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A novel theory of electronic tunneling between two semi-infinite systems separated by an insulating

barrier of finite width is developed. The theory based on Keldysh's perturbation theory for
nonequilibrium processes does not invoke the transfer-Hamiltonian formalism. The analysis is a
reasonably straightforward extension of the theory developed in the first paper of this series, dealing
with the abrupt junction (of zero width). The results for the abrupt junction are shown to correspond
to those of the finite junction in the zero-thickness limit. The general formalism is applied to the study

of effects of impurities, incorporated into the barrier, on the tunneling-current energy distribution. It is

shown that tunneling resonances may reflect "interfacial" as well as "atomic" impurity states localized
within the barrier. The general discussion is illustrated by somewhat more detailed analysis of two
common models for such impurities: the Anderson model for the localized resonant (impurity) state,
and the elementary 8-function pseudopotential. The entire formalism is developed so as to allow for
explicitly time-dependent potentials in the barrier region. This feature of the formalism is being applied
to a phenomenological analysis of inelastic tunneling associated with localized vibrational excitations in

the barrier region, i.e., the vibrating-impurity problem. This work will be reported separately. The
theory allows a clear separation between the normal tunneling and the so-called resonant and inelastic
channels. In the normal channel the energy density of tunneling current displays the expected
dependence on the product of the local densities of states in the right and left electrodes evaluated at
the interfaces. The other channels have a characteristically different dependence on these quantities, and
are inherently capable of producing a left-right asymmetry in the tunneling current. Besides opening the
new channels the (time-dependent) impurity potential also affects the normal channel by modifying the
elastic barrier transmissivity. An extension of the one-dimensional theory to three dimensions is being

developed.

I. INTRODUCTION

This is the second of a series of papers con-
cerned with the development of a many-body the-
ory of electronic tunneling between two semi-in-
finite systems separated by an insulating barrier
of finite width. The theory is based on a perturba-
tion theory for nonequilibrium processes, devel-
oped by Keldysh, ' and obviates the transfer-Ham-
iltonian formalism which is generally applied in
current analysis of tunneling phenomena. ' ' The
motivation for our work and our general approach
are discussed at length in the first paper of this
series, ' dealing with the abrupt junction (of zero
width). In the present paper we extend the theory
to include junctions of finite width. Furthermore,
we allow the potential in the barrier region to in-
clude an explicitly time-dependent term. The
time-dependent term may represent an external
modulation, or the pseudopotential for a vibrating
impurity. The formalism is applied in a discus-
sion of resonant tunneling across barriers con-
taining impurities. " Application to inelastic
tunneling across a barrier containing vibrating
impurities is considered in a separate publication.

The formal analysis, while somewhat lengthy,
is a fairly obvious extension of the work reported

in I.' This analysis is presented in Secs. II and

III, and is essentially self-contained. However,
to avoid duplication of the extensive discussion in
I, verbal arguments are kept to a bare minimum.

In Sec. II, we determine the single-particle
thermal-equilibrium Green's function for the en-
tire junction, G, in terms of the thermal-equilib-
rium "uncoupled Green's functions" for the three
uncoupled subregions of the junction g . The
pseudo-Hamiltonian which "couples" the subre-
gions and hence determines G in terms of g is
also derived.

In Sec. III, the tunneling current is expressed
in terms of the correlation function G' which has
to satisfy Keldysh's matrix Dyson equation, relat-
ing it to the uncoupled Qreen's functions g„. The
latter (matrix) equation is used to express the
tunneling current in a form which manifestly re-
duces to the corresponding expression for the
abrupt static junction, when both the spatial width
and the time-dependent component of the potential
in the barrier tend to zero.

In Sec. IV the general expression for the tunnel-
ing current in a finite time-dependent junction is
compared with the result derived in I. The current
is shown to include two contributions. The first,
or "normal, " channel can be expressed in a form
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similar to that deduced by means of the transfer-
Hamiltonian formalism, provided that the left and
right densities of states are interpreted as appro-
priate "local" densities of states. However, in
contrast to the transfer-Hamiltonian formalism,
our derivation leads to an explicit expression for
the energy-dependent "matrix element. " The
second, "resonant and inelastic" channel exhibits
a characteristic dependence on the local densities
of states in the electrodes which cannot be obtained
from the transfer Hamiltonian. This channel
"closes" when the density of states vanishes in
the static barrier. Thus, it does not contribute
to the current across the static junction of zero
width.

In Sec. V we apply our formal results to discuss
resonant tunneling. Specifically we consider the
effect of atomic impurities within the barrier on
the "matrix element" and the resonant enhance-
ment of the current in the normal channel, as well
as the effect of the impurity density of states on
the resonant channel, In this analysis the impurity
is represented by a static pseudopotential. The
"uncoupled" Green's function for the perturbed
barrier is calculated within an approximation cor-
responding to an Anderson model for the localized
impurity states, in which we neglect the Coulomb
repulsion between two electrons at the impurity. ""

Readers who wish to avoid the detailed, occasion-
ally involved algebra may find the discussion in
Sec. IV and subsectm. ons VA and VB adequate.

In Sec. VI we present a summary of our results.

neling current. Thus, the uncoupled Green's
functions satisfy the equations

[I&a-X (x')]g (x, x' u&)=b(x —x') a=I B 8
(2.2)

At the interfaces, we impose general homoge-
neous (and self-adjoint) boundary conditions,

8
ar + pr —gr (x, x & Ir' (d) i -I = 0

8
+L+P'L I gL + ~y +

y
+ x'-"L8x

8
~, +4—ga(x, x"&; ~)l.=a =o

8
ax+Pa i ga(»~at, »; ~)~x'=a

8
8a „+P „—, g (x, I.&x'&8; e)i„„=0

8
&I. g + pr ~, g~ I & x& R, x'; (u

The (homogeneous} boundary conditions imposed
on gJ g at + ~ are

8
lim a +b —gz (x, x'&I.;~) =0

8
= jim a +b, g~(x& I., x'; (g))

II. EQUILIBRIUM GREEN'S FUNCTION

A. Definitions
8

lim a++b, —gz(x, x'&8; &o}=0
(2.4)

In this section we shall compute the single-parti-
cle Green's function for a one-dimensional junction
of arbitrary width in the absence of an external po-
tential in terms of the Green's functions of the
three uncoupled subregions: left electrode, bar-
rier, right electrode; these are defined by writing
the entire Hamiltonian in the form indicated below:

8
lim a, +b, —, g„(x&R, »'; &u) .

The Green's function for the entire junction is
defined by

X=e(-(x-f))X,+e(»-L, )e( (x-ft))X, [Ku —X(x)]G(x, x'; &u) = 5(x —x') (2.5)

+e(x-B)XR . (2.1)

The Hamiltonians &„u= I-, B,8, characterize the
uncoupled subregions. The Green's functions for
these subregions g will be referred to as "uncou-
pled" Green's functions. These are required, as
in I, to satisfy general homogenous boundary con-
ditions at the interfaces and at infinity. As in I,
we shall ultimately specialize these boundary con-
ditions, and require the normal derivatives to van-
ish at the interfaces, in order to obtain the pre-
ferred "transfer -:Hamiltonian-like" form for the tun-

and satisfies at +~ the boundary conditions im-
posed respectively on g~~. Here it should be re-
called that the "out-going-wave" boundary condi-
tions are a particular case of the general homo-
geneous boundary conditions.

B. Calculation of the equilibrium Green's function

An application of Green's theorem over the ap-
propriate domains leads to the following expres-
sion for G(x, x'; ~) in terms of the "uncoupled"
Green's functions g„:
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G(x, x'; (u) =gi(x, x'; (u)6(-x'+L)

g2 8 8
g, (», »„ ), (»„»', ) — ]); (», », ; ) ] G(*„»'; t»)) , = -, » I -.

G(x, x', (u) =gs (x, x'; (())6(x'- L)6(-x'+ R)

S~ x~=g

gu(x, x„.(u), G(x„x ', ~) [gs(x, x„(u)]G(x„x'; (u)
, x =I1

L ~x&B (2 8)

G(», x'; (u) =g„(x,x'; (u)6(x' R)-
I

~ z, (*,*,; ) o(»„»', )-. ]»(»;,»)]t:,(»„*'; )) "1

An alternative representation of G(x, x', (u) is

G(x, »'; (u) =g (x, x'; (u)6(- x+ L)

Ct d
+ G(x, x'„(u) g (xi, x'; (u) — [G(x, x,; (u)]g (x„x',(u), x'~ L

x j

G(», x', (u) =gu (x, x', (u)6(x —L}6(-x +R)

d 8 xg= B
+ G(x, x„(u) g (x„x'; (u) — [G(x, x„ur)]g (x„x',(u), L ~»'~R

1

(2.7)

G(x, x'; (u) =g (x, x'; (u)6(x —R)

S' i9 a
G(x, »„~) g„(x„x';(u) — [G(x, x„(u)]g„(x„x';(u; x'~ R .

At x =&', all Green's functions are continuous;
their first derivatives display at this point a
characteristic discontinuity,

a x=x'+ x'=x+—G(x x' (u)! = = G(x x' u)!
x =x

(2.8)

and their mixed second derivative is again contin-
uous. One easily verifies that a substitution of

Eqs. (2.7) into Eqs. (2.8}leads to an expression
of G(x, x'; (u) in terms of its "boundary values, "
i.e., G and its first derivative evaluated with both
arguments located at the interfaces. These boun-
ary values have to be determined self-consistent-
ly. In the present case it is simplest to impose
Eqs. (2.8) at the interfaces. In particular, when-
ever the coefficients P~ „in Eqs. (2.3) do not van-
ish, the following matrix equations hold:

/G(L, L; (u) G(I., R; (u) )
!

~G(R, L; (u) G(R, R; (u))

(g~(L, L; (u) 0 ]gl, (L, L;(u)+ge(L, L; (u)

gz(R, R; (u)j( gs (R, I,; (u)

]]g (L, L;(u) g (L, R;(u) gz, (L, I,;(u)+g (I,, L;(u)

gaR, L;e g~ R, R;co g~ R, I,;co

0

g„(R,R; (u}j .

g(] (L, R; (u) ) ' (gs(L, L; (u) gu(L, R; (u)]]

g„(R,R;(u)+gs(R, R, (u)) Igs(R, L, (u) g( u, RR(u))

gs(L, R;~) ) ' fg~(L, L;~)

g„(R,R; (u)+gu(R, R; (u)j ]] 0

(2.9}
Equations (2.9) apply in particular when the coefficients al z in Eqs. (2.3) vanish, i.e., when the normal
derivatives of the uncoupled Green's functions g vanish at the interfaces. In that case the following equa-
tion applies:
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(I(L, L;~) I'(L, R;~)i (&,(L, L;~)+g, (L, L;~)
I'A, L;cu I'A, B;e 8 -g R, t.;(d

—g (L, R; (2))

gs(R, R; (2)) +gs(R, R; (2))j (2.10}

where

I (o., P; ~) = — G(x, x, ; &u) i,
1

(2.11)

When the coefficients Pi,„ in Eqs. (2.3) vanish, then Eqs. (2.9) are invalid. Denoting the uncoupled Green's

functions which vanish at the interfaces by g„, we can now verify that

(G(L, L; (2)) G(L, R; (2))} f yi(L, L; (2))+ye(L, I,; (2)) —ye(L, R; (2))

(G(R, L; } G(R, R; )i g ( —y (R, L; ) y„(R, R; )+y (R, R; ) f (2.9'}

where now

(2.12}

&G I d—(*,2-*'; )I,— ~ —G(*,lx R;-)'I,-.= - —G(*,R-x';rx)(, , )
l BQ 8 d

(x, l -*',x)(I,=
2 G(*, l. -*'-R; )I,= + —G(*, R-*'; )I,= i

A2
Y.(P, r;~)=-2» g (x, x„~)I.=BcK p y 2~ g~gg cL

1

The matrix equations (2.9), (2.9') and (2.10) are obvious generalizations of Eqs. (2.18), (2.18"), and (2.24)
of I. We note that when Eq. (2.10) applies, then Eq. (2.7) implies that

I'(L, L; &u} I'(I., R; ur}) ( gi (L, x'; (2)) -gs(L, x'; } 0

ii'(Rx Li ~) I'(R)R) ~)) i 0 g8(Ri x '2' ~) ZB(Ri x i-~) i
(2.13}

Thus, when the normal derivative of the uncoupled Green's functions g vanishes at the interfaces, Eqs.
(2.7}, (2.10), and (2.13) determine the thermal-equilibrium Green's function for the entire junction in terms
of the functions g„. Similarly G can be determined in terms of the uncoupled Greens functions g which
vanish at the interfaces. In this case, Eqs. (2.7) and (2.9'), and (2.14), given below apply:

/G(L, x'&L; ~) G(L, L&x'&R; (d) G(I,, R&x'; ~) )
G(R x'& L;(2)) G(R, L&x'&R;(2)) G(R, R&x';(d))

8 8—2„2,(x, 2; rx) I.= —
—,„2,(*,*'; rx) I.=

a d

G(L L. ) G(L R. )) s 8'z(x, x i )l(*2)=r, exga(xx x-i )ix=s, '~ ~

2m (G(Rl. ; ) G(R, R, ; )) ( 2 (2.14)

In concluding this section we note that just as in I, the functions g~ can be combined into a piecewise con-
tinuous "uncoupled" Green's function g and that consequently Eqs. (2.6} can be written in a more concise
fashion,

G(*,*'; )=l(x, *', ) ~ J R(*, *„)22(x.)G(*„*'; )2*,

=R(*, x'; ) i G(x, *„)X'(*,)R(x„*'; )2;
where the pseudo-Hamiltonian 3C'(x) is given below,

(2.15)

36'(x) = —[3t'(x)] = lim [5(x-R —e) -5(x-R+e)+6(x —L —t) —6(x —L }+],e—
6~0+ 2' ~X

(2.16)
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The relation of Z'(x) to the transition current in-
troduced by Bardeen in his analysis of tunneling
is discussed in I."

Equations (2.9) and (2.9') represent different gen-
eralizations of the "surface Green's function" in-
troduced by Garcia-Moliner and Rubio. ""It is
clear that they represent a convenient starting
point for the discussion of interfacial states or
resonances. This point of view will be pursued in
Sec. V.

III. GENERAL EXPRESSION FOR THE
TUNNELING CURRENT

A. Introduction

In this section we shall extend the formalism de-
veloped in Sec. IG of I to apply to a junction of fin-
ite width with a barrier region subject to a single-
particle time-dependent perturbing potential V(x, t)

It is easy to see that the Green's functions for
such a system are no longer invariant under time
translation. The ensemble-averaged current can
always be expressed in terms of the Green's func-
tion

G'(x, t; x', t') = t((t)'(x', t')g(xt)),

namely

(3.1)

We note here that when the spectrum of V(x, t) in-
cludes a set of discrete frequencies, & =0, 0, . . . ,
then the generalized transform of the current is

ek . 8 a
(J(x, t})=— — lim ——, , G+(x, t;x', t') .

2m „-r,q „,, Bx ax'

(3.2)

The time Fourier transform of (J(x, t)) is

2m — . 0 a
(J(x; &u)) = lim

8A & ~~ Bx Bx

cf(d
G (x, x; ((), (() —(())—.

«CO 27r

(3 3)

(J(x;~})=(J(I,))5(~)

+ g (J(x, 0„))5(~ —Q„)+(J,(x; &))

(3.4}

The one-dimensional version of the conservation
of current implies that the time independent term
of the current, which is proportional to 5((()), is
also position independent. " We therefore singled
out that term in Eq. (3.4). The choice to evaluate
(J(x}) at x =I is arbitrary; x=R could also have
been chosen. However, one or the other has to be
chosen if a clumsy formulation of the theory is to
be avoided. J, represents the analytic component
of the Fourier transform of (J(x; t)), i.e., the con-
tribution of the continuous spectrum to (J(x; ~)).

In the following we shall be interested only in
the zero-frequency component of (J(x; ~)), or
rather in the time-independent component of the
tunneling current. Nevertheless we shall continue,
for a while, to keep the analysis general.

B. Determination of the nonequilibrium
Green's functions

Following the procedure outlined in Sec. III B of
I, we can use Keldysh's matrix Dyson equations
to determine G, on the right side of Eq. (3.3), in
terms of the "uncoupled" or "unperturbed" Green's
functions g~ and the "perturbation. " In the present
paper we consider only perturbations consisting
of nonretarded single-particle interactions having
a generalized time Fourier transform X,(x; &u). In
particular we shall consider

X,(x; (u) =X'(x}5((())+ V, (x; (u), (3.5)

where X'(x) is the pseudo-Hamiltonian defined by
Eq. (2.16), and V, (x;(()) is the time Fourier trans-
form of an arbitrary time-dependent perturbing
potential. It is shown in Appendix A that for any
perturbation X,(x; ~), Keldysh's equations assume
the form

and

+ dx, 'g'(x, x„(())X,(x„' ((),)G'(xi, x', &u —(()„&u'),
O0 Oo 2F

G""(x,x'; &u, ~') —g""(x,x', &u)2r5(&u —~'}

(3.6}

dx„'g""(x,x„u))X,(x„~,)G"'(x„x'; (u- ~„(()') .
«oo «co 2+

Whenever the homogenous equations

(3.7)



4140 T. E. FEUCHTWANG 10

oo
res ly y ly 1 2g

G' x x', ~, ~'-Nl Klxl, ~lg""X,X1, ~' dhl
2F

(3.8}

have no nontrivial solutions, Eq. (3.6) can be inverted with the help of Eq. (3.7) to yield a uniq e e~licit
expression for G',

G '(x, x'; e; u') —g'(x, x'; u)2x5(&o —uo')

r ~ oo

=&g (x, x', &, ~') = dx, 'G"(x, x„;(u, &ar'-(u, )R,(x„(o,)g'(x„x', ur')
oo ~ O 2n

dx~ g (x, x~; &gp)36~(x~, (g~)G'(x~, x'; ~ ~„(g)')
oo

oo 3

+ dx, dxm g ' G'(x, x~; +, +2 —&u~)Kt(x~, &u~)g'(x„»2; &um)R~(»2, tv~}G'(x~, x'; &um —sr~, I'u'} .lt y 2 1 1 ly 1 (3 9)

-g'(x, x'; (u)2»o(&u —(u') .
(3.10)

Alternatively, the difficulty may be eliminated by
redefining the "unperturbed" functions g", and the
perturbation X„by including an appropriate part
of X, in the unperturbed Hamiltonian. This way
one can make sure that the modified version of
Eq. (3.8) has no nontrivial solution. Equations
(3.6)-(3.9) simplify considerably for static per-
turbing potentials, i.e., when

V, (x, (u) = V, (x)2vo(Iu) . (3.11)

In this case the time translational invariance is
restored to the problem, and the time Fourier
transforms of the Green's functions depend only
on a single frequency. Formally this implies that

G" (x, x'; &u, u') =G"(x, x'; &o)2v6(&u —sr') .
(3.12)

The several Green's functions entering Egs.
(3.6)-(3.9) are defined below in terms of the field
operators y and g:

Whenever Eqs. (3.8) have non-trivial solutions,
we shall assume that the standard conditions for
the existence of a solution of Eq. (3.6) is satisfied,
i.e., that the inhomogenous terms in Eq. (3.6) are
orthogonal to the solutions of the adjoint (or asso-
ciated) homogenous equation, Eq. (3.8).'o In this
case we have to modify the left side of Eq. (3.9)
and write

og'(x, x'; ru, tu') = G '(x, x'; ~, &u') —G„', (x, x'; ~, &u')

g+(x, t; x', t') =t(y"(x', t')g(x, t))o

g (x, t;x', t')= t(y(x,-t)g(»', t'))

g""(x, t; x', t') = + t ([g(», t), g (x', t')], )

x e(s(t —t')) (3.13)

g'(x, x'; Iu) = —2i [- & p(x, x', ~)],
f(~) -I

(3.14)

where

X X '4l Cf(d

= [g (x, x'; ru)] (3.15)

f(~)=(.I+exp[(tt4'- p)(tsar ']) ' . (316)
P denotes the principal part of the integral. The
complex spectral density function p(x, x'; ~) van-
ishes over energy intervals in which the local
density of states,

1
p(x, (u) =—p (x, x; (u), (3.IV)

vanishes '9 ~~

The subscript 0 denotes that the averaging is to
be performed with respect to the unperturbed
(equilibrium) density-matrix operator. The full
Green's functions G are defined in the same way,
except that the averaging is with respect to the
full (nonequilibrium) density-matrix operator.
The time Fourier transforms of the equilibrium
or "uncoupled" Green's functions g satisfy the fol-
lowing relations:



TUNNELING THEORY WITHOUT THE. .. . II. ...

C. Cslcuhtion of the current

In the following we shall explicitly restrict
V, (x, f) to the barrier":

V, (x, t) = V(», t)e(x L)e(x+R) . (3.18)

O'-O" =O' —O

Eq. (3.20) reduces now to,

(3.22)

The cumbersome expression for (J(L, ~)& simpli-
fies considerably in the case of primary interest
to us, when ~=0. Using the identity"

Furthermore, we specialize the general homo-
genous boundary conditions imposed on the Green's
functions g at the interfaces, and require that
their normal derivatives vanish at the interfaces,
l.e. ,

—(J(L &v=0)&
2m

—[g (L L ru)r (L L &u ~)
c4)

Qn

g~(x, x'& L; ~)I, z,
= 0 g~(L-, L; ~)r'(L, L; ~, ~)] . (3.23)

An analogous expression can be derived for the
current at x =R:

ge(x, L&x'&R;ui)l„z, s -0
d

, ge (L& x& R, x; (u) I,

d—gz (x, x' & R;v) I,-„=0

(3.19)
Z(&(R; ~=0)&

[g'(R, R; &a&)
I' (R, R; e, ~)

2w

d
, g~(x &R, x'; cu) I,.„.dX'

In order to calculate the Fourier transform of the
current we substitute Eq. (3.6 ) into Eq. (3.3) and
impose on the resultant expression Eqs. (3.18).
Thus in the case where x tends to I- from the
left "
2' — dw

-(~(L ~)&=- —IS"(« ~)-g'(L L ~)]

x F (L, L; u, (y u)

—gs(R, R; ~)I"'(R,R; e, e) ] (3.24)

The position independence of the zero-frequency
component of the current implies that the right
sides of Eqs. (3.23) and (3.24) are identicaL"
Equations (3.23) and (3.24) are the generalizations
of Eqs. (3.20) and (3.21) of I. Both pairs of equa-
tions do not separate the effects of the barrier
from those of the two metals. To achieve such a
separation, we follow the procedure of Sec. III of
I; Eqs. (3.9), (3.18), and (3.19) are used to evalu-
ate I"(u, P; &u, &u). The resultant expression re-
duces after some algebra, relegated to Appendix
B, to a two-dimensional matrix integral equation,

„—[g~(L, L, ~)r '(L, L; ~, u —tu)

—g~(L, L; u —u&) I"(L, L; ~, ur —m)].

(3.20)

~ r'(u), (u)

1 2 I't N' ~1 —
~

~1 +oga~ ~1

Here,

v=+, —,t', a .

82 82
F"(u, P; cu, &u') =—, , 0"(x, x'; ~, ~'}I, „,

(3.21)

x2x5(~, —~,)+oge(cu„(u, )}I (&u, (o) . (3.25)

The two-dimensional matrices entering Eq. (3.25)
are defined below:

t'F"(L, L; ~, ~') r"(L,, R; ~, ~ ) l

~r"(R, L;~, ~) r"(R R ~ ~)) (3.26)

g(~)=l (gl, (L, L; (u) +g~(L, L; (o) —g~ (L, R; (u)

-ge(R, L; ~) gs(R, R; &u)+ge(R, R; &u))

(3.2V)
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(G," (I., L; ~) —G," (L, R; ~)l
Gsu (R, L; (u) Gs (R, R; u&)f

(3.23)

G' (~)2»5(&u —&u') + ggs(&u, &u') =~G" (~, ~ ) =
~

Gs(L, L; ~, ~') —Ge(L, R; ~, ~')}

Gu (R, R; ur, ~') f
(3.29)

The "intermediate"-barrier Green's functions GB, G~ are exact-barrier Green's functions in the presence
of the perturbing potentials V(x), V(x, f), but they satisfy at the interfaces the homogenous boundary con-
ditions imposed on the uncoupled Green's functions gs; thus in analogy to Eq. (3.7), we have

8
0gs"(» x' (g) —G "(»»'; ~) gs"'(x, x'; u) = Gs" (x, x„(u)V(x~)ge"(x~, x'; (u'} dx~

R

g s""(x, x; &gp) V(x,)Gs '(xi, x'; (u) dxi,
L

+p ly (3.30)

ogs"(x x' u u') = G"(x x" tu, u& ) —Gs (x, x; &u)2 w5((d —(u }

d», Gs"(x, x„&u, ~,)V*(x„e'-~,)Gs'(x„x'; ~')

00 R
d&u, d», Gs"(x, x„~)V(x„~—~,)G""(x„x';~, ru') .

2m

Similarly, we have in analogy to Eq. (3.9),

5gs (x, x'; &o) = Gs (x, x', &u) -gs (x, x'; u)

(3.31)

R R

dx~ge(x, »~; e) V(x~)Ge (x~, x', &u)+ d», Gs (x, x„ur}V(x„)gs(x„x'; cu)
L

1 Bp jy

dx, d»~Ge (x, x„&u)V(x,)g'(x„x; &u) V(x~)Gs (x2, x'; &u),
0

(3.32)

5gs(x, x'; &u, ru') = Gs(x, x'; ~, &u') —Gu (x, x'; &u}2»5(&o —&u')

R

d»,Gs (x, x„~)V(x„e —~,)Ge (x„x';&u„~')

r+ CLUP~ l(42 G(d~
dx, d», Gs(x, x„&u, u&, ) V*(x„u&, —~,)Gs (x„x„~,)

x V(»2, &u~ —&u )Gs'(»2, x'; or~, a') . (3.33)

1
lim ( V(x, t) —V(x)( dt=0 .

CO 2T (3.34)

In the preceding discussion ere separated the
static component V(x) from the explicitly time
dependent potential V(x, t). The former is defined

by the relation

Three relatively obvious but important conse-
quences of Eqs. (3.30)-(3.34) should be noted.
First, if V(x, f) = V(x), then the generalized Fou-
rier transform V(», &o) of V(x, t) —V(x) vanishes.
Consequently, it follows that 5g"(&u, &u'} =0. Second,
G~ (x, x'; &o), in contrast to Gs (x, x'; (u, &u'), are
thermal-equilibrium Green's functions. That is,
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they satisfy Eqs. (3.14)-(3.1V) with an appropri-
ately modified spectral density. Third, it follows
from Eq. (3.32) that in general Gs(x, x', (u) vanish
over the same forbidden energy gapa as gs(x, x'; (u).
The exception to this result occurs when the per-
turbation V(x) gives rise to a localized density of
states in the "original" gaps. The mathematical
manifestation of this physically important phenom-
enon is the occurrence of nontrivial solutions of
the homogenous version of Eq. (3.30). The ex-
igency has already been noted in our discussion
of Eq. (3.9). In the following we shall assume
that the "intermediate" barrier Green's functions
include, where necessary, a "resonant" term,
which in the specific instance being considered
satisfies the equation

Geo (x, x'; (u) = dx,ge(x, x,; (u) V(x, )Gs (x„x'; (u)1 Bo ly

where, since

gs (x, x', (u) =0, (3.36)

we denoted

gs(x, x'; (u) =gs(x, x'; (u) =gs(x, x'; (u) . (3.31)

-&Z(L; (u =0))=- &~i((u =0))+&~.((u =o)), (3.38}

where

-(o,)=f — 'Ig', (l, l.;to)g ( ),));).,)

If we now substitute Eq. (3.25) into Eq. (3.23) we
obtain the following expression for the tunneling
current:

dx, Gs (x, x, ; (u) V(x,)gs(x„x'; (u),0
g~(L, —L; (u)g„'(R, R; (u, )]

(3.35) xl I (L)R) (uo(ug)lm ) (3.39)

—(o.)= Q f o o
'

o
*

(g, (o o; )o,(o'. o; . „to.)
a, 8

-g (L, L; ()uG(a, p; (u, (u, )] 2
F"(L; o, (u, (u, ) r'(P, L(u()u. (3.40)

Equations (3.38)-(3.40) represent the most impor-
tant result derived in this section. These equations
will be applied in the next sections in a discussion
of resonant tunneling. The application of Eqs.
(3.33}-(3.40) to a phenomenological analysis of the
inelastic tunneling across a barrier containing a
vibrating impurity is considered in another publi-
cation.

IU. COMPARISON WITH THE ABRUPT JUNCTION

Before we proceed to apply Eqs. (3.38)-(3.40) we
shall briefly compare present results with those
derived in I for the abrupt static junction.

When we use Eqs. (3.14)-(3.16) to eliminate the
"uncoupled" Green's functions from Eqs. (3.39) and
(3.40), the first term on the right side of Eq. (3.38)
reduces to a "transfer-Hamiltonian-like" expres-
sion:

(o,(-. =o))=J' d d. ,(f ( ) —f„(,)]e oo

xp~(L, (u)ps(R, (u, ) I
A"((u, (u, ) I

(4.2)

For the static-barrier potential Eq. (3.12}applies,
and thus the expression for the matrix element
simplifies to

and

A"((u, (u, ) =A"((u)2v6((u —(u, ) (4.3)

A'((u) = — —G"(x, x„'(u}l, ~ .
I

(4 4)

Substituting Eqs. (4.3) and (4.4) into Eq. (4.1) we
obtain

Here, f~ s are the Fermi distribution functions
characterizing the left and right subregions. The
chemical potentials of these two regions are dis-
placed with respect to one another by the external
potential U. The effective matrix element in Kq.
(4.1) is defined below:

8'
A"((u, (u, ) = —

2
G"(x, x„' (u, (u, ) l „~ .

I

(4.1) (J,((u=0)) =5(0)(J;), (4 5)
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where

&J,&
= — (2v)'d(d[f, (~) -fs((d)]

xp~(L; a)}ps(R; (d) ( A'(&u) I' (4 6)

The singular factor 6(0} in Eq. (4.5) is easily in-
terpreted: It occurs in Eq. (3.4) and in Eq. (4.5)
because in both cases we took a formal time Fou-
rier transformation of a time-independent function.
If the Fourier transforms are interpreted as dis-
tributions, then this is a perfectly acceptable pro-
cedure which allows us to t eat simultaneously
barrier potentials with a time dependence exhibit-
ing a discrete frequency spectrum and those with

a continuous spectrum. The abrupt junction can be
viewed as the limit of the finite junction as L, 0
and g-O'. Evidently, the continuity of the mixed
second derivative of G assures that

&J,(+ = 0)) = 6(0)(J,) (4.8)

This expression agrees with the form of the effec-
tive matrix element derived in I, as can be checked
by substituting Eq. (2.24) of I into Eq. (3.25} of I.
Thus we conclude that the expression (4.4} of I de-
rived directly for the (static) abrupt junction is
indeed the limit of (J,) as the width of the barrier
vanishes.

Turning to the second term in Eq. (3.38), we note
that this term is essentially different from the first
one, for it does not involve products of the form
g~(L, I,; (d)g„(R, R; ~). That is, it cannot be cast
into a "transfer-Hamiltonian-like" form. For a
static barrier, we have

ergy distribution for a static barrier naturally sep-
arates into two terms: The "normal" term (or
nonresonant channel) is given by the integrand of
Eq. (4.6). The "resonant" term is given by the
integrand of Eq. (4.9), provided that G~s satisfies

0
Eq. (3.35). In the Sec. V we shall examine reso
nant tunneling more closely. %e shall see that the
introduction of a density of states into a forbidden
energy gap of the unperturbed ("uncoupled" ) bar-
rier clearly manifests itself also in the energy de-
pendence of the normal-tunneling-current energy
distribution. Nevertheless there exists a meaning-
ful distinction between the two terms based on their
manifestly different form. The normal term
(J,((d =0)) has the manifest symmetry with respect
to the right and left subregions which characterizes
the transfer-Hamiltonian formulations of elastic
tunneling. The second term represents the strictly
resonant and jor inelastic channel. As defined in
Eq. (3.40) this term seems to single out the left
interface I.. This is not the case, and a symme-
trized expression follows from the position inde-
pendence of &J(+= 0)&, i.e. ,

(J(L; &u =0)) =
&J(R; ~ =0))

(4.10)

However, regardless of the symmetrization,
&J,(~ =0)) clearly exhibits a. different, more com-
plicated dependence on the density of states than
that of the normal (nonresonant) elastic channel

&J,(&u =0)&.

V. RESONANT TUNNELING

A. Generalities, calculation of the "transfer matrix"

and

(z,)=- I f de [)(,'(L. t; ~)G,,(a, (); )
0. , 8

-gi(L, L;(u)Gs (a, p;(u)]
2

I "(L, a;(u)

In the present section we shall concern ourselves
with some effects of atomic impurities in the bar-
rier on the tunneling-current energy distribution.
Specifically, we assume that the impurities can be
represented by a static potential V, (x), satisfying
Eq. (3.18}. It follows that the tunneling-current
density is given by

xI"(P, L; (()) . (4 9) & J((d)&= &J,(~)&+ &J&(~)&, (5.1)

The functions G 8, were defined by Eq. (3.32). It
was already noted that unless the perturbing po-
tential gives rise to a "resonant" localized density
of states in the barrier, these "intermediate"
Green's functions vanish over the same energy in-
tervals as the "uncoupled" Green's functions g~.
Hence the only nonvanishing contribution to & J,)
arises from energies at which either the barrier is
transparent (i.e., gs' &0} or the perturbation gives
rise to a density of states in what previously was
an energy gap. Thus, the tunneling-current en-

g s(x, x'; &u) = 0 gs(x, x'; (d) . (5.2)

However, the impurities may give rise to some
nonvanishing localized density of states, i.e., for

where & J,(((j)& is the integrand of Eq. (4.6) and

& J2((())& is the integrand of Eq. (4.9). Clearly the
effect of Y,(x) is to modify the barrier Green's
function and hence also the "transfer matrix"
I"(a, P; u&}. We shall assume that over the energy
range of interest, the local density of states in the
unperturbed barrier vanishes, i.e. ,
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some energies in the gap,

Gs (x, x'; u&) & 0 .
0

(5.3)

gs(x, x';(u)= Qg s, (&u. )y, (x)y'((x')

The continuity conditions imposed on the Green's
functions G"' are identical to those imposed on
the equilibrium Green's function, Eq. (2.8). Using
these and the boundary conditions imposed on "un-
coupled" functions g" [Eqs. (3.19)], it is easily
checked that the "transfer matrix" satisfies the
following generalization of the equilibrium rela-
tion, Eq. (2.10):

= g (g~ - ~, ) '4, (x)4 *,(x'),

and

Gs,'(x, x';&u)=Q G",'s, ,((o)y, ( x)y', ( x).

Here,

(5.6)

(5. I)

pr, a(+) [+r, a(+) + yr, a(~)] -1 (5.4) Gs,'i~~(") gs;i(~) 5ig QV& Gs,", g(~)

The matrices in Eq. (5.4) were defined by Eqs.
(3.26)-(3.28). Equation (5.4) indicates that in gen-
eral one should expect peaks in the energy distri-
bution of the tunneling current to correspond to the
(possibly complex) zeroes of the determinant

= 5&&+ g Gs,".
, &

(~)V, gs, (~),

(5.8)

a"(~)+5m"(&u) =det[g"(n, P; ~)+5gs(a, P;cu)].

(5.5)
V —

(Ie)~ m Vx (II) s dx V* (5.9)

These zeros can be cl'assed into four types, de-
pending on their relation to singularities of the un-
coupled Green's functions: "Electrode resonances"
occur in the neightborhood of singularities of either
g~(L, L; &o) or gs(R, ft; &u). "Impurity resonances"
occur in the neighborhood of singularities of
gs(o. , P; &u). "Interfacial resonances" occur in the
neighborhood of zeros of b,"(&o) which are unrelated
to singularities of the uncoupled Green's functions.
These resonances represent a characteristic of the
coupled system. "Impurity-induced interfacial
resonances" are zeros of the LE(&g) +5n,"(&u) which
are neither shifted interfacial resonances [i.e.,
shifted zeros of h"(~)] nor related to the singu-
larities of the "uncoupled" Green's functions. "

In the remainder of this section we shall con-
sider in somewhat more detail the impurity-in-
duced resonances. We shall be guided by the heu-
ristic, physical argument that when an impurity
is embedded in the barrier its bound states are
broadened and shifted. The impurity-induced tun-
neling resonances are manifestations of these
broadened and shifted impurity states within an en-
ergy band in which the unperturbed barrier exhi-
bited no density of states. Thus we shall have to
examine the effect of an impurity on 5rs(~). We
shall not attempt to consider this problem in its
full generality. Instead, we shall consider a rea-
sonably familiar nontrivial model.

B. Barrier Green's functions

W'e represent the Green's functions in the barrier
by means of the bilinear formula

In view of our convention concerning the boundary
conditions imposed on the "uncoupled" Green's
functions at the interfaces, we require the com-
plete orthonormal basis set {y,(x)), which is to be
used in the bilinear formula, to be those eigen-
functions of the Hamiltonian for the barrier whose
normal derivative vanishes at the interfaces. Thus

«i -30s)4 «» =o (5.10)

(5.11)

k2

2'——v*+ V( ) —s e ( ) = 0.S 8 (5.12)

We expect that in this case, the homogenous term
of Eqs. (5.8),

Q [5,.„-gs., (ru) V, ]Gs'. , ((u) =0, (5.13)

has g nontrivial solutions,

@g,=e,+5g„s=1, . . . , o. (5.14)

These parameters characterize the shifted states
e, once V is embedded into the barrier.

%'e wish to examine thy energy dependence of
G+'. „(~), and in particular its form in the neigh-
borhood of these "resonances. " For this purpose

We are concerned with the case where the perturb-
ing potential V(x) admits of a set of &r bound states
{C,(x); s=l, . . . , o) such that
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it is convenient to augment the basis set {4(((x)] by
the set {4,(x)). This augumented set is evidently
overcomplete. Recently several workers have dis-
cussed the proper formulation of the single-parti-
cle Green's functions in terms of overcomplete
basis sets. """ Adapting the formalism of Bag-
chi and Cohen" we write

G(('(x, x'; ~) = Q G((",, '„,((u)(I „(x)4(,*(x'), (5.15)
KJ

where the overcomplete basis set is designated

Q„), and consequently its elements can be ex-
pressed in terms of the original complete ortho-
normal set:

(5.16}

Clearly,

G(('. (((47) =G(( '. ((((((}+Q S(qG~(' ((al) . (5.17}

(@u —e,) G~ ;(((d)+ g'. ~„Gs;( (~) S, (5.16)

The "matrix elements" of the effective potential
are

At this point we shall simplify the problem by set-
ting 0 = 1 and considering an Anderson model of the
impurity. "" That is, we assume that all matrix
elements V, j are small enough to be treatable by
an appropriate perturbation theory. Concentrating
on the interaction between the impurity state @,
and the set {p,.), we obtain the following equations
derived by Bagchi and Cohen':

(ll(d —~,.)Gs",.;,((u) V(, G",s;, ((u) = 5. „,
and

= hi@ -Zs, (cu) —e, =0. (5.21)

Returning to the coordinate representation, we
conclude that

g ((' '(x, x', (d) = Q [Gs,'.„((u}-gs. '(((u) 5, , ]

x P((x) Q,+(x') (5.22)

does indeed have a pole at the shifted energy e,
+ 5e,.

The bilinearity of the determinant 6'(&u) + 6h" (((()
in the matrix elements Gs (a, P; &u) might suggest

0
that the matrix I'"((d) defined by Eq. (5.4) will gen-
erally vanish at the isolated poles of Gs (n, P; ((().

0
However, it is easily verified that this is not the
case whenever 5gs(o. , P; (u) is given by a bilinear
expression such as Eq. (5.22). In fact, I'"(&u) has
neither a zero nor a pole at the root of Eq. (5.21),
e, +5e,. On the other hand, Rouche's theorem"
implies the I'(u) has a complex pole at I(d =E, , in
the neighborhood of e, +Be,. At this point it is in-
teresting to consider the rather trivial case of a
5-function impurity (pseudo) potential,

V(x) = V5(x); (5.23)

(5.24)

Evidently, also in this case, I'"(((() has neither a
zero nor a pole at the pole of 5gs(u, P; &u). Here
again, if the pole of 5g s(c(, }3;((() lies isolated from
the singularities of gs(a, P; (d), then a correspond-
ing pole of I'"((d) is defined by one of the roots of

in this case, a direct solution of Eq. (3.30) gives

5g(((((, P; (u) = „)g(((n, 0; (d)g(((0, P; ((() .V

g„—S,((hu —a() —V„. ,

1}(,= (g(d —e() S(,—V„.
(5.19) 1 = V[gs(0, 0; (d) +I("(ur)] = 0,

where

(5.25}

Equations (5.18) can be solved for the "pseudo"
Green's function G„'(((d). Upon using Eqs. (5.17)
and (5.19), we find

G((0. (((~) =g's', ((~)6((+g(( ((~)V

8 6df((d)
l( ((d)=

V „( )

C. Resonant enhancement factor

(5.26)

x n(o -e, —Q g„(&u)g((:('(~)~,„((d)

(5.20)

It is clear that when e, falls into an energy interval
excluding the singularities e,. of gs(x, x'; (((), then
the "intermediate"-barrier Green's function G~
will exhibit a pole at the isolated root Ro= e, + Be,
of the expression

We are now ready to examine the general fea-
tures of resonant tunneling predicted by our theory.
This we shall do in terms of the fractional cha, nge
in the energy density of the tunneling current, or
the resonant enhancement factor

(5.27)

where (J, ,((d)} is the integrand of Eq. (4.6) in the
absence of the impurity, and (J,((d)} is the inte-
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grand of Eq. (4.9) in the presence of the impurity.
The latter quantity can be written with the help of
Eqs. (3.14)-(3.17) as

«.(~)) =
&

(»)'[f,(~) f,(-~)],p(L; ~)

g2 2

x Q —I (L&a;&gp).
2ppla, 8

pe, (x, x'; &u)~6{fko —(e,+6e,)), (5.30)

and the resonant energy channel can only open at
the energy e, +Be, of the localized impurity state
in the energy gap of the barrier. "" That the
channel is indeed open follows from the fact that
I'"(e,+6e,) &0."

ReE, has a simple physical significance;

ReE, -e, = 4e,

is the shift of the "atomic" level due to the embed-

x pe, (o, P; ~)I"(P, L; ~), (5 29)

where the impurity-induced spectral density in the
barrier is defined by

pe (x, x'; (o}= f[Ge (x, x'; &u) —Ge;(x, x'; cu)].

(5.29)

The first term in Eq. (5.7) represents the effect
of the impurity on the normal tunneling and cor-
responds to a possibly pronounced peak in the en-
ergy dependence of the transmissivity of the bar-
rier. This effect can be included in tunneling theo-
ries based on the transfer-Hamiltonian formalism
by imposing on the matrix element an appropriate
energy dependence. The second term in Eq. (5.27)
represents the contribution of the resonant channel.
Unlike the first term, this strictly resonant term
displays an explicit temperature dependence and a
dependence on the total energy densities of states
in the two electrodes, all in addition to an explicit
dependence on the impurity spectral density in the
(energy gap in the} barrier. Furthermore, this
term exhibits a left-right asymmetry absent from
the first term in Eq. (5.27). That is, the resonant
enhancement factor may depend on the direction of
the tunneling. The several types of tunneling reso-
nances have different "signatures, " which we shall
now examine.

The energy dependence of the matrix I'"(&o), dis-
cussed in the preceding subsection, indicates that
an impurity resonance, i.e., an isolated complex
root E„ofEq. (5.5) manifests itself in a peak in
the first term of Eq. (5.27) at the energy Ke
= HeE, ." In the preceding we excluded impurity
(allowed energy) bands in the energy gap of the
barrier, and considered only sharp impurity
states. Thus,

ding of the impurity in the junction.
The quantity 5e, has a more model-dependent

significance and represents the shift of the levef
due to the embedding in the "uncoupled" barrier.

An impurity-induced shift of an interfacial reso-
nance manifests itself in a peak of the first term
of the enhancement factor, and an associated dip
at the energy of the unshifted interfacial resonance
[i.e. , zero of a"(~}].

A strictly impurity-induced surface resonance
[i.e., a zero of n'(m) +66"(u)] unrelated to any
pole of the "uncoupled" Green's functions or any
zero of a'(&o), manifests itself in a peak of the
first term of the enhancement factor.

VI. DISCUSSION AND SUMMARY OF RESULTS

In the second paper of this series on tunneling,
we have demonstrated that the basic approach de-
veloped in the first paper on tunneling across a
junction of zero width is readily adaptable to more
realistic problems. Thus we obtained in Eqs.
(3.38)-(3.40) a general expression for the current
across an insulating barrier of finite width, sub-
ject to an arbitrary time-independent bias and an
additional possibly time-dependent single-particle
potential energy of interaction. This time depen-
dence may represent a modulated bias or a vi-
brating impurity potential. The theory, though not
based on the transfer-Hamiltonian formalism, can
be formulated so as to lead to a "transfer-Hamil-
tonian-like" expression for the ordinary tunneling
channel [Eq. (3.39)]. However, in contrast with
the transfer-Hamiltonian formulations, our theory
inherently identified the additional channels for
resonant and inelastic tunneling [Eq. (3.40)]. In
contrast with linear-response theories of inelastic
tunneling, our theory is inherently nonperturbative
(or an infinite-order perturbation scheme). It also
has the advantage that it preserves, at least for
the noninteracting system considered in this paper,
the intuitively appealing separation between the
left (right) electrodes and the barrier effects. We
have shown in Sec. IV that the expression for the
tunneling current in a junction of zero width, cal-
culated directly in I, represents the proper limit
of our general expression when the time-dependent
component of the barrier potential and the width
of the junction both tend to zero. Finally we have
discussed the energy density of the tunneling cur-
rent when an atomic impurity is incorporated in the
barrier. In Sec. VA we were able to point out sev-
eral different resonant phenomena which could con-
tribute to the resonant enhancement of the tunneling
current. In Sec. VC we indicated an operational
procedure for distinguishing between the several
resonances in terms of their "signatures" on the
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energy density of tunneling current.
Application of our formalism to the discussion of

inelastic tunneling due to a vibrating impurity will
be reported separately.

The results obtained clearly indicate the ver-
satility and potential usefulness of our theory. In
this initial development we have restricted our-
selves to tunneling in noninteracting systems. The
great attraction of the formalism is, however, in
its capability of treating interacting systems. Work
is presently in progress in applying our theory in
this way. %'ork on an extension to a truly three-
dimensional theory is also in progress.

t((r, r ; ', tr') = f f Z (F r';, t —t')

f(idt-taJ 0 ) dt dt

=g(r, r'; (u)2)z5(&u —(u') . (A6)

= G (r, r '; (t), sr')

Thus, the formal Fourier transformation of Eq.
(A2) with respect to t and t' can be expressed with

the help of the convolution theorem as

APPENDIX A: DERIUATION OF THE DYSON

EQUATION FOR G', EQS. (3.6},AND (3.9}

Keldysh's matrix Dyson equation in the time
domain is

(AV)

&Z(r„ t„.r,t,)G(r„ t„r', f'}

x cd', dr, dt, dt, .

In the presence of a single-particle interaction
X,(r, f) one can show directly following the original
derivation of (A1) by Keldysh's or Mill's analysis
that

G t;(rr', t ()r, Zt; r'', t ) ~ f t'Zt; r„ ),t

The integral with respect to &, is evidently in-
variant under the transformation Q)y + (dy Sub-
stituting Eqs. (A3) and (A4) into Eq. (AV) one ob-
tains Eqs. (3.V), and using the latter to simplify
Eq. (AV) one obtains Eqs. (3.6}. The derivation of

Eq. (3.9), i.e., the inversion of Eq. (3.6), is most
conveniently obtained in terms of a symbolic (op-
erator) notation. That is, we write Eqs. (3.6) and

(3.7) as

G =g +g Xzc +g X zc = (1 -g Xz)g (1 +Xzc ),
(AB)

and

&&Z(z „t,)c(r„f„.r', f )zfr'df„,

(A2}

gr, a +r ~ e+~r,a~ gr, a (A9)

where, in both Eqs. (Al) and (A2),

(0 c
{G" 2G'+(G" —G ))

,
,

(
(g' 2g'+(g'-g')i

and in Eq. (A4)

(A3)

(A4)

It follows from Eq. (A9) that

(1-g"X,) '=G'(g') ', (A10)

and from the adjoint of Eq. (A9) we obtain

G'(g")-'= 1+mCt (A11)

Thus, substituting Eqs. (Alo) and (A11) into Eq.
(A8),

G' =g'+g'K, G'+g"Xtg'+G"XIg'X)G'. (A12)

(0 x)
(x, oj

(A5)

The elements of the matrix Green's functions G,

g were defined by Eqs. (3.13}.
The thermal-equilibrium Green's functions are

invariant under time translations; i.e., the formal
Fourier transform of g with respect to both time
variables (f and t') is proportional to a delta func-
tion in +-~'.

Equation (A12) is the symbolic (opezatoz) zepze
sentation of Eq. (3.9). The derivation of Eq. (A12}
clearly indicates that this explicit solution for G'
is only valid if the operator

(1-g"X,) '=G'(g") ' (A13)

exists. This in turn amounts to the requirement
that the homogenous form of Eq. (A9) have no non-
trivial solution.
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APPENDIX B: DERIVATION OF EQ. (3.25) FOR

u, ~}
A2 a2I' (n, P; ~, (u) = —2— , (G"X~g'3C,G') j„,.

x'= 8

In deriving Eq. (3.25) we shall resort to the sym-
bolic notation used in Appendix A to derive Eq.
(3.9). From Eq. (3.21) we have where, from Eq. (3.18) we have,

(B2)

g2 g2
r'(x, P; ~, ~)=-„,G'(x, x';~~~) l.=~. X,(x, u&) =X'(x)5(u&} + V(x, ~)e(x —L}e(-x + R) .

(Bl)

Hence, using the boundary condition imposed on the
"uncoupled" Green's functions at the interfaces
[Eqs. (3.19}], we obtain from Eq. (A12) [i.e. , the
symbolic version of Eq. (3.9)]

lf now V(x, ~}= 0, then the boundary conditions
[Eqs. (3.19)], the definition of the pseudo-Hamil
tonian +', and the continuity of the mixed second
derivative of G at x =x' imply

2m—
&,

I"(&, p; &u, &u) = (I (a, L; ~, ur, }[g~~(L, L; &u, ) +gs(L, L; ~,)]i"(L,p; ~,~)

—F"(&,L; ~, ~,)g '(L, R; (u, )I"(R, P; (u„~) —I"(n, R; (u, (u, )g '(R, Lu), )Z"( LP; „)
+ I (o, R; ~, ~,)[gs(R, R; &a&,) +gs(R, R; &a&,)]F'(R, p; &u„+)) (B4)

Equation (B4) is the expanded version of Eq.
(3.25) for

5gs((u) = 0 =- 5gs(&u, (o') . (B5}

Equation (B4) reduces to the corresponding Eq.
(3.25) of I when we account for the time transla-
tional invariance of this simplified problem, where

I'"(a., P; ~, ~,) —I'"(a, P; co,)2v5(~ —~,) . (B8)

To complete the derivation of Eq. (3.25) we now de-
fine the "perturbed" barrier problem:

(Ku —[Xs+ V(x; a&)))Gs(x, x'; &u, &u')

as gs. Evidently Eq. (B4) aPPlies in this case if
gs(x, x'; &u, ) is replaced by Gs(x, x'; ~„~,) and we
integrate also with respect to co, . It is a simple
matter to verify that

G s (x, x'; &u, (u') = [g s(x, x'; (u) + 5g s(x, x'; (o) ]

X2&5(&o —&u') +5ge(x, x'; ra&, u')

(B8)

and that the several "intermediate" Green's func-
tions can be determined by Keldysh's matrix equa-
tions in terms of the interaction

= 5(x —x') 5((u —(u') (B7) X,(x, ~) = V(x; ~)e(x —L)e(-x+R}.
where the "intermediate" Greenys function G~ is
subject to the same boundary conditions [Eq. (3.19)]

This, however, is the significance of Eqs. (3.28)-
(3.34).
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768 (1972); D. Penn, Phys. Rev. B 9, 844 (1974).

~J. W. Gadzuk and E. W. Plummer, Rev. Mod. phys. 45,
485 (1973).
T. E. Feuchtwang, preceding paper, Phys. Rev. B 10,
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9Recent reviews of such tunneling phenomena are found
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~oC. B. Duke, Tunneling In Solids (Academic, New York,

1969).
C. B. Duke, G. G. Kleiman, and T. E. Stakelon, Phys.
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the International School of Physics, edited by
W. Marshal (Academic, New York, 1967), Vol. 37,
p. 64.
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T
ltm —

~
(f (x, t) -f (x)(d t =0.

T~0027

~ This is the "Fredholm alternative"; see W. V. Lovitt,
J inear Integral Equations (Dover, New York, 1950),
p. 66.

~ Note that for the noninteracting system as well as
within the Hartree-Fock approximations for interacting
systems, this assertion is self-evident: In these cases
the bilinear formula for the Green's function implies

p(x, x';~)d&u =2xg Q„(x)Q g {x'), h&s &e„&8(u+d&u),

where (Q„) are the etgenfnnctions of the single parti-cle
(effective) HamQtonian, whose eigenvalues are z„. See
Refs. 20 and, 21.

~ A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,
Methods of Quantum Field Theory in Statistical Physics
(Prentice Hall, Englewood Cliffs, N. J., 1963), Sec. 7.4.

~L. P. Kadanoff and G. Baym, Quantum Statistical
Mechanics (Benjamin, Menlo Park, Calif. , 1962),
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density of states is discussed in Sec. IV of I.

2 This is a convenient and nonessential restriction. If

V~(x, t) extends beyond the barrier, then one can ac-
count for this by modifying Xz and Xz.

24(J(x;~)) is continuous at I.. However, the first deriva-
tives of the Green's functions g~ are discontinuous at
x =I. , and 86/Bx is discontinuous at x =x'. Hence the
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This identity follows directly from the definition of
these functions, Eq. (3.13).
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YIt should be noted that whereas we seem to identify
resonances with singularities of the mixed second
derivative of the barrier Green's {matrix) function
rather than with singularities of the 6"'(o.,P;~)
itself, this is in fact not the case. For the two matrices
have the same spectrum of singularities. This result
follows from a comparison of Eqs. (2.9) and (2.10).

28A. Bagchi, R Gomer, and D. R. Penn, Surf. Sci. 41,
555 {1974).

29A. Bagchi and M. H. Cohen, Phys. Rev. B 9, 4103
(1974).

OSee E. T. Copson, Theory of Functions of a CompLex
Variable {Oxford U. P. , Lond, 1950), p. 119.

@Hence it is understood that the impurittes are so dilute
that they do not interact and the broadeniag of E, is
due to the interaction with the continua in the electrodes
and not a manifestation of an "Impurity band. "

+Vie could, in principle, allow the density of states
pz (x,x;&) to extend over an energy interval, i.e. ,
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