eq. (56) is then solved for the non-
local energies E„g and the corresponding wave func-
tions P„„-(r) [Eq. (55)] with c„-„given by Eq. (70).

For each k the nonlocal E,g is evaluated for three
k's closely spaced around the unperturbed Fermi
sphere, denoted by Ko (the corresponding Fermi
energy is co= 5 K20/2m). With the above results for
E~-„with X= 1 (lowest nonlocal band) and („-„with
v = 1 (lowest local band) the loca.l and nonlocal radial
distortions are determined in the usual way by
finding a surface of constant energy (i. e. , E= p)
which encloses the correct volume in k space.

The resulting radial distortions, in the (001)
plane, for V&/to =Q q,~ &

and I and Ko = 0. 8w/a cor-
responding to the local and nonlocal theories are
exhibited in Figs. 6, 7, and 8. As clearly seen the
nonlocal effects significantly reduce the radial dis-
tortions for the three V,'s.

An interesting feature of the calculation is that
while the radial distortions are reduced by more
than a factor of 2, the corresponding nonlocal wave
functions [Eq. (55) with X=1] change much less. ln
other words, in Eq. (55) for A = 1, V, / cog ,3
I C2(Xk)1~0. 05 and I C„(Hc)1~0.01 for v & 3. (We
will return to the implication of the above at the
end of this section. ) We also note that this implies
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6 x IO

O

I

0

5x IO

& 4x IO

&IOO)

I

204
I

404 &I IO)

3 x IO-a

FIG. 7. Radial distortions for Vf g~p See Fig. 6.
2 x IO

&IOO)

l

20 &IIO)

Q
o O

I

&IOO)

I

20 &I IO)

FIG. 8. Badly distortions for Vi=32 ~0. See Fig. 6.

that the diagonal matrix element of Eqs. (5f) [i.e. ,
H»(k}] gives Eg to -90% accuracy. Finally the

nonlocal theory increases the energy separation at
the FS (Ez, —8»} by -15% over the local theory.
We however wish to stress that our calculations
have been formally restricted to 8 = p, and are not

strictly applicable to the calculation of the higher

energy state (Ec p,).
Although the C„(lk), v ~ 2 are small, in some

phenomena the admixture of waves e""' ' ', 640
play a crucial role (e. g. , interband optical absorp-

tion). Thus it is worthwhile to summarize the
changes in two typical examples:

For k = Kz(1, 0, 0), [G = (2w/a)(- 1, 0, 0) in the fol-
lowing],

4e~(r) =o 941k&+0. 31lk+G &, (73a)

y2f(r) =- o. » Ik&+0. 94I&+G &, ('73b)

and C,(lk)=0. 998, Cz(lk) = —0. 05. Therefore

fir(r) =0 95lk&+0 26lk+C), (74)

and we see that the coefficient of Ik+G) has been
reduced by -15%. For k = Ko(-,

'
v 3, —,', 0)

Pg(r) =0. 96lk) +0.22l k+6),

&2f(r) =-0.22 lk&+o. 96lk+G &,

(V5a)

(75b)

and C,(lk) = 0. 999, C~(lk) = —0. 023. Therefore,

gg(r} =0.96lk)+0. 20lk+G), (V6)

a reduction of 10% in the coefficient of Ik+G).
Another question of interest is the importance of

including the proper density n(ro) in Eg. (62). To
estimate it we replace n(ro) by the mean (uniform)
density for r, = 3 in the V, =~ &o example. The ap-
propriate A5(vk), however, are maintained in eval-
uating Eq. (61). The consequence, of course, is
that only G = G enters in M„and v„of Eg. (61).
The resulting local and nonlocal radial distortions
are given in Fig. 6. The maximum density varia-
tion, which occurs at the center of the cell, is of

the order of 150$f). From Fig. 6, it can be seen
that the nonlocal effects are well represented by
this approximation, (within 15% at the maximum

radial distortion). This gives us confidence that
nonlocal gradient term effects (e.g. , a[n] of Eq.

FIG. 9. Uniform density approximation for ($&&, Vz P&g)/

pp = F (e), see text, Eq. (77).
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(35)) will not drastically change our conclusions.
The calculation of the radial distortions are

masked by a large number of steps and details.
We wish to next produce a qualitative argument for
the reduction in the radial distortions due to non-
local effects.

If we use the uniform density approximation in
the left-hand side of Eq. (60) and noting that M„(p,
y,„(no); no) is a monotonically decreasing function of

p, then for p & X„M„(p,p„(n,); no) & v„(no). Next,
recognizing that the effect of v and v &1 is small,
and then realizing that a major contribution to Eq.
(67) comes from the coefficient A6(vk) (v =1) for
Ik- 6 l minimum, it is easy to see that for R closest
to the zone boundary Eq. (61) is greatest (and posi-
tive). As k moves away from the zone (with )% )

= E0)
it becomes smaQer, Such an angular dependence of
Eq. (61) added to the local energy &„, (v = 1), can be
seen to reduce the variation in energy and hence re-
duce the radial distortions. This effect is shown in
Fig. 9, where the function

G=(2w/a)(-1, 0, 0) and (2m/a)(0, -1,0), is plotted
for k in the (001) plane as a function of angle 8 for

x, =2, 3, and 4, V&/co=I. The variation of I'(8) is
dominated by the changes in Ao(lk) as k moves away
from the zone boundary [see Eqs. (73a) and (75a)].
It corresponds to =60% of the full angular variation
of Eq. (61). It is worth noting that the above argu-
ment suggests that the reduction in the radial dis-
tortions is not restricted to M„ in the RPA, but will
also occur for the full M„, although the amount of
reduction could change. It also strongly suggests
that the above effect will occur in at least simple
monovalent metals. We wish to emphasize that for
the actual determination of the size of the effect the
above qualitative arguments are not sufficient. A

full solution, as discussed earlier, should be car-
ried out.

Finally we wish to note that the calculated changes
in the radial distortions in the nonlocal theory are
much larger than the changes in the corresponding
wave functions. This may have important implica-
tions on procedures which attempt to correlate FS
data with other phenomena. For example, distor-
tions of the FS are used to determine wave functions
in the vicinity of the FS via phase shifts or pseudo-
potentials. These wave functions are then used to
theoretically correlate a number of phenomena.
The above suggests that these methods may result
in significant inaccuracies.
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