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Anderson-Griineisen parameter 8 of some hexagonal metals and Mgo from third-order
elastic-constant data

R. Ramji Rao*
Institute of Physics of Condensed Matter. University of Geneva, Geneva, Switzerland
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A simple procedure is described to calculate the Anderson-Gruneisen parameter 8 from the third-order
elastic constants of a crystal and is used to evaluate the same for nine hexagonal metals and for the
cubic magnesium oxide (MgO). In all the crystals, with the exception of beryllium, the relation 8 = 2y
is very nearly satisfied. The relevance of these calculations to the anharmonicity in these crystals is
discussed. Anderson's theory has been used to explain the temperature dependence of the bulk modulus
of the hexagonal metals magnesium, zinc, cadmium, and beryllium and the results are compared with

experimental values.

I. INTRODUCTION

Nachtman' et al. suggested that an equation of
the form

y =y, —b, T e-'0"
represents the variation of Young's modulus with

temperature, for several oxides. y and y0 are the
Young's moduli at any temperature T, and absolute
zero temperature, respectively. „b, and T0 are two

empirical parameters characteristic of the solid.
Anderson' gave physical interpretation to these
constants occurring in the %achtman equation by
considering the corresponding equation for the
adiabatic bulk modulus Bs, viz. ,

Bs = Boo bTe o~ (1.2)

Anderson' showed that the constant b is given by

From theoretica1 considerations Anderson' de-
rived a relationship which gives the temperature
dependence of the bulk modulus as a function of
the specific heat and atomic volume,

dBs ~C

dT V
(1.7)

5= Q3m+s)+2 —y . (1.8)

Chang, ' entirely from thermodynamical considera-
tions, the Gruneisen equation of state of solids,
and assuming that the ratio C„/C~ is independent
of temperature, showed that 5 is related to the
pressure dependence of the bulk modulus as

(1.9}

where V is the atomic volume. Using the Mie-
Gruneisen equation-of-state and the Born potential,
Anderson' showed that

1 8 lnBs (1.5}

Following Chang, ' we shall call 5 the Anderson-
Gruneisen parameter. Here e is the coefficient of
thermal volume expansion, 8 is the gas constant,
and 8~ is the bulk modulus at absolute zero and
one atmosphere. C~ is the specific heat at con-
stant pressure. The constant 5 was first intro-
duced by Griineisen, ' and Eq. (1.5) was derived by
him for the case of the Born potential (or the Mie
potential)

4 =-8/V ~'+B/V" ~' .

Here y is the Gruneisen parameter given by

y = a VB~/C~ .

V0 is the specific volume per atom at absolute zero
and 5 is an important physical constant (analogous
to ibe Griineisen constant) independent of tempera-
ture and is given by

where B~ is the isotherma1 bulk modulus. Assum-
ing the Dugdale and MacDonald' relationship be-
tween y and the change of compressibility of a
solid with volume, Chang' also showed that

e=2y .
Once the value of 5 is known it can be used to pre-
dict the bulk modulus of a solid as a function of
temperature by integrating Eq. (1.7) and writing
Bs as

ln particular, Eq. (1.11}is useful to predict tbe
data in regions where direct experiment is difficult.

The object of the present paper is to present a
simple method for calculating the Anderson-
Gruneisen parameter 5 of a crystal from its mea-
sured third-order elastic-(TOE) constant data,
and it is applied to the evaluation of the 5 of nine
hexagonal metals and also the cubic MgO, the first
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solid for which Anderson' evaluated 5. Also the
temperature dependence of the bulk modulus of
magnesium, zinc, cadmium and beryllium is cal-
culated from Anderson's theory using the 5 values
obtained from their third-order elastic-constants
data. Finally a comparison is made between the
calculated values of I3~ and those obtained from
the measured elastic constants of these metals.

Cll Cll g( Cll 12 111 112)

t( Cll 2C13 C113)I

C,'2 = C,2+rl(c„, +2C„2—C222+2C»)

$( C12 C123) 01

C 3—

C33C33+li(4C» —2C33+2C,33)

+ $(5C33+C333) .

(2.1)

II. CALCULATION OF 5 FROM TOE CONSTANT DATA

A. hcp solids

We will consider the hcp solids first. Ramji Rao
and Srinivasan' derived the expressions for the
pressure derivatives of the second-order elastic
(SOE) constants of a hexagonal crystal in terms of
its TOE constants, using Murnaghan's finitestrain
elasticity theory. Brugger' also presented exten-
sive tables of d(p2202)/dp for various crystal sys-
tems. The final expressions for the effective
elastic constants are given here for convenience:

and

(2C„—C„-C„)p
(Cll + C 3 C13

2

(2 2)

The bulk modulus of the strained hexagonal crys-
tal is given by

where the C,', are given by (2.1).
8 can now be obtained from Eq. (2.3) and is given

by the expression

dB'
1 = -1+ C,~

—C3s
dp (C„+C„)C„-2C'„

[2 ( Cll1 + 6C112 C113 + 123

+2C133 2C222+ 8C„+8C» + 4C» - 2C33}]

+
2Ci3- Cxz C

(C„+Cl, ) „—2C13

'[2 (2C113+2C123 133 333

+ 8C» —2C» —2C» + 8C33)l . (2.4)

Using Eq. (2.4) the 6 values are calculated for nine
hexagonal metals and are given in Table Q.

Here g is the Lagrangian strain in the basal plane
and ( is the longitudinal strain along the hexagonal
axis. In terms of the hydrostatic pressure p, g
and $ are given by

(C„-C„)P
12) 33 13

TABLE I. References for the SOE and TOE constants
data {at room temperature).

B. Cubic crystals

Crystal

Gd

MgO

References for SOE
and TOE data.

Slutsky and Garland {Ref. 12)
Naimon {Ref. 13)
Srinivasan and Ramji Rao {Ref. 14)
Silversmith and Averbach {Ref. 15)
Srinivasan and Ramji Rao {Ref. 14)
Alers and Neighbours {Ref. 16)
Swartz and Elbaum {Ref. 17)
Srinivasan and Ramji Rao {Ref. 14)
Garl. and and Sil,verman {Ref. 18)
Menon and R~ji Rao {Ref. 19)
Fisher, Manghnani, and Sokolowski {Ref. 20)
Menon and Ramji Rao {Ref. 21)
Fisher and Renken {Ref. 22)
Ramji Rao and Menon {Ref. 23)
Fisher, Manghnani, and Kikuta {Ref. 24)
Ramji Rao and Menon {Ref. 25)
Fisher, Manghnani, and Kikuta {Ref. 24)
Ramji Rao and Menon {Ref. 26)
Fisher, Manglmani, and Kikuta {Ref. 24)
Ramji Rao and Menon Q.ef. 27)
Bogardus {Ref. 10)

( 111 + 112 + Cll + C12) &

C,2 —C„+ (2C„2+C123 C„-C,2) .
(2.8)

Here 2=-3p/(C»+2C») is the uniform volume
strain under a hydrostatic pressure p. The bulk
modulus of the strained cubic crystal is given by

B' = 3~ (C,', + 2C»)

and

(2.8)

)
(C„,+ 8C„,+2C„,) . (2.&)

1

3 C„+2C,2

Equation (2.V) is used to calculate the tl of MgO.

Birch' derived the expressions for the effective
elastic constants of a strained cubic crystal under
a hydrostatic pressure p using the finite strain
theory and these are given (in Bogardus's" paper
also) here using Brugger's" notation:
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TABLE II. Values of & and y.

Crystal

Be
Zn

Cd
Zr

Er

MgO

~ calcul. ated from Eq. (2.4)
for hcp metals and from Eq. 76
(2.7) for MgO

{a) 1.66 [using Naimon' s (Ref. 13)
TOE values]
{b}2.69 [using theoretical
TOE values (Ref. 14)]
4.08
(a) 4.00 [using Svartz and
Elbaum's TOE values {Ref. 17)]
(b) 4.32 [using theoretical
TOE values {Ref. 14))
4.20
1.56

2.21

1.33

1.44

2.09

2.83{present value)
2.86 [Chang (H,ef. 3)]

y experimental values
are taken from %hite {Ref. 28),
Gschneidner {Ref. 29), and
Anderson {Ref. 2)

1.50 {Ref. 28)

1.15

2.03

2.28
0.71
0.83
1.28
1.18
0.52
0.55
0.78
0.68
1.01
0.88

1.53 {Ref. 2)

III. RESULTS AND DISCUSSION

References for the SOE and TOE constant data
for the nine hexagonal metals and the cubic MgO
are given in Table I, but the detailed values are
not given here so as to conserve space. The cal-
culated values of 5 and the Gruneisen y for these
ten crystals are presented in Table II.

In magnesium and zinc the 5 value is calculated
using the experimental TOE constants of Naimon, "
and Swartz and Elbaum, " respectively, and also
from the theoretical TOE constants calculated by
Srinivasan and Ramji Rao." For the remaining
seven hcp metals 5 has been calculated from the
theoretical TOE constants. In zinc, the values of

calculated from the experimental and theoretical
TOE constants are very nearly the same. In mag-
nesium, the value of 5 obtained from the theoreti-
cal TOE constants is larger than that obtained
from the experimental TOE constants and is nearer
to the 2y value. In all the hcp metals worked out
in this paper, except magnesium (with experi-
mental TOE constants) and beryllium, the relation
5 =2y is nearly satisfied. Perhaps it would be
worthwhile to again look into the measured TOE
constants of magnesium and reevaluate the TOE
constants of beryllium using a larger number of
anharmonic parameters (only three were used).
Considering the 5 values of the heavy rare-earth
metals Gd, Dy, and Er, one finds that Gd and Dy

TABLE III. Values of the constants of Mg, Zn, Cd,
and Be used in the present calculations.

Metal

Debye
Temperature

0~ Vp

Density
P 8 ppln10 ' dyn/cm~

Cd
Be

330 'K

231 'K

160 'K
1367 K

13.97

9.16

12.99
4.88

1.738

7.133

8.650
1.848

(i)3.66(for 6 = 2.69)
(ii)3.61(for 5 = 1.66)
(i)8.03(for 4 = 4.32)

(ii) 7.99(for 6 = 4.0)
6.26

11.55

are anharmonic to the same degree, while Er ap-
pears to be more anharmonic. Zinc and cadmium
have high values of 6 and thus are the extreme ex-
amples of anisotropy among the hcp metals. The
d values of hcp metals (with the exception of Be),
whose C/a value is less than the ideal (1.633), are
smaller than those whose C/a ratio is greater than
1.633. The experimental SOE constants data of
magnesium, "zinc, "cadmium, "and beryllium"
have been used to evaluate the bulk modulus of
these metals at various temperatures and these
are compared with the calculated values. Theo-
retical curves showing the variation of the bulk
modulus of these metals with temperature have
been obtained from Eg. (1.11). Jo C„dT is the in-
ternal energy content of a solid at any temperature
relative to that at absolute zero temperature, and
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FIG. 1. Variation of the bulk modulus of Mg, Cd, Zn,
and Be with temperature. y, experimental points.

can be tabulated" as a function of temperature pro-
vided that the characteristic temperature is known.
In the present calculations the internal energy con-
tent of these metals is obtained by treating them
as Debye solids. The values of the parameters
V0, p, 8~, and B~ for the hexagonal metals mag-

nesium, zinc, cadmium, and beryllium are given
in Table III. The values of V0, p, and 9D corre-
spond to those at room temperature. The varia-
tion of the bulk modulus of these metals with tem-
perature is shown in Fig. 1. The agreement is
good between the calculated B~ values and those
obtained from the measured elastic constants at
various temperatures for these four metals. It
may be pointed out that Smith and Arbogast" men-
tion in their paper that the temperature dependence
of C», and in particular C», for beryllium is of
questionable significance. So the B~ values of
beryllium obtained from these elastic constants
data are not accurate. The calculated values of
B~ for magnesium with 6 =2.69 agree well with the
experimental data, while those with 5 =1.66 are
lower than the measured values.

In the cubic magnesium oxide the 5 value is cal-
culated from the measured SOE and TOE constants
by Bogardus' and is in good agreement with the
value obtained by Chang from the pressure de-
pendence of the bulk modulus. Also in this com-
pound the relation 6=2y is only approximately
true. Further, Chang showed that the value 2.86
for 5 yields values of B& for MgOthat are in goodac-
cordance with experimental data. In conclusion,
it may be said that we have a simple and unam-
biguous method for calculating the Anderson-
Gruneisen parameter 5 of a material from its TOE
constants data.
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