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Ab initio calculation of the pressure-induced A4 ~ A 5 ~ A2(distorted) ~ A 3 phase
transitions in tin
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The pressure-induced phase transitions in tin from the diamond (A4) to the white-tin (A 5) and
further to a simple face-centered-tetragonal structure continuously deforming upon higher compression
towards a body-centered-cubic (A 2) structure are calculated by means of a first-principles

pseudopotential method without adjustable parameters. The critical compressions for the phase changes
as weil as the structural details of the tetragonal high-pressure modifications are predicted with good
accuracy. For very high compression a transition to the hexagonal-close-packed (A 3) structure is

predicted.

I. INTRODUCTION

Pseudopotential and model-potential methods
have been applied with considerable success to
the problem of the relative energies of different
crystal structures of nontransition metals. ' ' The
method has also been extended to calculate the
temperature-induced martensitic phase transitions
in Li and Na. 4 The application to pressure-in-
duced phase changes has been less successful.
Only an ad Roc adjustment of the model potential
allowed Inglesfield' to account for the transition
from the orthorhombic (A11) GaI phase to the
tetragonal (A6) Ga D phase (here and later we
shall use the structure notation proposed in the
Strukturbericht'). The p, T phase diagram of Sr
has been calculated by Animalu' and by Moriarty. '
Moriarty's calculation, based on Harrison's' first-
principles pseudopotential formalism including
d-band hybridization, fails to obtain the pressure-
induced A1-A2 transformation. Animalu achieved
qualitative agreement with experiment, but unfor-
tunately his somewhat approximate calcu1.ation
(including uncertain modifications in the model
potential) has been disproved by more fundamen-
tal calculations using the same type of potentials,
yielding AS as the stable structure of Ca and Sr
at zero temperature and pressure io Weaire an
Inglesfield" have speculated about possible rea-
sons for the tetragonal distortion of the SnII (A6)
structure, without attempting numerical calcula-
tions. Thus the pressure-induced phase changes
constitute an open challenge to pseudopotential
theory.

The form of Sn which is stable at zero tempera-
ture and pressure is the semimetal form, grey
tin (u-sn), and has the cubic diamond structure
(A4). Under pressure it transforms to the metal-
lic white-tin (P -Sn, A5) structure, which is re-
lated to the diamond structure by a large compres-

sion along a cubic axis. The Q. -P phase boundary
at low temperatures has been investigated by
Nikolaev and co-workers. ~ At still greater pres-
sures, there is a transition to a face-centered-
tetragonal (A6) structure, the axial ratio being
about 0.65 "'4 [The face-centered-tetragonal
structure is equivalent to a body-centered-tetra-
gonal structure with axial ratio (c/a)„, = (c/a)„,
x & 2 ]. According to Musgrave, " the atoms will
be located at the lattice points of a fct (A6) lattice
if one selects appropriate vibrational modes of the
A5 structure and considers the positions of the
atoms at the moment of maximum displacement.
The axial ratio of this hypothetical structure is c/a
= 0.54. The structural transitions parallel a change
from an "ideal semimeta1" to apurely metallic behav-
ior. The available experimental information on the

P, T phase diagram of Sn is compiled in Fig. 1, the
n-P and P-II phase boundaries being extrapolated
to the absolute zero of temperature.

II. Xe-PSEUDOPOTENTIAL THEORY

The present calculation is based upon Harrison's
first-principles pseudopotential formalism. In
this method, the pseudopotential 5' is obtained by
an exact transformation of the electron-ion poten-
tial V. The pseudopotential is optimized in the
sense that the pseudowave function is smooth and
that a perturbation series in W has optimal con-
vergence. The difficult point is the construction
of the convenient electron-ion potential V. Al-
though sometimes treated as if any reasonable ap-
proximation were good enough, the nature of this
potential (and especially of the core-conduction-
band exchange contribution to it} in the outer re-
gions, where it overlaps its neighbors, can have
a significant effect on the over-all electronic
structure of the crystal. In a recently presented
series of papers, ""we have studied the use of

10 4151



4j 52 J. HAFNER

the Xe exchange and correlation approximation"
for the core-core and the conduction-band-core
interactions within the framework of a pseudopo-
tential theory. It was shown that using the opti-
mized exchange parameter e„&of the free atom"
for the core-core exchange and a smaller parame-
ter e&, (-', for the conduction-band-core exchange
[accounting for the interelectronic nature of this
interaction and the overestimate of the range of
the exchange interaction in the Xa method (cf.
Refs. 23 and 20)], good agreement is obtained for
the structural and cohesive properties of the
simple metals from Li to In. For Sn these cal-
culations imply a value of a&, =0.50 which will be
used here.

Exchange and correlation among the conduction
electrons are taken into account by using a gen-
eralized dielectric function in the random-phase
approximation (RPA}

e(q) =I+[I -G(q)][a~"(q) —1].
There has been much discussion about the conven-
ient form of the exchange and correlation correc-
tion G(q). From our foregoing calculations' we
know that the exact form of this correction is only
moderately important for structural and cohesive
properties. From our phonon calculations~ it
appears that a Hubbard-Sham-type correction
function, adjusted to fit the compressibility sum
rule, ~ is most convenient in simple metals,
though other forms, e.g. , that proposed by Singwi
and co-workers, "are supposed to have a better
theoretical background. We shall not contribute
to lasting discussion. The correct G(q) will prob-
ably lie between the Hubbard-StuLm (HS) and the
Singwi-S|olander- Tosi-Land (SSTL) correction
function. En order to be able to investigate possible
influences coming from the conduction-electron
exchange and correlation, we use both G (q) func-
tions in our work. The total energy of the system
may than be calculated using the conventional sec-
ond-order perturbation theory. s'

This approach might be criticized in tv' points:
(i) In metals with valence Z~4, higher-order per-
turbation terms are generally expected to yield
non-negligible contributions to the bonding energy.
However, in the present status of the theory,
there is no possibility of going beyond the second
order in a calculation which retains all the non-
locality and the exchange and correlation contribu-
tions to the pseudopotential. In multivalent ele-
ments these aspects are certainly equally, if not
more, important than higher-order corrections.
It is also worthwhile to compare the perturbation
parameter w(q)/E» of Sn [where the orthogonalised-
plane-wave (OPW) form factor cu(q) is defined by
~(q) =&kl~lk+g), Ikl=lk+gl=4» for q «2k;

III. STRUCTURAL STABILITY

We have calculated the binding energy of tin at
the observed atomic volume of white tin (0,
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FIG. 1. P, T phase diagram of tin. O.-P phase bound-
ary: Nikolaev et al. (Ref. 12);P-II phase boundary:
0, 3arnett et al. (Ref. 13), X, Kennedy and Newton
(Ref. 16), +, Stager et al. (Ref. 14); melting point:
Gschneider (Ref. 1V); II-liquidus: 0, Dudley and Hall
(Ref. 18).

(-k ) II (k+ j) (backscattering) for q )20», and E»
is the Fermi energy]: gu(q)/E» «0 13.for p-Sn
(atomic volume 0, = 181.5 a.u.'), and «0.22 for
a-Sn (0, =230.6 a.u. ') for all wave-number lattice
vectors with nonsero structure factor S(q} with
the corresponding values for other metals:
su(q)/E»«0. 03 for Al (Al), «O. OV for Mg, «0.1'I
for Na, and «0.2V for Li (all three A3). It appears
that the neglect of higher-order terms is not a
very serious restriction for P-Sn, though more
important in the o. phase. It should also be
stressed that for strongly distorted structures
such as All (GaI), the perturbation parameter in-
creases to 0.35-0.4 in Sn. Such structures are
therefore definitely outside the scope of a pertur-
bation approach. (ii) We use a linear, and not a
covalent screening function in a-Sn. In the high-
pressure modifications, this approach is certain-
ly well justified and it represents the only possi-
bility to construct a single structure-independent
pseudopotential. We shall come back to this point
when we discuss the stability of the a phase in our
theoretical system.
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= 181.50 a.u.') and for six additional values of the
atomic radius r in the range between 0.85 and 1.15
times the observed radius ro in a tetragonally dis-
torted A4'structure [the axial ratio c/a was varied
over the range 0.25 to 4.0, i.e., including both
the A4 (c/a = 1) and the A5 (c/a =0.384) structures],
in the simple face-centered-tetragonal (A6) struc-
ture [0.3 &c/a &3.2, i.e., including the face-cen-
tered-cubic (Al, c/a =1) and the body-centered-
cubic (A2, c/a = I/N) structures], and in the hexa-
gonal-close-packed (A3) structure. It was nec-
essary to consider such large ranges of the axial
ratio to guarantee that the absolute minimum of

the axial ratio was included. However, it should not
be forgotten that for very strongly distorted struc-
tures (A4': c/a &3.0 or &0.3; A6: c/a&2. 2 or
&0.4) the perturbation parameter increases be-
yond 0.3 for lower electron densities (expanded
metal), and the second-order approach becomes
inapplicable. This restriction is more severe in
the A.6 structure than in the A4' lattice because
in the latter case, the structure factor S(g) van-
ishes for the shortest vector in the wave-number
lattice.

In Fig. 2(a) and 2(b) we represent the OP% form
factor w(q) defined above and the energy-wave-
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FIG. 2. OP% form factor
~(q) and energy-wave-
number characteristic E (q)
of tin for three different
atomic radii: dot-dashed
curve, r =0.9ro, solid
curves, ro (observed atomic
radius of white tin); dashed
curve, r =1.1r&. The dis-
tribution of the structura1
weight NStq) in the three
al1otropic modifications
is shown in the insets.

-8—

-30
-?0

I I

A5

A6

, IL

0 8.
— 10

- 10



4154 J. HAFNER 10

number characteristic E(q} calculated with the
Hubbard-Sham screening function for three differ-
ent values of the atomic radius, r =0.9, 1, and
1.1 times ro. The distribution of the structural
weight NS(q ) [defined as the structure factor S(q)
times the number of wave-number lattice points
with [g(=q] in the three different phases of tin is
indicated. From these figures we can draw a first
qualitative indication: when the metal is com-
pressed, the maximum in the characteristic is
shifted towards smaller values of q/k». There-
fore, the contributions to the binding energy of
the first shell of reciprocal lattice vectors in the
A4 lattice and of the first and second shells in the
A5 structure will be strongly reduced. The close-
packed structures become less unfavorable from
the point of view of the band-structure energy Eb,
and much more favorable from the aspect of the
electrostatic energy. In multivalent metals, how-
ever, the cancellation between electrostatic and
band-structure terms is so close that a full cal-
culation of the structural energies is necessary.

In Figs. 3(a)-3(f) we have plotted the structural
energy difference relative to the A4 structure in
the distorted A4' lattice as a function of the axial

ratio for atomic radii r = 0.85r„0.9r„0.95r„r„1.05r„and 1.1r,. The values of c/a which
define the A4 and A5 structures are indicated,
and the horizontal line represents the energy of
the A6 phase with axial ratio minimizing the en-
ergy. The solid lines refer to the results calcula-
ted with the Hubbard-Sham (HS) dielectric func-
tion, and the broken lines to those obtained with
the (SSTL}screening of Singwi et a/. The binding
energy is always stationary with respect to tetra-
gonal distortion in the diamond lattice. In the
strongly compressed metal, E has a local maxi-
mum for A4. When the crystal is expanded, this
maximum flattens, and in the case of the SSTL
screening it changes even in an absolute minimum.
In this case the indirect ion-electron-ion two-
body interaction is strong enough to stabilize the
diamond structure. In the HS approach, the in-
direct part of the interionic pair potential is more
effectively screened, and a very slight tendency
to a tetragonal distortion persists even at the
equilibrium volume of grey tin. For a complete
explanation of the A4 structure higher-order
terms have to be considered. Such an approach
would be more consistent than the use of a coval-
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FIG. 3. Structural energy difference relative to the diamond (A. 4) structure &E {in 10 2 By) in a tetragonally distorted
A4' lattice for different atomic radii {r=0.85&o-1.1t'o {ro is the observed atomic radius of white tin). Values of the
axial ratio c/a corresponding to the A4 and A 5 structures are indicated. The horizontal lines represent the relative
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lines refer to the results calculated with the Hubbard-Shem dielectric function, the broken lines to those calcuIated with
the one of Singwi et ul.
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FIG. 4. Variation of the electrostatic and band-
structure contributions to the binding energy in a
tetragonally distorted A 4' lattice as a function of the
axial ratio. (a) Ewald coefficient. E'b) Band-structure
energy Ebs for different atomic radii: dot-dashed curve,
r =0.9rp' solid curve, rp (observed atomic radius of
white tin); dashed curve, r =1.1rp.

ent screening function. For the present purpose-
the calculation of the pressux e-induced phase
transitions —it is acceptable to neglect the small
tendency to a tetragonal distortion, and the sec-
ond-order calculation is sufficient.

Independently of the compression, a local mini-
mum in the E(c/a) curves appears at c/a =0.365;
this is a bit below the observed axial ratio c/a
=0.384 of the P-Sn phase. A second minimum
exists for c/a& 1, its position and relative depth
depending strongly upon the atomic volume. At
r =1.1r„and 1.05r, the absolute minimum in the
energy occurs in the A4 structure (if we neglect
the small distortions); at r =r, and 0.95r, the A5
structure is the stable one. For r =0.9r, and
0.85r, the second minimum at c/a-2. 4-2.5 be-
comes of comparable and even greater depth, but
in this compression range a face-centered-tetra-
gonal and a hexagonal-close-packed structure,
respectively, are still lower in energy. Thus it
is evident that the theory is able to explain the
observed phase transitions.

Before discussing this point, we shall investi-
gate the stability of the different phases in further
detail. For this purpose we consider the electro-
static and band-structure contributions to the bind-
ing energy separately In Fi.g. 4(a) we represent
the Ewald coefficient of a tetragonally distorted
A4 lattice as a function of the axial ratio. The dia-

mond structure is seen to be very unfavorable
from the point of view of purely electrostatic in-
teractions; our calculated n „(A4)= —1.670856
confirms Harrison's' calculation. The Ewald co-
efficient is minimized for the white-tin structure,
being o, (A5) = —1.773118; a local minimum which
is only slightly smaller appears in the neighbor-
hood of the reciprocal value of the axial ratio
[c/a(A5) = 0.384], a (c/a = 2.6) = —1.77291'l. It
can be easily seen that these values of the axial
ratio are very close to those for which the nearest
and the next-nearest-neighbor shells in real space
coincide (c/a =0.365 and, respectively 2.45). The
minima in the Ewald coefficient therefore arise
from a higher effective coordination number.
That u is stationary in the A5 lattice is by no
means a contradiction to the result of Brovman
and Eagan, "who calculated imaginary Coulomb
frequencies for some branches. In fact the A5
structure is related to the A6 lattice through a
deformation corresponding to a particular super-
position of vibrationa1. modes, and the latter struc-
ture has a lower electrostatic energy. Therefore
the Coulomb frequencies of these modes have to
be imaginary. The band-structure energy [Fig.
4(b)] on the other side has a minimum in the dia-
mond lattice and maxima for c/a =0.384 and c/a
= 2.65, independent of the atomic volume. The
position of the minimum in the total energy there-
fore depends upon the balance between electro-
static and band-structure contributions. For r
& 1.1r„the minimum in the band-structure en-
ergy overcompensates the maximum in the elec-
trostatic energy, and A4 is the stable structure
of tin. When the crystal is compressed, the band-
structure energy decreases slowly, the depen-
dence upon the axial ratio remaining the same.
The electrostatic energy E., =Z*'a /r, on the
other side increases even faster than I/r, be-
cause of the growing effective valence Z*. For
r & ro it is the electrostatic part that dominates
the structural energy. For r =1.05r, the cancella-
tion is particularly close and neither the A4 nor
the A5 structure appear to be stable. However,
as we shall see later, this atomic radius lies in
the transition region between the n and the P
phase.

The same investigation has been performed for
the A6-type lattice. The variation of the Ewald
coefficient uE„with the axial ratio is well known
in principle; our results are presented in Fig.
5(a). Two minima appear for the Al and A2 struc-
tures, the latter being slightly deeper [a E„(A1)
= —1.791747, a E„(A2)= —1.791855; our results
exactly confirm Sholl's" calculation]. For c/a
& 1 and c/a ~1/&2, o. increases steeply. The
band-structure energy shows a quite different de-
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pendence upon the axial ratio [Fig. 5(b)]: E»
has its maximum value for a close-packed struc-
ture, the exact position depending upon the atomic
volume. For r =1.1r~ and xo, the A1 structure
has the maximum band-structure energy; for
r =0.9r, a second maximum appears for the A2
structure, and for a still greater compression
this is the absolute maximum. Here again, the
structural energy depends mainly upon the balance
between electrostatic and band-structure contribu-
tions [Figs. 6(a) to 6(f)]. For r ~0.95r, the band-
structure term dominates. At r = 1.0r, and 1.1r,
a very strongly distorted A6 lattice (c/a = 2.4)
even comes out to be energetically more favor-
able than the A4 structure. However, it has been
emphasized above that for such severely distorted
structures (c/a~ 2.2), the perturbation approach
breaks down, and the band-structure energy is
overestimated. No physical arguments may be
built upon this particular result. Qn the other
hand, the minimum appearing at c/a =0.4 to 0.6
is realistic. With increasing compression it
grows deeper and its position is shifted towards
greater values of the axial ratio. At r =0.9r, an
A6 structure with c/a =0.55 (in the HS approach}
and 0.50 (in the SSTL approximation} is the stable
structure. It is interesting to point out the near
coincidence between our calculated axial ratios
and that of the hypothetical structure considered
by Musgrave. " Although our work is not con-
cerned with the transformation mechanism, this
result certainly corroborates the ideas of Mus-
grave. For a still greater compression, the axial
ratio increa. ses continuously towards c/a =1/W2,
i.e., the structure changes without discontinuity
in the atomic volume into an A2-type structure.

At the same time, however, the close-packed
structures A1 and AS become increasingly favor-
able in the binding energy [cf. Figs. 6(e) and 6(f)
and Table I]. At r =0.85r, the A3 lattice has the
lowest energy. Therefore, a third pressure-in-
duced phase transition from a slightly distorted
body-centered-cubic (A2) to a hexagonal-close-
packed structure (A3) occurs in tin. Contrary to
the A4-A5 and A5-A6 (distorted A2) transfor-
mations, this phase change is not an electrostatic,
but a band-structure effect, since both close-
packed structures (Al, A3) have a higher Ewald
coefficient than the A2 lattice (o. (A3}= -1.79163).
The possible occurrence of such a phase transi-
tion has in fact.been predicted by Evdokimovaa'
on the basis of similarity considerations of the

P, T-phase diagrams of the group-IV elements
C, Si, Ge, Sn, and Pb. Our calculation repre-
sents the first theoretical confirmation of these
considerations.

The general principle underlying the sequence
of transformations A4-A5-A2 (distorted -A3
is the increase in coordination number and pack-
ing density (cf. Table 11). Within the framework
of our pseudopotential theory, this principle is
realized not by the increase of the electrostatic
contributions alone, but by the balance between
ionic and electronic terms. Section IV is devoted
to the calculation of the critical data for these
transitions.

IV. PHASE TRANSITIONS AND CRITICAL DATA

It is most simple to consider pressure-induced
phase changes in terms of the Gibbs free enthalpy
II=E+PQ —TS as a function of the pressure P.
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TABLE I. Energy differences relative to the A1 structure {in 10 3 Ry/ion) for different
atomic radii r, calculated with different dielectric functions.

0.90 0.95 1.00 1.05 1.10 1.15

HS

SSTL

A2
A3
A4
A5
A6~
(c/a)

A2
A3
A4
A5
A6
(c/a)

4.7
-14.5
280.5

2.6
1~ 7

(o.58)

5.0
-13.8
243.2

2.3
-5.7
(o.54)

-1.6
-6.0
151.3

741
-8.8
(o.55)

-1.5
-6.5

110.2
-13.1
-14.4

{0 50)

-4.7
-5.7
61.9

-26.1
-16.1

(o.5o)

-5.0
-6.0
16.6

-36.1
-23.5

{o.48)

7 43

-5.2
-3.4
37 42

-21.1
(o.47)

7 ~ 7
-5.7

-46.7
-50.5
-34.2

(o.44)

-9.1
4 6

-44.3
-42.4
-28.3

(0.45)

-9.9
-5.1

-86.7
-55.4
-40.8

(o.42)

~7 ]
-3.8

-69.4
-43.8
-31.8

(o.42)

-11.4
-4.3

-109.6
-56.1
-47.0

(o.4o)

-34.6
(o.4o)

-11.6
-3.5

-119.5
-53.7
-52.7

(o.38)

~The energy differences refer to the axial ratio minimizing the energy as given in the
parentheses.
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The interpolation techniques discussed in our pre-
vious papers' were used to join the computed
points (seven points have been calculated for each
structure) of the E(Q) curve by a smooth line. At
the absolute zero of temperature, the pressure
of the system is given by the volume derivative
of the energy, p = -sE/s Q, and the entropy con-
tribution to H vanishes. The enthalpy difference
at a given pressure P between two phases is re-
presented by the distance between the intersec-
tion points of two parallel tangents to the E(Q)
curves with the energy axis [cf. Figs. 7(a} and

7(b)]. A pressure-induced phase transition occurs
when the E(Q} curves belonging to two different
structures intersect. The transition will occur
between the two phases at the points where the
common tangent to the E(Q} curves for the two

phases touches the curves. " Our results, cal-
culated with the Hubbard-Sham screening, are
presented in Fig. 7(a}, and those calculated with
the Singwi-Sjolander -Tosi-Land dielectric func-
tion are shown in Fig. 7(b). The calculated equili-
brium atomic radius of o.-Sn is r,(a) =3.74(3.75)
a.u. , the binding energy is E&= —7.04(7.10) Ry.
(Here and later in this chapter, the first theoreti-
cal value refers to the Hubbard-Sham screening
function, and the second to that of Singwi et al. )

This compares very favorably with the experimen-
tal values r, (o.) = 3.80 a.u. , Es= —7.00 Ry, apart
from the SSTL result for the binding energy.
When the system is compressed, a phase transi-
tion occurs to the A5 structure, the atomic radius
of the P phase being r, (P) =3.58(3.48) a.u. (experi-
mental r, (P) =3.51 a.u. ). Taking the common-tan-
gent construction and differentiating both'E(Q)
curves, we calculate a critical pressure
p, (A4-A5) = 15(220) kbar. Extrapolating the a-P
phase boundary of Nikolaev et a/. "from 77 to O'K,
we deduce an experimental transition pressure of
approximately 12 kbar. On further compression,
a second phase transition occurs to the A6 struc-
ture, the axial ratio of the high-pressure phase
SnII being c/a =0.55(0.50} just after the phase
change. For the atomic radius of the SnII phase
we calculate r, (II) =3.20(3.15) a.u. From the com-
pression quoted by Barnett et a/. "we estimate an
experimental atomic radius of r,(II) =3.05 a.u.
Here again the agreement bebveen theory and ex-
periment is quite satisfying. However, if we pro-
ceed as above to calculate the critical pressure,
we obtain p,{AS-A6)= 850{900)kbar against an
experimental value of P, = 170 kbar by extrapolat-
ing the P-SnII-phase boundary data to the abso-
lute zero of temperature. For the high-pressure
A3 modification we obtain an atomic radius of
r, (A3) = 3.0 a.u. ; no attempt has been made to
calculate the critical pressure for this transition.

TABLE II. Coordination number c and packing factor
p for the different aBotropic modifications of tin.

Structure A4 A5 A2 AS, A1

0.34
6

0.535
8

0.680
12

0.740

No experimental investigation of metallic tin at
sufficiently high pressures is known up to now.

We are now to discuss the differences in our
critical data calculated with the two different
screening approaches and between theory and ex-
periment. For this purpose, we consider the
structural energy differences listed in Table I.
It can be seen that the energy differences between
the close-packed structures (Al, A3, and A2) are
only very moderately affected by the choice of a
dielectric function. On the other side, the energy
differences between the A4, A5 lattices and the
close-packed structures and between the A4 and
A5 phases are much greater when the SSTL func-
tion is used [cf. also Figs. 3(a)-3(f}]. No direct
comparison with experiment is possible, but we

may deduce the structural enthalpy differences
at zero pressure from our E(Q} curves as indi-
cated in Figs. 7(a) and 7(b). Our results are com-
piled in Table III together with the corresponding
experimental data. We see that the HS approach
yields a very good agreement for the enthalpy dif-
ference between the closely connected A4 and A5
structures, but overestimates the differences be-
tween these lattices and close-packed structures
such as A1. In the SSTL approximation, the dia-
mond lattice appears to be particularly favorable.
This leads to a much higher critical pressure for
the A4-A5 transition. The experimental enthalpy
differences bH(A4-A1), &H(A5 -Al} are rather
uncertain and offer no measure for the SnII-p-Sn
enthalpydifference. The realistic lattice spacings
for the Sn II phase obtained with our approach let
us suppose the our energy differences are quite cor-
rect. On the other hand, the critical pressure is
overestimated by a factor of 5 ~ This is mainly
due to a theoretical pressure-volume relation
which is only semiquantitatively correct. The
pressure-volume relation depends critically upon
the variation of the structure-independent contri-
bution E&, to the binding energy (the so-called free-
electron energy} with atomic volume, and this is
the contribution which is the least accurately
known. From our previous calculations' we know
that the pressure is generally overestimated. In
the case of tin an additional difficulty arises: For
the correlation energy of the homogeneous part
of the conduction-electron distribution, we use
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the Nozieres-Pines' formula. Now, for highly
compressed tin, the density parameter r, (r,
=rJZ'(') of the electron gas becomes smaller
than 2 a.u. For r, «2 a.u. we are the borderline
and even outside the applicability of the Nozieres-
Pines energy expression. The correlation energy
and the total energy are underestimated and again
the pressure is increased. Therefore the rela-
tively inaccurate transition pressure for P- Sn-
SnII is not to be attributed to a deficiency in our
structural energy calculation.

V. CONCLUSIONS

We have demonstrated that the phase changes
in tin can be largely understood using the Xn-
pseudopotential theory in terms of a delicate
balance between the electrostatic energy pre-
ferring a body-centered-cubic arrangement of the
ions, and the band-structure energy which favors
the diamond lattice and produces a distortion of
close-packed structures at lower and moderately
high compression, whereas for extremely high
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FIG. 7. Binding energy
8 as a function of the atom
atomic volume 0 for dif-
ferent structures: solid
curve, A4 (n-Sn); dashed
curve, A 5 (P-Sn) ~ dot-
dashed curve, A 6 (SnII);
dotted curve, A 1. The
common-tangent contruc-
tion for the pressure-
induced phase transitions
and the horizontal tangents
yielding the zero-pressure
enthalpy differences H are
indicated. (a) Results cal-
culated with the Hubbard-
Sham (HS) screening func-
tion (b) with the one of
Singwi et al. (SSTL).
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A5-A1 A4-A5

Theory

Experiment

HS 40.0
SSTL 85.0

5 9a,b, c

37.5
53.4
4 38

-2.5
-31.6
-1.6 'd

'B. Predel and W. Schermann, A ta Metall, . 19, 81
(1971}.

J. Lumsden, Thermodynamics of Alloys, Institute of
Metal, s Monograph Series Vol. 11 enstitute of Metals,
London, 1952).

O. Alpaut and Th. Heumann, Acta Metall. 13, 543
(1965}.

J. N. Bronsted, Z. Phys. Chem. (Leipz. ) 88, 479
(1914}.

TABLE ID. Structural enthalpy differences H (Ax-Ay}
=H(Ax) -H gy} at zero temperature and pressure (in Ry/
ion}.

tural transitions, though third-order terms might
be necessary to remove the remaining very small
instability of the diamond lattice against tetra-
gonal distortion.

%'e have made a reasonable attempt to minimize
the approximations underlying our theoretical ap-
proach, but uncertainties still persist. Uncertain-
ties in the exchange and correlation interactions
are largely responsible for the delative inaccur-
acy of our calculated critical pressures. Our use
of the P',3, approximation to the conduction-band-
core exchange potential has been justified by a
number of successful calculations, 3'" 20 but still
remains a somewhat uncertain approach. In

this connection, lattice dynamical calculations
are of interest. They should also contribute to
our understanding of the microscopic phase sta-
bility. Such calculations are in preparation.

pressures it favors the structures with maximum
packing density.

The phase transitions in tin provide a very sen-
sitive test for any pseudopotential and for the ap-
plicability of a second-order perturbation ap-
proach. A second-order calculation is sufficient
to reproduce the essential features of the struc-
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