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Tunneling between two semi-infinite systems across an abrupt junction (of zero thickness) is discussed

without invoking the transfer-Hamiltonian formalism. A lucid and novel interpretation of the

significmice of the transfer Hamiltonian is obtained. A rigorous and easily applied separation of the

junction into its two component subsystems is introduced. The current is expressed in terms of
characteristics of these two subsystems. Keldysh's perturbation theory for nonequilibrium processes is

used to include the effects of the external potential V to all orders. In this, the analysis is similar to
that of Caroli et al. The extreme-tight-binding approximation of these authors is avoided; this

less-restricted formulation differs in important details from the preceding work. It is shown that

tunneling current {density) within a differential energy interval can generally be expressed as

proportional to the product of appropriately defined "left" and "right" local densities of states {in
energy). This confirms the form of the extensions of the consequence of the transfer-Hamiltonian

formalism, proposed by Appelbaum and Brinkman and by Caroli et aL The new formulation of
tunneling manifestly applies in the zero-thickness extreme-strong-coupling limit, where the current

formulation of the transfer Hamiltonian fails. The extension of the formalism to junctions of finite

width has been worked out and is reported in a second paper, in which it is demonstrated that the
results for the abrupt junction follow from those of the finite junction in the zero-width limit, and

agree with them qualitatively. The formalism is specifically suited to include many-body interactions.

I. INTRonUCnoN

A. Motivation for the study

k, k'
+~; ik '+~ Qr. k'+ H. c. (1.2)

The operators a», a~ are the destruction opera-
tors for the one-particle states which characterize
the unperturbed left and right Hamiltonians (elec-
trodes) X~ and X„.

A more involved though not necessarily more
precise formulation of the tunneling problem asks
for the linear response of the system described by
X, to the "external probe" represented by the
transfer Hamiltonian X~.'

It is the purpose of this paper to determine in

The transfer-Hamiltonian formalism for the
study of tunneling between two electrodes across
an insulating barrier has enjoyed almost universal
acceptance ever since it was suggested by Bardeen'
and Cohen, Falicov, and Phillips' more than ten
years ago. The fundamental premise of the trans-
fer-Hamiltonian formalism is that tunneling be-
tween normal or superconducting electrodes can
be described by time-dependent perturbation theo-
ry involving an appropriately defined transfer or
coupling Hamiltonian. That is,

X=Xg + Xs+ Xr =Xo+Xr,

where the transfer Hamiltonian X~ is normally
taken in its second-quantized representation,

what sense the preceding can be justified from
first principles, and the consequent limitations,
if any, on its applicability to tunneling in general.
In view of the considerable work that has been
done on these questions, we shall find it conven-
ient to summarize briefly the original motivation
for the formalism and subsequent attempts to
justify it, or at least interpret its significance.
Following this survey it will be relatively simple
to explain our approach and the novel results we
were able to derive. This discussion occupies
the remainder of Sec. I.

The actual derivation, which involves a reason-
able amount of algebraic manipulation, is given
in Secs. II and III.

B. Motivation for and main result of the

transfer-Hamiltonian formalism

The initial motivation for the transfer-Hamil-
tonian formalism was the empirical observation
by Giaever4 that the current tunneling from a
superconducting electrode across an insulating
(oxide) barrier into a normal electrode could be
described in terms of a properly normalized
"tunneling density of states" Xr(V), namely,

dI~s

In Eq. (1.3), 0I,(0) is the normal density of states
at the Fermi level. V is the potential difference
applied across the junction,
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3I,(Z) =3I,(0) d—, (1.4)

and z, E are the single-particle energies in the
normal (N) and superconducting (S) electrodes
(measured relative to the Fermi level). It was
noted that Eq. (1.3) could be derived from a per-
turbation theory subject to some further, pre-
sumably justifiable, assumptions. The crucial
assumption is that the transition rate for an efec
tron in an initial (Brooch) state k' of the normal
into a final quasiparticfe state k of the eupercon
dusting electrode is given by the "Golden Rule":

Pyg =(2wP) IMy( I 5(e» ~ + V-E»). (1.5)

If the junction is planar and exhibits translational
symmetry in that plane, then the transition rate
out of the k'' state can be written

P» =— n(k, )
' IM,&l 5(e» +V-E„)dk, ,

2s I cfkg cf6p

~&a &Ea

(1.6}

where k, is the component of k normal to the junc-
tion. Equations (1.3) and (1.4) follow directly from
Eq. (1.6) provided we make the following simplify-
ing assumptions, which incidentally are not ger-
mane to the main argument: IM~, I

is only weakly
dependent on k and k', and hence may be removed
from the integral and replaced by a constant. This
constant is independent of the phase (normal or

and a corresponding set of exact (product) excited
states is

n nJ pl+ (1.8)

The transfer Hamiltonian X~ couples the ground
state to these excited states; i.e., the probability
amplitude that a single bare electron be trans-
ferred from the right to the left is'

Mgi = &f I36l I& = &anal 3' I gigs&

Vs», 1» &nR I aR» I gR & &n~ I a», »

(1.9)

superconducting} of the electrode. ' '
The preceding discussion can be recast in a

Green's-function formalism, which connects more
clearly with the particular form of X~ chosen in
Eq. (1.2), and which provides a calculational tech-
nique for evaluating g~. Since the discussion ap-
plies equally to normal and superconducting elec-
trodes, we shall henceforth restrict ourselves to
the latter.

The assumption concerning the transition rate
between electrodes immediately preceding Eq. (1.5)
may be replaced by a more formal statement, viz. :
The uncoupled electrodes are represented by X,
and a system of product (many-body) state vectors
of K,. In particular the ground state of X, is the
product

According to the "Golden Hule" the total transi-
tion rate is

w

k, k y', 02k
Ve», J» (Ve», , »,)* g 5(e.„-V —~.; )&ge law», I ns& &nJ» Ias» le &&gr, Iai~» Inc& &ns I ar»' Igc &.

(1.10)

where V is the potential difference across the junc-
tion. %e now introduce the zero-temperature
Green's functions G':

(2») 'G (k, k';(Ap) =/5(cv —6„)(gla, In) (nla»~ Ig)
n

= w '[1 —.f (u&)] [--,' p(k, k '; &u)],

(1.11)

(2wi ) 'G'(k, k'; (u) =g 5((u - »„)&gl a»~ In& (n I a, .I g)
tf

=-w 'f(~)[='p(k, k'; ~)]

in k and can be expressed in terms of the retarded
Green's function 0", i.e., '1, 1—p(k, k'; e) = p(k; m)5» = ——ImG" (k, &u)5»» .

2mI'=T Q I V»» I'
a, a'

[f& (~ - V}-f~(~)]

(1.13)

In the following we assume the validity of Eq.
(1.13); hence we obtain for the net transition rate'

(1.12) x pi (k '; &u —V)p z(k; v) d &a . (1.14)
Here f(~) is the Fermi distribution and p(k, k'; ~)
is a spectral density function. %hen the states
In) are sharp in the index k, then G' are diagonal

It is normally assumed that V». can be removed
from the sum so that"
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x pz, (&u —y)p„((gr ) d&gp,

where the density of states

(1.15)

hand side of Eq. (1.18) differs from zero only in
the right electrode x& x„' hence the matrix ele-
ment can be rewritten

p(cu} =g p(k, e) =--g ImG" (k, &u).
1

k

Recently a common phenomenological ansatz has
been to consider V an energy-dependent pseudo-
potential matrix element, and to write

Conservation of energy and an application of
Green's theorem now reduce the above to

2 (AR, v'4, 4r, , +45, )ds

=--,' ih J„(x,)„ (1.20)

X pI ((g —P')pz((g) d~; (1.16)

such an expression has been derived by Appelbaum
and Brinkman using an extension of Bardeen's
work. "

To conclude, we have indicated the heuristic
basis of the transfer Hamiltonian, and in Eqs.
(1.12)-(1.15) the formal consequences of the theo-
ry. At this point two problems have to be con-
sidered: Can the operator satisfying Eqs. (1.1)
and (1.2) be justified (derived} from first princi-
ples and applied to other scattering problems'
How is the matrix element V», to be computed'P
These questions were considered by Bardeen, '
Cohen et al. ,' and Prange. " More recently Duke, '
Appelbaum and Brinkman" and Caroli et a/. " re-
considered the problem. In Sec. IC we shall re-
view this work.

C. Previous analysis of the transfer Hamiltonian

Bardeen considered tunneling to be the transfer
of a quasiparticle from a single (quasi} particle
state of the left electrode to one of the right elec-
trode. These states were localized within their
respective electrodes by means of a barrier of
finite height and infinite width.

The single-particle states of the actual Hamil-
tonian with a barrier of finite width (x, & x& x, ) are
expressed as linear combinations of the right
states with a given left state":

ts iln g-b (&)~ &s„s/r-

Subject to the standard initial conditions of time-
dependent perturbation theory Bardeen obtains a
Golden-Rule-like result, "

If P„„and (I)~ are reasonably satisfactory ap-
proximate solutions of the Schrodinger equation in
the barrier, x, & x & x„ then the precise location
of the boundary surface 8 anywhere in the barrier
is immaterial.

Bardeen argues that Mz, of Eq. (1.5) is to be
identified with the expression given in Eq. (1.19).
Bardeen does not concern himself with 8C~; rather
he makes contact directly with Eq. (1.5)." Bardeen
is not concerned in interpreting the particular form
of Mf; nor does he present an estimate of the er-
rors, if any, in his time-dependent perturbation
theory.

The formal assertion that Qiaever's experiment
was to be interpreted in terms of a transfer Hamil-
tonian which satisfies Eqs. (1.1) and (1.2) was first
made by Cohen et a/. ' They follow Bardeen's con-
vention in their choice of one-particle basis states.
They insist that the tunneling objects are normal
electrons, but beyond that their analysis provides
no further insight into the fundamental signifi-
cance of ~.

Prange" attempted to find a, single-particle
basis set which would separate the general second-
quantized Hamiltonian for a particularly simple
case into three terms such as indicated by Eqs.
(1.1) and (1.2). His failure to do so led Prange
to suggest that X~ is an effective interaction which
he expected to give strictly correct results only
if it is used in first order calculations. While this
conclusion has been challenged, Prange has un-
doubtedly successfully identified the major diffi-
culty of the formalism, i.e., the precise speci-
fication of the one-particle basis and of the as-
sociated X, =K~ +X„.

Duke pointed out the formal similarity between
the transfer-Hamiltonian formulation of tunneling
and Qppenheimer's discussion of field ionization
of hydrogen. " Thus, writing

k'V' e' e2
X= — ———Fz =3C, —Fz = ——+JC, , (1.21}

2m

The integrand in the matrix element on the right- Qppenheimer writes
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g($)ycksp//Il +gt/ ($)4e /// //rl

(1.22)

(1.23)

where

(X,-E }Q, =0, (X -E„)/t/ „=0.

An approximation equivalent to Eq. (1.18) is

formalism, in spite of its conceptual weaknesses,
does provide a reliable procedure for handling
tunneling. One of the purposes of this paper is to
adduce limits to the validity of this conjecture.
In this work we shall follow an approach similar
to that of Cannoli et al."Duke and co-workers have

also recently discussed a new microscopic theory
based on Green's functions, which, they argue,
overcomes the conceptual difficulties of the trans-
fer-Hamiltonian formalism. "

X=X' =e(R. }X.+8(R, PC, , (1.25)

where 8(R) is the characteristic function of the
domain R (it is unity on R and vanishes every-
where else). If Eq. (1.25}applies, then the ma-
trix element in Eq. (1.24} reduces to

(1.26)

where S is the boundary separating domains R,
and R, . Duke now points out that Eqs. (1.23) and

(1.24) are consistent only if the set fQ, „;P/, ~)
forms a complete orthonormal product basis for
X =X, +X~, that is, if

[X„X,] =0. (1.27)

In this case, the transition rate from ft}, p to
is given by the Golden Hule,

X~ =X-Xp. (1.29)

Neither Bardeen's nor Qppenheimer's models
satisfy the preceding criteria. If they would,
both would involve the same transfer Hamiltonian

X,=P'//2m . (1.30)

The preceding analysis leads Duke to suggest that
the transfer-Hamiltonian method be viewed as a
phenomenological formulation in which the trial
function defined by Eqs. (1.22) and (1.23) is sub-
stituted in Eq. (1.21) and where Xr of Eq. (1.28)
is defined by X-K, .

In spite of this conclusion, Duke trusts the basic
consequence of the formalism, namely Eq. (1.14).
It therefore remains an open question whether the

(1.24)

Bardeen's argument in proceeding from Eq. (1.18)
is identified by Dyke as based on the assumption
that X is separable in the sense that

D. Outline of the present work

Recently Caroli et al. developed, in a series of
four papers, a "direct" formulation of tunneling.
They avoided the need to derivethe transfer Hamil-
tonian, and in fact their work sheds light on possi-
ble fundamental shortcomings of that formalism. "
This interesting work relies heavily on an extreme-
tight-binding approximation which transforms the
differential Schrodinger equation into a difference
equation. The authors themselves were bothered
by the possible lack of generality of their formu-
lation and results. In the second of their papers
they attempted to demonstrate the generality of
their procedure. The rather indirect method used
by Caroli et al. suggests to us the desirability of
an independent analysis which would avoid any
recourse to difference techniques. Our results
partially corroborate those of Caroli et al. though
they differ from them in some important details.
We believe that the disagreement is due primarily
to the incorrect definition of the Green's functions
used by Caroli, which violate some of the analyti-
city requirements on such functions.

We shall show that subject to the separability
criterion [Eq. (1.25)], the transfer Hamiltonian
may be introduced quite naturally, as a pseudo-
potential, in agreement with the original conjec-
ture of Prange. The operator has quite generally
the form of a current operator, as suggested by
Bardeen and Duke. However, this pseudopotential
should and can be treated beyond first-order (time-
dependent) perturbation theory; in fact, as already
indicated by Caroli, it has to be treated to all
orders.

In the present paper we restrict ourselves to an
abrupt planar junction between two semi-infinite
electrodes. Our approach consists of two distinct
steps.

First, in Sec. II, the exact one-particle Green's
function, in the absence of an external potential,
is computed in terms of "zero order" or uncou-
pled Qreen's functions for the two half-spaces.
The Green's functions for the half-spaces are not
unique. The consequences of the resultant flexi-
bility in the description of the full Qreen's func-
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tion are discussed. This work enables us to re-
solve the controversy concerning the proper defi-
nition of X, and of the "right" and "left" propa-
gaiors. We also obtain a clear interpretation of
Bardeen's matrix element (of the transfer Hamil-
tonian} as a device to assure the proper continuity
of the Green's (and wave) function at the abrupt
junction.

Then, in Sec. III we follow Caroli et a/. in apply-
ing a generalization of real-time Green's-function
techniques, due to Keldysh, "to calculate the tun-
neling current at an abrupt junction in the pres-
ence of an applied potential. It should be empha-
sized that by extending the perturbation theoretic
techniques for many-body systems inthermalequi-
librium to nonequilibrium processes, Keldysh's
formalism enables us to go beyond the first-order
time-dependent perturbation theory which charac-
terized all work on tunneling prior to Caroli et aL.

In the present paper we restrict ourselves to the
case of noninteracting electrons. Extensions to
include electron-electron and electron-phonon
interactions as well as the consideration of bar-
riers of finite width have been developed and will
be dealt with in future publications. Here it should
be stressed that the abrupt junction obviously
represents the limiting case of an infinitely thin
junction; thus, we are here dealing with the so-
called strong-coupling ease, which is the opposite
extreme of the thick-barrier (weak-coupling) limit.
It was only in the latter limit that Duke was able
to demonstrate the agreement of the transfer-
Hamiltonian analysis of the tunneling of free elec-
trons across a (square) barrier with the exact
(single-particle) elementary solution. " While it
is not clear how, if at all, the transfer-Hamiltonian
formalism, as currently formulated, can be ap-
plied to our case, we show in the second paper
of this series that the abrupt junction results de-
rived in the present paper are indeed obtained
from those for the finite junction in the limit of
vanishing width. " Conversely our conclusions
are independent of the width of the junction.

In See. IV we discuss our conclusions and re.-
sults, of which the three most important ones are
(i) a clear statement of the significance of the
transfer Hamiltonian; (ii) the precise limits of
the validity of the current formulations of tunnel-
ing in terms of this Hamiltonian; (iii) the develop-
ment of a formalism for tunneling which is no more
cumbersome to apply than the current transfer-
Hamiltonian formalism, and is free of the many
inherent difficulties of the latter. It is well known
that the transfer-Hamiltonian formulation fails
to explain several experimental observations.
This point has been made quite emphatically by
Duke in a recent publication. "

II. EQUILIBRIUM GREEN'S FUNCTION

A. Definitions

We wish to compute the Green's function for an
abrupt junction in the absence of an applied po-
tential in terms of the Green's functions of the
uncoupled electrodes.

The abrupt junction is defined below, "
X =e(-x)X, +e(x)K;„. (2.1)

(8'~ -X~)g~(x, x'; u)} =6(x-x'),
and at the interface,

8
agl, (0, x'&0; u)+P —gi(0, x'&0; u) =0

(2.2)

8= agi (x & 0, 0; v) +P,gi (x & 0, 0; u&),L 9 9

while at infinity,

(2.3)

8
lim a g~ (x, x'; &u) +b —gl, (x, x'; &u) = 0. (2.4)bx

Here the coefficients a, P are completely at our
disposal, and are to be chosen so as to simplify
the calculation of the full Green's function. One
might expect that setting one of these coefficient
equal to zero could simplify the analysis. It is,
however, not clear which of two possible choices
is preferable. %'e shall see that choosing o, = 0
leads to a tunneling theory which is physically
more transparent. "

The coefficients a, b do not have to be speci-
fied at all, but are understood to represent "out-
going waves" boundary conditions.

Note that gL exists everywhere. The "localiza-
tion" to the left half-space is not forced by making

gL vanish identically on the right space, nor by
making it decay exponentially. The function has
no immediate significance on the right half-space.

This is the standard procedure for boundary-
value problems, and we emphasize it only because
of the incorrect choice of Caroli et al. to force
gL to vanish on the entire right half-space.

The Green's function for the right half-space i.s
defined analogously,

The Hamiltonians XL, X„characterize the uncou-
pled, generally distinct, left and right electrodes.
It is convenient to include in the definition of the
Green's functions g for the uncoupled electrodes
the fact that these are semi-infinite rather than
infinite systems. This is done by imposing on
these functions boundary conditions at the inter-
face. The Green's functions for these uncoupled
electrodes are distinguished from the ordinary
Green's functions (for the corresponding infinite
electrode} because they satisfy homogeneous bound-
ary conditions at the interface, i.e.,
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(fi(a&-Z„)g„(x,x';)o)) =5(x —x'),

where at the interface,

(2.5) where

S2 8
X„'(x)= iin)+ 5(x- ~), — (2.12)

8
ag„(0, x'&0; ur)+ p —gz(0, x' &0; &u) =0

8= agz(x & 0, 0; oo)) + P —,gz(x 0, 0; )o) ),

and at infinity
8

lim a,gz(x, x'; ~) +b, —g„(x,x'; &u} = 0.'8X

(2 5)

(2.7)

This, however, amounts to the statement that

[hs) —(X„+Xs)]G(x,x';(u)=5(x-x') if x&0.

(2.14)

The same argument can be applied to the left half-
space, i.e.,

The Green's function for the entire junction satis-
fies homogeneous boundary conditions only at ~:

G(x, x'; (u) =g~(x, x', u&)e(-x')-2 g~(x, x„(u)
2m

(8'~ -X)G(x, x'; &a) =5(x-x'), (2.8) x G(x„x', &g)) — [g~ (», x,; (o)]
8 8

8
lim a, G(x, x'; &u)+b, —G(x, x'; ~) =0. (2.8)

B. Determination of 6

The Green's function G can be represented in
terms of the functions g„~ by two alternative
procedures: The direct procedure is to apply
Green's theorem over the two half-intervals, and
to express G in terms of its "boundary values" at
the interface, x= 0. Alternatively the "inhomo-
geneous boundary values" sati fied by G at x = 0
may be treated as an inhomogeneous (source) term
in the differential equation. That is, one may in-
troduce a pseudo-Hamiltonian X' and represent G
in terms of an integral equation. The Hamiltonian
X' is in fact just the transfer Hamiltonian whose
matrix elements were given by Bardeen.

Applying Green's theorem to

J (G(x„x'; ia) [k&u -Kz(», )]g„(x,x„&g)
0

-g„(x, x,;a)) [Ra -X(»,}]G(x„x',(o}]Co, (2.10)

we obtain, with help of Eqs. (2.5)-(2.9),

G(x, x'; (u) =gs(x, x', (o)e(x')

+ {gs(x,x,; (u}

x G(x„x); (y) — [g„(x,»„(u)]8 8

xo( „', ))l, , o (o)o)

In the preceding we have followed the convention
that

x&0
e( )=

e(-x) =
X ~

G(x, x'; (o) =g„(x, x'; (o)e(x) — G(x, x,; od)

8 8x gs(x„x'; (u) — [G(x, x„.up)]

and

xg (x„x' )) I,,= ', x'- O (2 1)')

h2
G(x, x'; &u) =gz, (x, x'; s&)e(-x) +

2
G(x, x„' &u)

While not the common definition of the unit step
function, this is the most convenient convention for
our purposes and will be followed throughout the
remainder of this paper.

An alternative version of Eqs. (2.11) and (2.15)
ls

xG(x„»', ~)](. ,„» 0. (2.ii) gi (x„x';co) — [G(x, x„' oo))]
8 8

Evidently we can rewrite Eil. (2.11)as

e(x)G(x, x', a) ) = g„(x, x', ru)e(x')e(x)
xo, l*„x'; ))l. =.—, x'-o.

1

(2.15'}

x G(x~, x; (0}dxg ) (2.12)

+ gg X, X~ (d XeXz +g
Thus we conclude that the "boundary values"
G(0, x', &o} and SG(x, x', ~)/ex~, -„which enter
Eqs. (2.11) and (2.15), can be expressed in terms
of the constants
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G(0, 0; (u), (x, x,; (o) i„,+ „BG

Bx

BG
(x) x~,)())) ~ ~ =~+ =o,

82G
(x, x,; &o)i„ ,

(2.16)

where

g(x, x'; (u} = [e(-x)e(-x')g~ (x, x'; ~)

+e(x)e(x')g„(x, x', &o)]

&& [1——,
' e (x)e(x')e (-x)e (-x')], (2.20)

Here we note that G(x, x,; (d) is continuous at x =x„
but has a characteristic discontinuity in its first
derivative,

BG
(x, x,; ()))

Bx
2m BG

(x) x„(d}
x =x- x1

(2.17)

Finally, the mixed second derivative O'G(x, x„' ()))/
Bx8x, is continuous at x=x, . The same comments
apply to g„z (x, x„.v).

Combining Eqs. (2.11) and (2.15) and Eqs. (2.17),
one can determine the constants listed in Eq.
(2.16); in particular one obtains

( )
g„(0,0; &)) )gi (0, 0; ()) )

g„(0, 0; e)) +gi (0, 0; (())
(2.18)

82 -1
x [gg (x, xg) ())) +gs(x) xg) ()))] I»; =x --0

(2.18')

Equation (2.18) is formally identical to the "surface
Green's function" derived by Garcia-Moliner and
Rubio." When the general homogeneous boundary
conditions imposed on g„~ at the interface are
specialized by setting P =0 in Eqs. (2.3) and (2.6),
then Eq. (2.18) becomes indeterminate and Eq.
(2.18') reduces to"

as well as an alternative equivalent expression,

8 8
G(0, 0; ())) = —gg(x, xg =x ) (()) gs(x) x) x ) ())) Ix =0

36'(x) = lim, [5(x e) 5(x+e)], —8
2m Bx

= -[X(x)]'. (2.21)

Equations (2.19)-(2.21) enable us to identify
Bardeen's "transition current" with the corre-
sponding matrix element of K'. Evidently the role
of K' is to assure the continuity of G (and hence
also of the wave function g) across the discontinuity
of the potential at the interface.

Before concluding this section we shall indicate
the complete representation of G(x, x'; (())} in terms
of g~ „for the two simple homogeneous boundary
conditions at the interface: When the Green's
functions g„~ vanish at the interface, we need in

Eqs. (2.11) and (2.15}the boundary values
G(0, x'; &()), which according to Eqs. (2.11') and
(2.15') are

G(0, x', ())) = v G(0, 0; &))) gs i(x„x'; (()) I „=0&

x' (& 0 (2.22)

where G(0, 0; &o) is given by Eq. (2.18").
When the normal derivative of Green's functions

g„~ vanishes at the interface, then we need in
Eqs. (2.11) and (2.15) the boundary values
SG(x =0, x'; ~)/Sx, which are again determined
from Eqs. (2.11') and (2.15'}:

BG
(x, x); &)[, ,=+ G(x, x„~)~, =,=,

xg„ i(0, x'; ())), x'(& 0 (2.23)

2m
G(0, 0; ())) = —

2 [gz (x, x„' ()))
BxBxg

~», (*,»„t»))} (2.18")

where, by virtue of the characteristic singularity
of G at x=x',

82
G(x, x))' ())) ( ~ = 0-»

(:(*,»'; ) Ir( » )+ f (=(( *»,;',)*, ,

xX'(x, )G(x„x'; u)) dx„ (2.19}

For future reference, we note that Eq. (2.18")was
derived by Caroli et al. , using a totally different
approach. " Thus we conclude that implicit in
Caroli's analysis is the convention that g„ I vanish
at the interface.

We can combine Eqs. (2.11) and (2.15) into a
single equation,

2

g„0,0;m +gi(0, 0; co '. (2.24

III. TUNNELING CURRENT

A. Generalities

We shall express the current across the inter-
face in terms of the Green's function 6', to be
defined below, and then use the formalism of
Keldysh to express G' in terms of related left and

right functions.
It is a simple matter to verify that the average
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(g(x)) = — lcm ——,G'(x, t; x'f')eS
2m &'. & & ~ & Bx 8x'

below:

|'0 G '} / 0 g'l (I 0l (II E'1(0 G'i

O' Ff kg' fl ((0 I j (Z' 0 f(G" Ef
= (&(0)) . {3.1) {3.4)

G'(x, f; x', t') = i{y'(x', t')y(», f)) . (8 2)

Taking the Fourier transform of Eq. (3.1) with
respect to t, we obtain"

I'm —[G'(»', »; »eS . 8

2m x'~x Bx

—G'(x, x'; re)] ~, —o-—.
(3.3)

8. Summary of Keldysh's formalism

Keldysh" has demonstrated that for nonequilib-
rium processes, G' can be determined in terms of
three related Green's functions which satisfy the
(matrix) Dyson equation indicated symbolically

The last equation in Eq. (3.1) follows from the one-
dimensional equation of continuity. The Green's
function G' is defined below:

In Eq. (3.4) multiplication of matrix elements is to
be interpreted as an integration with respect to
both space and time variables. Using a more
compact matrix notation, we may rewrite Eq. (8.4)
as

G=g+gZ G . (8.6)

t'0 X')
(X' 0 j

(3.7)

The Hermitian adjoint equation also applies; i.e.,
(3.6)

In the present discussion, the "unperturbed"
Green's functions in Eqs. (8.4}-(8.6}are to be
defined in terms of left and right functions by an
equation such as Eq. (2.20). For an instantaneous
interaction, such as the pseudo-Hamiltonian K'
defined in Eq. (2.21), the self-energy matrix re-
duces to a symmetric matrix with vanishing diag-
onal elements. " Since X' is a single-particle
operator, we obtain, furthermore,

To illustrate the preceding remarks, we have,
for instance,

0
(= ((,'(, *'; )e(-*') ~ 4(*,*,; (x'(, )(."(*„*'; )u*,)e(-*(

+ E~ »x' x' + gq x, x„'~ 'x, G' x„x';co dx, 9 x 1 ——,'8 x
0

(3.6)

g' "(x, t; x', f')

= + i( [y(x, t), Ic
t(x', t')],),e{~i+ f'),

g(x, t; x', t') = —i{r[y(x, f)i'(x', f'}])„
f(x, i; x', i') = —z{[{{(x,i}, i'(x', f'}]g,

(3.9)

It remains now to define the several Green's
functions introduced above. In terms of the field
operators (1( and g~,"

g'(x, f; x', t') = i((}('(x', f')y( i)x) „
g (x, f; x', i') = i{i((x, f)-i(t(x', t')) „

unperturbed density matrix. The full Green's
functions G are defined by the same formal ex-
pressions [Eqs. (3.9)] except that the averages
are taken with respect to the full density matrix.

Below we shall find use for the following rela-
tions between the time Fourier transforms of the
several g's":

g'(x, x'; &o) = —2i f(u(}[=,' p(x, x'; ru)], (3.11)

g (x, x', &u) = 2i [I —f((o)] [--,' p(x, x'; (o)], (3.12)

P{» & ~ eke'g' (x, x', ru) =P ' ', ——p(x, x', &u)
40 —(d

From Eqs. (8.9) it follows immediately that

g'= l(f+ g'+ g" }. (3.10}
=[g'(x, x'; (u)]t =[g'(x', x; (u)]' .

{3.13)

The subscript 0 denotes that the average indicated
by the angular brackets is with respect to the

In these equations,

f(a() =(I+exp[(R(o —p)(keT) ']} '; {3.143
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P denotes the principal part of the integral; and
p(x, x', (d) is the so-called spectral-density func-
tion, which is discussed in Sec. IV. Here we only
wish to note that the function is in general com-
plex, but when x =x' it is real and positive for real
values of &o. Equations (3.11)-(3.14}apply only if
the unperturbed system is in thermal equilibrium. "

C. Calculation of the current

Using the formalism of Keldysh as summarized
in Sec. III 8, we can determine G' in terms of the
unperturbed functions g, and thus express (Z(0))
in terms of these quantities. In the following we
shall drop, whenever this causes no confusion, the
argument ~.

Upon substitution of Eq. (3.7) and (3.10) into
Eq. (3.4), we obtain

G'(x, x')=g'(x, x')+ f gx( g( xx,) &'0( x)

x G ' (x„x'}+g" (x, x, )30'(x, )G' (x„x')] .

(3.15)

8 8
lim ——,g'(x, x'; ~) = 0.ax 8~'
x=0

(3.18)

Thus, the integrand on the right side of Eq. (3.3)
can be written with the help of Eq. (3.15) and its
adj oint,

g &&(0;~))

%e note that if the uncoupled subsystems are de-
fined to be in thermal equilibrium when X'= Q, then
Eq. (3.11) implies that"

0
= lim — [G' (x, x„(u)X'(x, )gg (x„x'; (u) + G" (x, x„(o)X'(x, )gi (x„x'; (d )] Cx,x ~x 8x

x =0
0

ig,'(x, *,;«)&0'(x,)G'(*„*', ) g(*,*+„,')&0'(*,)0*(*„*',x)) 0*,)
.

8x (3.17}

At this point we shall drop the general homoge-
neous boundary conditions at the interface in favor
of the simpler requirement that the normal deriv-
ative of g„ i vanish at the interface. In the Ap-
pendix, we outline the analysis in terms of Green's
functions g„~ subject to the second "simple"
boundary condition at the interface, namely those
that vanish there.

Using Eqs. (2.21) and (2.24}, the relation

G' —G" =O' —G

and the boundary conditions
8

sx ger (xx&'& 0& (g))ig =o =0

8
g gs, z, (x& 0& x

&
(0) ) I g & = o &

(3.18)

(3.19)

we obtain from Eq. (3.17)

8'
(Z(0;«)) =

&
g,'(0, 0;&G, G (x, *', )-g, (0, 0;rx), G'(x, x', rx)) (3.20)

However, the left side of Eq. (3.17) could have been evaluated in the limit x- 0', in which case we obtain

(Z(0;«)) = —g'(0, 0;«), G (*, x';«) —g (0, 0;«), G'(x, x'; )) (3.21)

The continuity of the mixed second derivative of Green's functions allows us to drop in Eqs. (3.20) and
(3.21) the distinction between left- and right-hand limits, x =0, 0'.

Combining Eqs. (3.18) with the Dyson equation satisfied by G" ', one obtains the following relation be-
tween the mixed second derivatives of G' and G at the interface:

g2 82
, [G+ (x, x'; (0)) —G (x, x', (0))] i, = ()=,~ =, [g„'(0, 0; (&0) +gi (0, 0; (0) ) —g„(0, 0; (&)) —gi (0, 0; (0))]

x([gs (0, 0; &o) +Zi' (0, 0; u) )][g„' (0, 0; &o) +g|"; (0, 0; ~}]j (3.22)
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x[g~ (0, 0; (g& }g„(0,0; (g&)

—gi (0, 0; (d) g„'(0, 0; (u)] . {3.23}

We can now eliminate G' between Eqs. (3.20}-
(3.22), and obtain

(~(0; ~)) = —Igz(0 0'(d)+gZ(0 0'(d)
I

'

and

Imp(x, x; (g&) =0.

Equations (4.1}and (4.2) suggest that for inhomo-

geneous systems, it may be convenient to intro-
duce the notion of a "local" energy density of
states,

Using Eqs. (3.11) and (3.12) to eliminate g' in favor
of g", we obtain

(Z(0; (o)) = —~A" ((u) )' Img~ {0,0; (d)

x Img" (0, 0; ~)[f, ((d) —f (~)]; (3.24}

1
p(x, ~) = ——Img" (x, x; (d) &0,

which satisfies the two sum rules,

p(x, (u) dx =p(~}

(4.3)

here, the right and left Fermi distributions fa ~
are defined in terms of the right and left chemical
potentials p.„~,which are displaced by a potential
V. The "matrix element" A" {co) is given by

A" (&o) =[g„"(0, 0; (d)+gi (0, 0; ~)] '. (3.25)

In the Appendix we show that the energy density of
the tunneling current, (J(0; v)), can be expressed
in terms of the Green's functions g„~, which van-
ish at the interface. In this case,

and

p((d}d(d = 1.

Evidently Eq. (3.24} can be written in the form

(g&=~q j (gg)*)lg'( ll*(f, t & f, t &)-

x p~(0; (d)pz(0; ((&}—,dc'
(4.4)

(~(0; ~))
82

=—
f
A" (co) f
', [Img~ (x, x'; cu)]

+g~ (x, x', u&)] ~, =,—, {3.27)

The two alternative expressions for J(0; (d) are
compared and discussed in Sec. IV.

IV. DISCUSSION OF RESULTS

It is well known that the retarded single-particle
Green's function is related to the energy density
of states p((d} as follows":

2

x s, [Img," (», x'; ~)l I.=.=. [f, (~) —fa((d)],

(3.26)
where

2

P(~)= (g g, (g;(*,*',

where we have now summed over spin orientations.
Equation (4.4) represents our version of Appel-
baum's extension of the transfer-Hamiltonian &or-

malism, except that the "matrix element" A'((d) is
inherently defined within our formalism in terms
of the Green's functions gR L, , and is strictly
speaking no matrix element at all.

Turning to Eq. (3.26), we note that here the
right-hand side does not depend on Img"(x, x; &o}

but rather on

82
, Img"(x, x';~}~, ,BxBx

This manifestly reasonable result follows from the
fact that g'(0, 0; (d) vanishes; thus an expression
such as Eq. (3.24) would be indeterminate if we
were to replace g by g. In fact, one might inter-
pret Eq. (3.26) as resuIting from Eq. (3.24) follow-
ing a repeated application of 1'Hopital's rule. It
thus is obvious that besides Eq. (4.4), an equally
correct expression for the tunneling current is

1 " 1
Img (x, x; (d ) dx =— p(x, x; (g&) dx = p((d ) &

2r
' ' 2m--

(4.1)
where the complex spectral density, p(x, x'; (d),
is defined by the relation,

g"{x,x';(u) = lim
0+ ~ ((& —(d +LE 21&

g, (g&=)g IF( )I*(f,( )-f, t )1

8 1x, ——I g'(*, *'; ))

1x, ——Imgs(x, x'; &u) (2 v)g
x=0=x '

(4.5}
"p(x, x';(d') d(d' i

(4.2)
However, Eq. (4.5) has the drawback that it no

longer displays an explicit dependence on the local
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densities of states. Instead, it involves a reason-
ably complicated functional of these quantities.
It should be emphasized, however, that the local
densities of states clearly depend on the arbitrary
choice of the particular homogeneous boundary con-
ditions imposed at the interface. More precisely,
the local densities of states entering Eq. (4.4) char-
acterize the semi-infinite electrodes provided we
impose on their wave functions the condition that
they have a vanishing normal derivative at surface
x =0.

We now turn to compare our results with those
of Caroli et al. As noted in the discussion of Eq.
(2.18"), Caroli et aL work in terms of the func-
tions which we designated g~ L, which vanish at
the interface. In fact, our Eq. (3.26) agrees (with-
in a factor of 2, representing the sum over spin
orientations and minor errors) with Eq. (II.40) of
Caroli. " However, our analysis demonstrates that
the results derived by Caroli et al. for their dis-
crete model have a considerably more restricted
validity than claimed by them. This conclusion
follows from a comparison of our Eq. (3.26) and
Eq. (IV. 13) of Caroli et al. , which we rewrite as

(J(0; w}) =
@ I

&",(&u}T I

'
Img&, (0, 0; u)

ximgs(0, 0; e)[f,(~) -f„(w)], (4.6)

where

(4.7)
T is asserted to be an appropriate matrix element
of the interaction which couples the two semi-
infinite electrodes between which the tunneling oc-
curs. In Eqs. (4.6) and (4.7) we transcribed the
discrete indices used by Caroli as the first two
arguments of our Green's functions. The compar-
ison of Eq. (3.26) and the physical significance of
T indicate that in the continuous limit, one should
interpret

@2 g2
T Img'(0, 0; u)) = — Img'(x, x„(u) I. . . ,

1

(4.8)

Caroli et al. indeed claim to have proved these
relations, though while not committing themselves,
they seem to identify T with P'/2m. Without be-
laboring this ambiguity in the proper limit of the
discrete model of Caroli et al. , we do have to
stress that contrary to their assertion, Eq. (4.6)
[which corresponds to Eq. (3.26)] does not depend
explicitly on the local energy densities of states. "
Such a dependence is displayed only by the right
side of Eq. (3.24). Thus if we wish to interpret the
tunneling current in a "transfer-Hamiltonian-like"
fashion, or more precisely, if we wish to use tun-
neling experiments to study the local density of
states, we have to study the uncoupled subsystems
in terms of the functions g~ I, which have a vanish-
ing normal derivative at the boundary.

To conclude, we have obtained a simple interpre-
tation of Bardeen's matrix element of the transfer
Hamiltonian as a pseudopotential representing the
boundary conditions at the interface. We have ob-
tained a simple definition of the uncoupled subsys-
tems and we have derived from first principles an
expression for the tunneling current which formal-
ly agrees with an obvious generalization of the one
obtained by means of the transfer-Hamiltonian for-
malism. We have inculcated the connection between
the rather arbitrary definition of the uncoupled
subsystems and the dependence of the tunneling
current on the local density of states. Our formal-
ism is inherently free of the justified objections
raised with regard to transfer Hamiltonian, and it
has the added advantage of containing an explicit
procedure for calculating the "matrix element"
which enters the transfer Hamiltonian in an ad hoc
fashion. Our formalism avoids the ambiguities in-
volved in the extreme tight-binding approximation
of Caroli et al. and enabled us to detect a basic
inconsistency in their results.

We have checked our formalism by applying it
to the trivial case, where the two electrodes are
identical free-electron (Bohr-Sommerfeld) metals.
In this case we obtain, upon summing over spin
orientations,

and in order to secure agreement between the
"matrix element"

I
A", (&u) I

and the corresponding
factor in Eq. (3.26}, specified by Eq. (3.27), we
have to interpret where

I T(~) I'[f (~} f((u+ V)]d(u, -(4.10)
k

I
1 - T'g ~(0, 0; &u)gs (0, 0; cg)

I (hh)'/2m =h~ =(hK)'/2m+ V. (4.11)
=

I
I —Tgg(0, o; ~)Tgs(0, 0; ~) I

a'
6 6 g1( I 1t

1

82

1
(4.9)

This result is obtained by substituting g~ ~ into
Eq. (4.4) or g» into Fq. (4.5); it is identical to
that obtained in the elementary analysis of the cur-
rent across a potential step whose transmission
coefficient is ITI'. Incidentally, this elementary
problem cannot be handled in terms of the conven-
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tional transfer-Hamiltonian formalism.
%bile this check of our formalism does not con-

stitute an independent proof of its correctness, it
increases our confidence in it.

%'e have extended our analysis to a junction of
finite width, i.e., to a system consisting of three

distinct regions, rather than the two-region case
considered above. This work, reported in the sec-
ond paper of this series, confirms the conclusions
we have drawn from the simpler model. We are
presently extending our formalism to a full three-
dimensional analysis.

APPENDIX: CALCULATION OF THE TUNNELING CURRENT IN TERMS OF g

If we wish to use the Green's functions g„ l. , which vanish at the interface, then it is more convenient to
use the adjoint of the right side of Eq. (3.17),

0

(Z(0; (o)) = lim — — [g~(x, x„&u)K'(x,)G'(x„x'; ~) +gl (x, x„&u)X'(x,)G'(x„x'; (u)]dx,ae ' „-„8x
x~Q

+, [G'(», x„&o)3C'(x,)g L (x„x'; (u) + G'(x, x„&u)3C'(x,)g~ (x„x'; s))]dx,8x' J

Using Eq. (3.18}and the boundary conditions,

g„ l, (0, x'(&0; (o) =0 =g„ i(x((0, 0; &u).

%e now obtain

2m 5' 82, 82
(Z(0;&o)) = gi(x, x„&u)G (0, 0; &u) — gi(x, x„&u)G'(0, 0; &u)

x=Q =xy

(A1)

(A2)

(A3)

and similarly, letting x- 0',

2m . — ~' 8'-
(J(0;&u)) = — g„'(x, x„&u)G (0, 0; &u)

;;(...„.)G (o, o,.))8

8+8+1 x=Q+ =x 1

(A4)

The continuity of the mixed second derivatives of

g„ I, and of the functions 6 at x =x' allows us to
drop in Eqs. (A3) and (A4) the distinction between
the limits @=0,0'.

From the matrix Dyson equation, Eq. (3.4), we
obtain

Thus, Eq. (2.1&") defines G"' '(0, 0; &u) in terms of
g~"z. Using Eq. (3.18) we obtain now

G' (0, 0; u) —G (0, 0; &o)

where

[(rr, +y&) —(r& +y&)][(V&+r&)(r& +r,")],I2

(A6)

O' 8'
g( s „ I x=o=x, .

1
(A7)

We can now eliminate G' between Eqs. (A3)-(AV),
and obtain

G''(x, x'; &u) =g"''(x, x'; &o)
(&(0; ~)& =&I&&+y& I '(y&rR rLYR). —(A8}

Using Eqs. (3.11) and (3.12) to eliminate y' in favor
(A5) of y we obtain Eq. (3.26} from Eq. (A8).
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1
2' p(x, x; ao)dx = p(k, cu)dk.

Equation NI.40) has the wrong sign, and as can be

I These equations can be easily obtained from Eq. (31.24)
of Fetter and Walecka, Ref. 8 above.

3~Equations (3.11)-{3.14) are the configuration space
version of Eqs. (31.20), (31..25), and (31.26) of Ref. 8.

33This formal assertion is strictly obvious since in
thermal equilibrium there is no net current.

3 See A. A. Abrikosov, L. P. Gorkov, and I. E.
Dzyaloshinsky, Quantum Field Theory in Statistical
Physics (Prentice-Hall, Englewood Cliffs, ¹ J.,
1968), p. 64. Also Ref. 8, p. 294; note that most
textbooks consider only homogenous systems so that

checked by direct substitution of Eqs. /II. 38) into
NI.37), the denominator should be

[ V(»0)+V(»/*I'= (@/2~&' „8 IS'(», «~,. ~)
Q2

ax ax,

+g" (x, x&, co))

38In Ref. 13, Eq. {IV. 16), Caroli et a/. rewrite Eq. (4.6)
of the present paper b. .e., {IV.13)] as

/2

[f,( )-f~{ )j

xpl {0;co)p&{{);co)den.

where 4"(~) is defined by Eq. (4.7).


